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Local A-packets for Up/r(4) and a conjecture
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1 Introduction

In this note we calculate the candidates of the non-trivial A-packets [1] (see also [7]) for
the quasisplit unitary group in four variables Ug/r(4).

As is well-known, A-packets and the Arthur conjecture were introduced in order to
suitably generalize the strong multiplicity one theorem to general reductive groups. In
other words, to recover the multiplicity of each irreducible automorphic representations
from the Hecke algebra action. We assume this expectation, and use this to define A-
packets. This global postulate combined with some local part of the Arthur conjecture
allows us to determine completely the candidates of such packets of Ug/r(4).
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Of course our former result on the irreducible non-supercuspidal representations [9],
[10] is the base of this work. But the main construction depends on the detailed study
of the local and global theta correspondences. We hope that our approach will yield the
global multiplicity formula for these A-packets in some near future.

As an application we verify a conjecture of Hiraga on the effect of the Zelevinskii
duality to L and A-packets. At the time of the conference, we announced that there
exists a counter example. But this is false, and that case forms the most interesting
example ever known. We thank T. Ikeda for the discussion on this point, and of course,
for the organization of a pleasant symposium.

2 CAP parameters for Ug/r(4)

We first determine the set of A-parameters which should correspond to the non-tempered
A-packets. Although our primary concern is local A-packets, we need a global setting.
Let K be a quadratic extension of an algebraic number field k. Write o for the
generator of the Galois group Gal(K/k). The adele ring of k is denoted by A while Ax
denotes that of K.
Let G be the connected reductive group over k such that

G(R) = {g € GLy{(R®x K) | gli'0(g) = I}, (2.1)

for any k-algebra R. We have written

The L-group “G = G x,, W; is given by

~ g ifwe Wg
G = GL4(C), w)g =
(0, palwlg {Ad(L;)tg_1 otherwise.
Write £, for the hypothetical Langlands group of k. An A-parameter is a continuous
homomorphism ¢ : L X SLy(C) — LG such that

e the restriction ¢|., is a tempered Langlands parameter;
° ¢|SL2((C) is analytic.

We usually do not distinguish a parameter and its equivalence class, i.e. its G-orbit.
Write ¥(G) for the set of equivalence classes of A-parameters. We shall be concerned with
the parameters which (conjecturally) parameterize automorphic representations occurring
discretely in the automorphic spectrum and have some non-tempered local components.
More precisely, we say that an A-parameter ¢ is of CAP type (cuspidal but associated to
parabolic) if
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e ¢ is elliptic, that is, the connected centralizer Cent (¢, @)0 is contained in Z (@), and
° ¢ISL2((C) is not trivial.

We consider only parameters of this type.

By virtue of Rogawski’s detailed study of automorphic representations on U(3) [16],
we can classify the CAP-parameters for G.

Proposition 2.1. The following list gives the complete representatives of equivalence
classes of A-parameters of CAP type for G. We conventionally write n, p for charac-
ters of K*\A% satisfying nlax = 1, plax = wp/r. wg/r s the quadratic character of
k*\AX associated to K/k by the class field theory. Also T denotes an elliptic L-packet

of the quasisplit unitary group Gy of two variables. Such L-packets and the associated
Langlands parameters

or : L 3w — pp(w) X pa, Pwe (W) € G1 Mg, Wi

are described in [16]. Here pw, 1is the conjectural morphism Ly — Wy. We fix w, €
Wi \ Wk.

(1) If ¢lsryc) =~ Sym?®, then ¢ = ¢y: dnle, = Mla X Pwy, Pp(wo) = 14 X Wo.

(2) If ¢|spoc) =~ Sym® @ Lsi,, then ¢ = duy:

7 1.

bunlex = H 1 X Pwy, Pun(Wo) =

I 1

(3) When ¢|sr,c) = St®%, we have the following two possibilities.

(a) ¢ = ¢r,, where T is a stable L-packet of Gi:

0 0
el = (L) o, onatun) = (L ) s
a b al blg
"ST’“((C d)) = ( i, d12> x 1.

(b) & = ¢y wheren = (1,72) is such that m # na:

bnlex = diag(ni, M2, M2, M) X Pwy,  Pp(We) = La X wy,
a b

M(i Z)) -

x 1.

Qo
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(4) If dlsroc) = St D1, ¢ = dry:

n 1
¢T,n’£x = 908‘ X PWg ¢T,17(wa) = QO%(IU(,) X W
n _ 1

BlsLy(c) 15 omitted when it is obvious. Also we identify each quasi-character x of the idele
class group of K with the composite

Pwg ab Teciprocity , x x X x
X: Ly — Wg — W "—7 AL /K* = C*.

Note that both symplectic and orthogonal representations of Lx appear according to
the action of w,. This is an interesting feature of the unitary groups.

3 S-groups and base point representations

3.1 Local assumptions

Let vy be a place of k. We abbreviate k,, = F, K,, := K ® ky,, = E and identify the
generator of Autp(E) with 0. In what follows, we shall be interested only in the case
when F' is non-archimedean and E is a quadratic extension of F' (inert case). Then the
Langlands group Lr of F' is the direct product Wg x SU(2), where Wr is the Weil group
of F. Using this, local A-parameters are defined similarly as in the global case. Write
U(GF) for the set of equivalence classes of A-parameters for Gp = G @ F. We often
write I' = Gal(F/F), F being an algebraic closure of F' containing E.

For a p-adic group H, we write II(H) for the set of isomorphism classes of irreducible
admissible representations of H. Ilynit(H) O iemp(H) D Hawsc(H) D Mo(H) denote the
subset of unitarizable, tempered, square-integrable and supercuspidal elements in I1(H),
respectively. For an F-parabolic subgroup P = MU C G and a smooth representation 7
of M, we write

I§(r) == indgp) [r ® 1y(r)]

for the parabolically induced representation of G(F') from 7. If moreover T = 7y ® e* with
7o € Iiemp(M(F')) and a regular exponent A € a},, we write JS(7) for the Langlands
subquotient of I§(7).

Fix a non-trivial character ¢ := @), 1, : A/k — Cl. Write 15 := 1,,. This combined
with the standard splitting spl; = (B, T, {Xs}aca) of the group Gr yields a character
Yy of the unipotent radical U(F') of B(F') such that

YulexptXy) = ¥(t), VteF.

This is non-degenerate in the sense that Stab(yy, T(F)) = Z(G)(F). Recall that 7 €
I(G(F)) is u-generic if there is a non-zero linear functional Ay, : V; — C on a realiza-
tion V. of 7 satisfying

Ail’U(W(u)g) = wu(u)A%(é), Vu € U(F)> §e€Vr.

We need the following local assertion of the Arthur conjecture.

4
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Conjecture 3.1 ([1] Conj. 6.1). (A) For each ¢ € U(GF) there exists a finite subset
Oy C Hunit(G(F)) called the A-packet associated to ¢.

(B) Set Sy := Cent(¢, Q), S¢ = WO(S¢/Z(@)P). There ezxist a function § : Sy x I, — C
and a normalization function p : Sy — C such that

(1) p(sy) € {£1}, where sy is the image of 1 X —1y € Lp x SLy(C) under ¢.

(2) The normalized function
Sy x Iy > (s,m) — (s,m) 1= ——1——5(3,7r) eC

reduces to a class function on Sg.
(3) Writing sy for the image of s4 in S¢, we have
(348, 7) = eg(Sg, ™) (s, ), Vs E Sy.
Here eg(e,m) is a {£1}-valued character on Sy.

(C) Identifying the norm ||g of F* with the composite

Prwp reciprocity |lr
F: Lp — Wp — Wb 250 X 25 RY

as in the global case, we write

: 1/2
w
QD¢Z£F 9w+——>¢(w, (I |F |w ,1/2>) GLGF.
F

w4 15 a Langlands parameter which corresponds to a non-tempered L-packet I1,,. Moreover

(1) There ezists an F-parabolic subgroup P = MU C G containing B such that oy =
e* @ oM for some regular exponent \ € a}, and a tempered (i.e. bounded) Lang-

—

lands parameter @M : Lrp — LYMp. If we set Sym = Cent(pM, M) and Spm =
T0( Sy /Z(M)T), there should be an injective map

HWM DT+ (0,7') € H(SwM).

Here II(S ) is the set of isomorphism classes of irreducible representations of Sym,
whose elements are identified with their characters.

(2) H,m contains a unique Yym-generic element 71 (the generic packet conjecture).

(8) From definition, we have Il,, = {JE(e* ® 7) |1 € l,m}, and Sy, = Sym since A s
regular. If we set ,

Sps = Spm 3 8+ (s, JS(e*® 7)) = (s,7) € C¥,



48

then the following diagram commutes:
I,,> 7+ (e, m) €II(S,,)
inclusionl l inclusion

I14 BWH%EH(S(I,)

Here we have written w1 := JS(e* ® 1) € ls. We call this the base-point represen-
tation in Ily. Its dependence on ¥ is obvious. Also note that Sy, 1s a quotient of
S¢. Finally it follows from this diagram that |6(sg, m1)| = 1.

Recall the conjectural homomorphism ¢y, : Lr — L. This allows us to speak of the

local component
tyg Xid

ér 1 Lp x SLy(C) "2 L4, x SLy(C) -2 LG
of the A-parameters given in Prop. 2.1. Note that the image of ¢r is in fact contained in
the image of idg X ¢y, : G pc Wr — G o Wk, and we can view ¢r as a local parameter.
In the rest of this section, we describe the base point representations in the local
packets I1;, and the S-groups Sy, S, associated to the relevant local parameters ¢p.

3.2 Representations of G(F)

Next we review some results from [9]. We need some more notation to describe them.

Write wg,/r for the quadratic character of F'* associated to E/F by the local classfield
theory. As in the global setting, we reserve n and u to denote characters of E* such
that n|px = 1px and p|px = wg/r, respectively. n defines a character 7, : U(1, F') 3
zo(z)™t — n(z) € C! of U(1)g/r(F). For any unitary group U(V) of a hermitian space
(V,(,)) over E, this defines a 1-dimensional representation nV") : G = U (De/r(F) 5
C!. Here det denotes the determinant morphism det : GLg(V) — G, g

Let G, be the quasisplit unitary group in two variables defined by a formula similar
o (2.1). Set Gi := Rg/rGLy. We need the endoscopic liftings in the following three

settings:

Standard base change for G; The twisted endoscopic data (G1, Gy, 1,&,) for (G4, 0, 1)
(see [12, Chapt. II]), where

(n(w)g,n(w)g) xw i w € Wg,
(9,9) ¥ we if w=w, .

§,7:LG199>4pclwr———>{

Also 05(g) == Ad(Ly)to(g)™L, for g € Gy.

Twisted base change for G, The twisted endoscopic data (Gy, £Gi, 1,€,) for the same
triple as above, where

(m(w)g, p(w)g) x w if we Wg, e 1d,.

LG sgx,. w—
Eﬁl« 1 g PGy {(g7 _g) X Wy if w= We
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Endoscopic lift for G The standard endoscopic data (U(1)%), “(U(1)%/p), 8, Au-1) for
(1. Here

21u(w) xw ifwe Wg,

Nt HU(WYyr) 3 (21, 22) 00— {< o) e G,

(zz—zl)xwo if’l,U:’LUo.
All of these are established in [16].

Recall that we have two G(F')-conjugacy classes of F-parabolic subgroups of G other
than B and G itself. Their representatives are P, = M;U;, (i = 1, 2), where

= {mt) = (A srarr) | 461}

n-{ (=)

1y v z+{yy)/2
U, = 1 —o(y) y=(,y") € E?
2 1 o(y" zeF
1

Here (z,y) = 2'0(y") — y'o(z") denotes the hyperbolic skew hermitian form on E?. We
describe the irreducible representations of various M(F') in the following manner. -
x1[s1] ® x2[s2] : T(F) > diag(as, as, o(ag)™t, o(ar)™t) — Xl(al)[a1|2/2X2(a2)|az[sEZ/2 e Cx,
wls]: My(F) 3 my(A) — | det A *n(A) € GL(V,),
x[s] ® 72 My(F) 3 ma(a, ) — x(a)lal*7(g) € GL(V).

Here xi, x € I(EX), m € II(G1(F)), 7 € I1(G1(F)).

Lemma 3.2. The Langlands data (P, Hé‘;f = e* ® [Im) in Conj. 3.1 (C-1) for the local
components ¢r of the A-parameters listed in Prop. 2.1 at vy are given by the following.

(1) For ¢p = ¢y, P =B and IIT = {n[3] @ n[1]}.

(2) For ¢p = dun, P =P, and Hg/[z = {p[2] ® 72 |7+ € A\y-1(1,m)}. Au-1(1,m) consists
of two irreducible supercuspidal representations if n # 1 and two limit of discrete
series representations otherwise. Write them 1+ so that T, s Yy, -generic.

(3) For ¢p = ¢r, with T an L-packet of G1(F) consisting of infinite dimensional
unitarizable representations, P = P, and Hyl = {&.(T)}.

1) For ¢p = ¢y, P = P, and TIM = {I?1 (m ® m2)[1]}. Note that my may be n2 in the
n ¢ B,
local case (cf. Prop. 2.1 (8) (b)).
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(5) For ¢p = ¢r, with T an L-packet of G1(F') consisting of infinite dimensional uni-
tarizable representations, we have P = P, and Hé\fz ={n[lje7|Te€T}.

Remark 3.3. (i) It is a result of Keys [8] that T4 € A,-1(1,7) is the unique unramified

member of the packet when n is trivial.

(i) If we assume the generalized Ramanujan conjecture for automorphic forms on GLs,

then the infinite dimensionality and unitarizability conditions in (3) and (5) can be strength-
ened to the assertion that T is an tempered L-packet. Same kind of replacements are found

in [4]

(111) Consider the comment in (4). Returning to the global setting, let n be as in § 2. Re-
garding it as a character of Rx/xGm(A), we have the Eulerian decomposition n = @, 1,.
Then 1, must be triwial at all but finite places where the extension K, /k, (may be split)

and n, are both unramified.

Now we recall the results of [9] on the composition series of I§(r), 7 € II}! for (P, II})
appeared in the above lemma. These will be used also to verify Hiraga’s conjecture 5.
We write 67 for the Steinberg representation of a connected quasisplit reductive group
H(F). The equalities are those in the Grothendieck group of admissible representations
of finite length of G(F).

(1) For ¢, we have

I§(n(3] @ n1]) = n%6 + JE (n6%12)) + J, (n[3] ® 1 6%%) + 1.

n%6¢ € Mgisc(G(F)), n% € Munit(G(F)) and other two constituents are not unitarizable.
(2) For ¢, , we have the following two possibilities.

(i) n# 1 and 74 € A,-1(1,7) are supercuspidal.
I§, (2] ® 7x) = 65 (u, 72) + J5, (u[2) © 72),
where 05 (1, 74) € Taise(G(F)) and JE (u[2] ® 72) € Mynit(G(F)).

. . . 1 . . e’
(i) n is trivial and 74 = 7%(u)+ are the irreducible components of Ig!(u).

Ig, (2] @ T (1) +) = 6§ ()= + JB (u6 [1]) + JE (ul2] @ 7' (1)),
where 6§ (1)1 € Maisc(G(F)), other two constituents are also unitarizable.
(3) For ¢, we have the following six possibilities.

(i) T consists of one supercuspidal representation. Then 7 := £,(T) is an irreducible
supercuspidal representation and we have

Ig (n[1]) = 67 (m) + J5, (r[1]).

Here 6§ () € Ilaisc(G(F)) and J§ (n[1]) € Hunit(G(F)).
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(ii) T = {n©16%}. Then £,(T) = nud® and
I8 (nud®i (1)) = 8 () + 6§ ()~ + JE (nud[1]).
Here 6§ (i) € Maio(G(F)) and J§ (6% [1]) € Mun(G(F)).

(ili) T = {IS}(x)}, where x € II(EX) is such that o(x)™ # x. &u(T) = Igll(ﬂx ®
po(x)™) and we have

IE,(IS (x @ po () ™)[1]) = I£ (1xd%) + If, (ux(det)).
Here IE (11x0%") € Miomp(G(F)) and IE (ux(det)) € Munt(G(F)).

(iv) T = {IS:(nls)}, 0 < 5 < 1. &(T) = {IS*(un[s] @ pm[—s])} and we have

I5,(I5" (knls] ® pml—s])[1]) = IE, (und®[s]) + I§, (un(det)[s]).
Here I (;méél [$]) € Hiemp(G(F)) if s = 0 and both constituents are unitarizable.

v) T = /\Ml_l(l,n) with n # 1. &,(T) = {Igi(uul,uum)} and the irreducible con-
stituents are given in (4-1) below.

(vi) T = {r'(p1)+}. &(T) = {Igi (ppa, ppa)} and the irreducible constituents are given
in (4-ii) below.

(4) For ¢, we have the following two possibilities.

(1) m # na.
I8 (IS (m © m)[1))
= 8§ (m,m) + JE (m[1) @ n§6%) + I (a[1] @ %) + JE (I (m @ ma) 1)),
where 0o(71,m2) € Ilaisc(G(F')) and the other three constituents are all unitarizable.

(i) m1 = n2. Write 0 for this.
I5,(Ig (@) (1)) = 197(8) + 17 (1e,) + JE, (n1] @ % 6) + 5 (I3} (n @ m)[L)),

where n°7(6%1), n°7(1g,) € Iemp(G(F')) and the other two constituents are also
unitarizable.

(5) For ¢r.,, the following six cases occur.

(i) T consists of supercuspidal representations.
Igm®r) =651+ J5@0ler), TeT,
where 6§ (1, 7) € Haisc(G(F)) and J§ (n[1] ® 7) € Munis(G(F)).

9
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(i) T = {7’16} with ' # 7.
I5, (n[1] @ 8% = 65 (n,nf) + T, (n[1] @ 7/ 6%,
where both constituents are as in (4-i).
(iii) T = {n%16%}.
18 (1] ® n:6%1) = nC7(6%) + JS (n1] ® n%6%),
where both constituents are as in (4-ii).

(iv) T = {Igl1 (x)}, where x € II(E*) is such that x|px # wg/F.

Ig, (1] ® Ig} (x)) = If, (x © n6%) + I, (x @ nD),
where Igz(x ® n¢1661) € Uiemp(G(F)) and pr;z (x ® n) € Munit(G(F)).
(v) T={g'(n[sh}, 0<s< L
19,(n[1) ® IS (7 [s) = IS, (18] @ 1 8%%) + 1€ (] @ 1),
where the two constituents are unitarizable.
(vi) T'={r'(u)=}.
IZ, (1) ® 7' ()+) = 1o(1, m)+ + TG, (n1] ® 7} (1)),

where 7o(, )+ € Hiemp(G(F')) and the other constituent is unitarizable.

3.3 S-groups and the base points representations

The next lemma follows immediately from the above list.

Lemma 3.4. (1) For ¢, Sy, = {£14}, S¢n is trivial. In particular the local packet 14,
consists of the base point representation n®

(2) For ¢un, Ss,, = {diag(eils, e)|e; = ﬂ:l} S¢,.., = Z/2Z. In particular Ty, =
{JE (u[2) ® 74) | T € A\u-1(1,m)} and the base point representation is JE (u2) ® 7).

(8) For ¢r,, we have the followmg three cases.

(8-1,ii) T consists of only one square integrable representation. S¢r, = {£14} and S¢,.,
is trivial. Tly, = consists of the base point JE (€,(T)[1]).

(8-iii, iv) T consists of one parabolically induced representation Igll(x[s]).

5y = {{diag(t,t“l,t,t*) if Xls) # m, .

{diag(g,9) | g € SL2(C)} otherwise, T

Again 11y, contains only the base point representation Igl (pex(det)[s]).

10
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(3-v,vi) T = A,-1(1,7m).

{diag(t,t7%,¢,t71) if m s not trivial,
S¢T,p. =

S¢, . = {1}.
{diag(g,9) | g € SL2(C)} otherwise, or, = {1}

Iy, consists of the base point representation Jg([gl (pper, ppean)[1])-
’ 1
(4) For ¢y,

B {{diag(el, €2, €2,€1) | & = £1}  if m # o, S¢, =2 Z/2Z.

S, =
& {diag(g,62(g9)) | g € O2(C)}  otherwise,

The base point representation is Jg ( gll (m ® m)[1]).
(5) For ¢r.,, we have the following three cases.
(5-1,ii,iii) T consists of square integrable representations.

{diag(ey, €2, €2, €1 | €, = £1} if T is stable,
S¢T,17 =

Sér, = Spp X Z/2Z.
{diag(e1, €2, €3, €1 | € = +1} i T = A1 (1,7), T, oT /

The base point representation is Jg (n[l] ® 74.), where . € T is the unique Yy, -
generic element.

(5-iv,v) T consists of a principal or complementary series representation Igi (x[s]). Then

Sor, = {{d%ag(e,t, t7he)|le==+1,t € C*}  if x[s] 7& n,
{diag(e, g,€) | e = £1, g € SL2(C)}  otherwise,
and Sgy., 18 trivial. Iy, consists of the base point representation If;; (x[s] ® n°).
(5-vi) T = {1 (p)+}.
Ser,, = {diag(e, g,€) [e = %1, g € 0:(C)}, Sy, ~ Sy x Z/2LL.
The base point representation is J§ (n[1] @ 71 (1) ).

Remark 3.5. Note that these representations are exactly the local components of the
residual discrete spectrum of G. The correspondence is illustrated as follows:

A-parameter |  Residual representation in [11]
(1)77 (1) with X = Nu

S 1AL | Tim (1l lag ® =1 (0, W)) i (5)
Pu1 (2) with x = p
P, (4) with m = &,(T)
o (3)
b1 Jg(&)) (n] |,§f ®T)in (5), TeT.

The theta lift 0,-1(nu, W) is defined below §4.1. The fact that these representations ap-
peared in the discrete spectrum with multiplicity one justifies the choice of our “base point”
representations.

11
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4 Theta correspondences

In Lem. 3.4, the A-packets are completely determined except for the cases (4) and (5-i),
(5-ii), (5-iii), (5-vi). Among these excluded cases, (4-ii) and (5-vi) can be treated by the
construction of [1, § 7] since the A-parameters are not elliptic. But in the other cases,
the rest members of the packets must be supercuspidal. In this section, we construct the
candidates for these representations by the local theta correspondences. We begin with a
brief review of the Weil representations and local theta correspondences for unitary dual
pairs of our concern.

4.1 Weil representations to be used

We consider the local theta correspondences of unitary groups defined with respect to a
quadratic extension E/F of p-adic fields [13], [6].
Fix a generator 6 of E over F such that A := 6% € F*. Let (Wy,(, )n) be the

skew-hermitian space
W= E™,  ((z,2), (4, 9)n = 2'o(y) — 20 (y),

and (V4, (, )+) be the hermitian planes E? with the forms

(22) (2D, = stetmm—otam. (2. (4))- = ot +ro(ae

Here we have fixed v € F* \ Ng/p(E*). We write G = Gy := U(Ws), Gy := U(W) =
U(Vy), Gy :=U(V_). Note that G and G are quasisplit while G is anisotropic.
For (Wy, (, )n) and (V4, (, )+) as above, define

W= Vi @5 Wa, (v@w,v @) = %TrE/F[(v, o ((w, w))],
an 8n-dimensional symplectic space. We have a homomorphism
t:GI(F) X Gp(F) > (h,g9) — h®g € Sp(W).
Write Y := {(0,...,0,y1,...,yn) € Wi}, Y :={(¥4,...,¥,,0,...,0) € Wy,.}, two maxi-
mal isotropic subspaces dual to each other. These give the Lagrangians Y :=V, ®g Y,

Y :=Vye QY of W. Let P = MU be the Siegel parabolic subgroup:

P:=Stab(Y,G), M :=Stab(Y @Y",G), U:={g€ Plgly =idy}.
More explicitly, we have

= {(* g e, 0={( 1) -}

Recall the metaplectic group Mp(W) of Sp(W):

1 — C* — Mp(W) — Sp(W) — 1.

12
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The Lagrangian Y specifies a continuous embedding Sp(W) < Mp(W) so that the mul-
tiplication of Mp(W) = Sp(W) x C! is given by

(91)51)(92752) = (ngQa 8182CY(g1,92))’ CY(glvg2) = ’Y'(JJF(L(Y’ Y92_17Y91)>

Here L(Y,Yg;', Yg;) is the Leray invariant [15, Defn. 2.10] and vy, (e) denotes the Weil
constant.
Using the Bruhat decomposition G, = [[._, Pw, P,

write g € Gp(F) as

gzchﬂm%*)w(wtd;rﬂ'

Define r(g) := r and d(g) := det(a1az) € E*/Ng/p(E*). Fix n € II(E*) such that
nlrx =1 and recall Langlands’ M-factor A(E/F,¢r) = Ypp(1)/vr (A). If we set

By () : = (A(B/F,vp)?we/r(det Vi) "n(d(g))

_ Jn(d(g)) in the case of V
) (=1)@n(d(g)) in the case of V_,

then
Tyt GYF) x Gn(F) 3 (h, g) = ((h, 9), B (9)) € Mp(W)

is a continuous homomorphism lifting ¢ [13, Th. 3.1].
The Heisenberg group H(W) associated to W is W @ F' with the multiplication
!
(i )5 ) = (w+ sz 4 2 4 20D
By Stone-von Neumann theorem, there exists, up to isomorphisms, unique irreducible
unitary representation py, of H(W) on which the center F' acts by ¢r. Its underlying
admissible representation is realized on S(Y') = S(V}):

22"+, y)

Lo +y), ¢ € SY)

pue (', y; 2)9(@) = Pr(z +
This extends uniquely to an irreducible admissible representation py, of Mp(W) x H(W),
the metaplectic Jacobi group. Here the action of Mp(W) on H(W) is through the Sp(W)-

action on W. The composite

W, G*(F) % Gu(F) 1, Mp(W) 25 U(s(vny)
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is the Weil representation of G*(F) x G,(F') associated to n. It is characterized by the
formulae [13, § 5]:

wy, n(< o(a)! )) (v) = n(deta)|det a|pp(v.a), a € GL,(E) (4.1)
Aol (" L 60 =00, b=t em(m) @)
Wiy p(wn)@(v) = (£1)"Fry (—v) (4.3)

Wi, (R)p(v) = ¢(h~'v), heG*(F)
where
tr(v,v')+
2

For m € II(Gr(F)), let S(VI)r be the maximal quotient (possibly zero) of S(V) on
which G, (F') acts by some copy of m. There exists an algebraic representation ©,(m, V)
of G*(F') such that S(V]), ~ ©,(m, Vi) ® .

Conjecture 4.1 (Local Howe duality). (i) ©,(m, V) is a finitely generated admissi-
ble representation.

(11) It admits a unique irreducible quotient 0,(m, V..).

(111) II(GR(F)) > m — 0,(m,Vy) € II(G*(F)) is an bijection between the subsets of ele-
ments of I(Gn(F)) and II(G*(F)) which appear as quotients of wy, ..

Fyip(v) == e ¢V )Yp(——5—=)dv', g =1ro Trg/r.

Of course, this is now a theorem of Waldspurger if the residual characteristic of F is odd
[17]. We make use of the result of [6] which is still valid in the even residual characteristic
case (see the remark in the beginning of section 3 of that paper). This justifies our use of
notation 0, (m, Vi) in any case. Similarly we consider the lifting 6, (7, W,,) from G*(F) to
Gn(F') under the same Weil representation.

4.2 Local theta correspondences

Let ¢ : L x SLy(C) — LG be a global A-parameter. Assume that the local A-packets I,
associated to its local components ¢, are defined. At all but a finite number of places, the
base point representation ! € I, is unramified. Then we can form the global A-packet
Iy as the restricted tensor product &), Iy, with respect to the base point representations.
The following hypothesis is one of the naive goals of the Arthur conjecture.

Assumption 4.2. The strong multiplicity one property holds for A-packets. That is, two
irreducible discrete automorphic representations sharing all but a finite number of local
components belong to a same A-packet.

We combine this with the theta correspondence to construct candidates of A-packets.
The key is the following result of M. Harris.

Proposition 4.3 ([5] Th. 4.1). Writee(s, 7 x x,¥r) for the standard e-factor for T x x.
Then 6,(t,Vz) # 0 if and only if

e(1/2,7 x 7L p)wr(=1) = & (4.5)

14
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For such e, we have

vy =TT de=t
e nJL(T)Y  ohterwise.

Here 7V is the contragredient of T and JL(T) denotes the Shimizu-Jacquet-Langlands cor-
respondent of T.

We are now ready to give the case-by-case construction.
(5-1) We need to find the partner for J§ (n[1] ® 7), 7 € Ho(G1(F)). Take ¢ € {1}
satisfying (4.5) and write 7' := 6,(7,Vz). The tower property of theta correspondence
yields
On(7', Wa) 2 J§ (n[1] ® 7).

It follows from Prop. 4.3 that 6, (JL(7"), W1) = 0, and hence (the early lift)
7(7,n) = Oy (JL(7"), W2) € TIo(G(F)).

We set Iy, = {JE (n[l]® 1), 7(,m)}.
(5-ii) Construct the partner for Jg (n[1] ® 7/ G1561), n # . We know that £(3,7' G1561 %
n~L,¢p) =1, and 0,(7/*661, V) = (qn'~')€16%1. Thus

0, (' ~)C16%, W) = JS (n[1] @ 71 6%).
JL((mn'~1)€16%1) = (mm'™")% and
w0 6%, ) = 0,((m’' ™), W) € Io(G(F)).

We set Iy, = {ng (1] ® 77'G‘5G1),7r(77’615G1, n)}. :
(5-iii) Construct the partner of J§ (n[1]@n©16%"). In this case (5,7 6% xn~", ) = —1
and 6,(n®16%,V_) = 1¢;. It follows that

On(1gy, W) = J5 (n[1] @ n%169).

(This can also be deduced from the result of [14].) We have 8,(n%16%, W) = n%7(1g,)
and set Iy, = {J§ (n[1] ® n96%),n°7(16,)}-

These three cases form the local theory of the theta correspondence of infinite dimen-
sional automorphic representations of G to G.
(5-vi) In this case the A-parameter becomes

¢T,Tl|£E = dl&g([l,, mn, ,LL) X Pwg, ¢T,n(wa) = diag('—l) 12; 1) X Wy

1
bralg) = ( g ) x1, g€ SLy(C).
1

This certainly passes through M, and the corresponding A-packet of My(F') is 11 oMz =
Tm
{u®nC}. Thus by (1, § 7], the induced packet Iy,  becomes

My, = {5 (1] ® 7 ()2},
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the set of irreducible constituents of Ig (1 ® n°").
(4-1) We need to construct the partner of J§ (Igi (m ® m2)[1]), m # m2. We know that

O, (mmz™ ), Wa) = JE, (I (m @ mo) [1]):

We set Iy, = {JS (Igi (m ® n2)[1]), 7(nS661, m1)} (see (5-ii) above).
(4-ii) In this case the parameter is given by

bnlee = Mla X Pwg,  Pn(ws) =14 X w,,

Pn(g) = (%) x 1.

This passes through “M; and the corresponding A-packet for M; is II oM = {n(det)}.
n
The induced packet becomes

Iy, = {J§ (IS (n @ n)[1)), JE (1] ® n%6%)}.

These two cases form the local theory of the theta correspondence of one-dimensional
automorphic representations of G} to G.

5 Zelevinskii duality and Hiraga’s conjecture

Let G be a connected reductive group over a p-adic field F. We write Adm(G(F)) for
the category of admissible representations of finite length of G(F') and KII(G(F')) for
its Grothendieck group. If P = MU be a parabolic subgroup of G, then we have the
parabolic induction functor

IS : Adm(M(F)) — Adm(G(F)),
and the Jacquet functor
G Adm(G(F)) — Adm(M(F)).

7§ is the left adjoint of I§. The homomorphisms between Grothendieck groups induced
by these functors are denoted by the same symbols.

In [18, 9.16], Zelevinskii introduced certain involution Dg on KII(GL,(F)). For a
general reductive group G, its definition is given by [2]

Do(m) i= 3 (=1 /2 I o ().
P

Extending the result of Zelevinskii for GL(n), Waldspurger proved that this sends ir-
reducible representations to irreducible representations [3]. Recently Hiraga gave the
following conjecture on the relation of this involution with A-packets.

16



59

Conjecture 5.1. Dg sends A-packets to A-packets. Moreover if we write Dg(¢) for the
A-parameter of the A-packet Dg(Il,) and

¢ : Wr x SU(2) x SLy(C) 3 (w, h, g) — p(w)A(h)T(g) € LG,

then Da(d)(w, h, g) = p(w)T(h)A(g). Here rational representations of SLa(C) are identi-
fied with those of SU(2) by restriction.

As a corollary of our calculation, we deduce
Corollary 5.2. The above conjecture is valid for Ug/p(4).

We end this note by giving some examples of this corollary.

(1) In the notation of 3.2 (4-i), D¢ transposes 8§ (m,m2), J§,(m[1] ® nS*6%1) and
Jg (Igi (m ® m)[1]), J§ (m2[1] ® nS1661), respectively. First consider the case (4-i). The
elliptic Langlands parameter

Onlwy = diag(m, 2, M2, M) X pwy, ¥n(we) = 14 X Wy,
a b

wn((i Z))= © 0, (‘; Z)eSU(z)
d

c

corresponds to the square integrable L-packet Il,, = {85 (m,n2), m(n56%1,m)}. One
finds that Dg(wy) = ¢y while Dg(Il,,) = II(¢y), since D¢ fixes the supercuspidal rep-
resentations. This suggests that we might construct some A-packets by applying D¢ to
elliptic L-packets. This is the original motivation of Hiraga’s conjecture. On the other
hand in the case (5-ii), we have DG(¢W2G1 561 m) = d)nfl 551 1y Again the conjecture is valid
because the associated A-packets share the supercuspidal m(n$*6%1,m). In such a case,
Conj. 5.1 works little for constructing A-packets.
(2) Next in the notation of 3.2 (4-ii), D¢ transposes n°7(6"), n°7(1g,) and JPI(IG1 (n®
1)), J§ (n[1]®n%6%1), respectively. The tempered Langlands parameter ¢y in this case
corresponds to the tempered L-packet IL,, = {7 7'(5G1) n%r(1g,)}. As is conjectured,
the A-packet corresponding to Da(py) = ¢y is {J§ (IG1 (n @ n)[1]), J§ (n[1] ® n®8°)}.
On the other hand, ¢,¢1561, is unchanged under DG Whlle the two members of the cor-

responding A-packet are transposed with each other. Also this is the first example that
one representation which is not square integrable is shared by two distinct A-packets.

References

[1] Arthur, J. Unipotent automorphic representations: conjectures in “Orbites unipo-
tentes et représentations, II”, Astérisque No. 171-172, (1989), 13-71, MR:91£:22030.

[2] Aubert, A.-M. Dualité dans le groupe de Grothendieck de la catégorie des
représentations lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer.
Math. Soc. 347 (1995), no. 6, 2179-2189, MR.:95i:22025.

17



60

, Errata to the above paper, Trans. Amer. Math. Soc. 348 (1996), no. 11,
4687-4690, MR:97¢:22019.

[3]

[4] Gelbart, S., Rogawski J., and Soudry, D. Endoscopy, theta-liftings, and period inte-
grals for the unitary group in three variables, Ann. of Math. (2) 145 (1997), no. 3,
419-476, MR:98m:11125.

[5] Harris, M. L-functions of 2 x 2 unitary groups and factorization of periods of Hilbert
modular forms, J. Amer. Math. Soc. 6 (1993), no. 3, 637-719, MR:93m:11043.

[6] Harris, M., Kudla, S.S. and Sweet, W.J. Theta dichotomy for unitary groups, J.
Amer. Math. Soc. 9 (1996), no. 4, 941-1004, MR:96m:11041.

[7] K. Hiraga, Survey on the Arthur conjecture, in this volume.

[8] Keys, C.D. On the decomposition of reducible principal series representations of p-
adic Chevalley groups, Pacific J. Math. 101 (1982), no. 2, 351-388, MR:84d:22032.

[9] K. Konno, Induced representations of U(2,2) over a p-adic field, preprint.

[10] , Induced representations of rank two quasi-split unitary groups over a p-
adic field, in the proceeding of the symposium “Group representations and non-

commutative harmonic analysis”, Proc. RIMS 1124, pp. 73-85.

[11] Kon-No, T. The residual spectrum of U(2,2), Trans. Amer. Math. Soc. 350 (1998),
no. 4, 1285-1358, MR:98i:11036.

[12] Kottwitz, R.E. and Shelstad, D., Foundations of twisted endoscopy, Astérisque No.
255, (1999), MR:1 687 096.

[13] Kudla, S.S. Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87
(1994), no. 1-3, 361-401, MR:95h:22019.

[14] and Sweet, W.J., Jr. Degenerate principal series representations for U(n,n),

Israel J. Math. 98 (1997), 253-306, MR:98h:22021.

[15] Ranga Rao, R. On some explicit formulas in the theory of Weil representation,
Pacific J. Math. 157 (1993), no. 2, 335-371, MR:94a:22037.

[16] Rogawski, J.D., Automorphic representations of unitary groups in three variables,
Annals of Mathematics Studies, 123, Princeton University Press, Princeton, NJ,
1990, MR:91k:22037.

[17] Waldspurger, J.-L. Démonstration d’une conjecture de dualité de Howe dans le cas
p-adique, p # 2, Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his
sixtieth birthday, Part I (Ramat Aviv, 1989), 267-324, Israel Math. Conf. Proc., 2,
Weizmann, Jerusalem, 1990, MR:93h:22035.

[18] Zelevinsky, A.V. Induced representations of’ reductive p-adic groups. II. On irre-
ducible representations of GL(n), Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 2,
165-210, MR:83g:22012.

18



