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On Relations between Vector Variational Inequality
and Vector Optimization Problem!
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1. Introduction and Preliminaries

The concept of vector variational inequality in a finite dimentional Euclidean
space was first introduced by Giannessi in 1980. Then several studies have been
done on this subject. Vector variational inequalities have shown to be very useful
for studying vector optimization problems. Giannesst [3] showed the equivalence
between efficient solutions of a differentiable convex vector optimization problem and
solutions of a Minty type vector variational inequality for gradients which is a vector
version of the classic Minty variational inequality for gradients. Moreover, he proved
the equivalence between solutions of weak Minty type and Stampacchia type vector
variational inequalities for gradients and weakly efficient solutions of a differentiable
convex vector optimization problem. Recently, following the approaches of Giannessi
[3], Lee [5] studied equivalent relations between vector variational inequalities for
subdifferentials and nondifferentiable convex vector optimization problems.

In this paper, we study the equivalence between solutions of weak Stampacchia
type vector variational inequalities for gradients and weakly efficient solutious of
vector optimization problem involving pseudoconvex functions, and show the equiv-
alence between solutions of weak Minty type vector variational inequalities and weak
Stampacchia type vector variational inequalities for gradients under strict pseudo-
convexity assumptions.

Throughout this paper, we consider the following vector optimization problem

(VOP):

(VOP) minimize  f(z) = (fi(x), -, fr(z))
subject to € X

where f;: R - R, i=1,--- ,p are functions and X is a nonempty subset of 2.

Solving (VOP) means to find efficient solutions defined as follows:
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Definition 1.1. A point z € X is said to be an efficient solution for (VOP) if
for any r € X, ‘

(fi(@) = f1(®), -, fo(x) = fp(2)) & —RL\ {0},
where R is the nonnegative orthant of RP.

Definition 1.2. A point & € X is said to be a weakly efficient solution for
(VOP) if for any z € X,

(f1(2) = (@), , fyl) = f,(7)) & ~intR?,

where intR”) is the interior of the set RY.

2. Minty Type Vector Variational inequality

Let f; : R - R, i = 1,---,p, be differentiable functions and X a nonempty
subset of R™. We formulate the following Stampacchia type vector variational in-
equality (SVI) for gradients.

(SVI) Find z € X such that for any z € X,

(VIHE) (@ -7, V@) (7)) & —F%\ {0).

Consider the following Minty type vector variational inequality (MVI) for gra-
dients:

(MVI) Find Z € X such that for any v € X,

(V@) (@ =), Vip(a)'(x — 7)) & =KL\ {0}

Giannessi [3] proved the following theorem describing the equivalence between
vector optimization problem (VOP) and the Minty type vector variational inequality
(MVI) in the convex case.

Theorem 2.1.[3] Let X be convex subset of R™ and f convex and differentiable
function. Then 7 € X is an efficient solution of (P) if and only if it is a solution of

(MVI).

Theorem 2.2.[3] Let X be convex and f convex and differentiable function.
If # € X is a solution of (SVI), then it is an efficient solution of (MVI).
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From Theorem 2.2, (SVI) is a sufficient optimality condition for an eflicient
solution of (VOP). However, it was shown in Giannessi [3] and Yang [11] that (SVI)
is, in general, not a necessary optimality condition for an efficient solution of (VOP).
For the completeness, we give this example ([3,5]).

Example. Let f(z) := (z,2?) and X := [-1,0]. Consider the following
differentiable convex vector optimization problem (VOP):

(VOP) minimize  f(x)
subject to x € X.

Then Z = 0 is an efficient solution of (VOP) and % = 0 is a solution of the following
Minty type vector variational inequality for gradients: Find 7 € X such that for
any x € X,

(V@) @ - 7), Via(z)(z — T)) = (x — &, 20(z — 7)) € R\ {0}

However, ¥ = 0 is not a solution of the following Stampacchia type vector variational
inequality for gradients: Find & € X such that for any =z € X,

(V@) (z —z), V() (z - ) = (z 2,28 — 1) ¢ —R3\ {0}

Theorem 2.3. Let X be convex subset of R” and f;,i =1,--- , p, differentiable
and strictly pseudoconvex function. If 7 € X is a solution of (SVI), then it is an
efficient solution of (VOP).

Proof. Let Z € X be a solution of (SVI). Suppose to the contrary that 7 € X
is not efficient solution of (VOP). Then there exists y € X such that

(fr(y) = [u(®), -+, foly) — fo(7)) € —RE\ {0}
By the strict pseudoconvexity of f; at &, we have

(VA@) (=), VIp(3)'(y — 7)) € —int .
Thus # € X is not a solution of (‘SvVI).

Theorem 2.4. Let X be convex subset of R" and f; Differentiable sirictly
pseudoconvex functions. If z € X is a weakly efficient solution of (VOP), then it is
a solution of (MVI).

Proof. Let Z € X be a weakly efficient solution of (VOP). Suppose to the
contrary that £ € X is not solution of (MVI). Then there exists y € X such that

(VAW (v —2),-,Vw)'(y - 1) € —R, \ {0}



Since f;, ¢ =1,--+ ,p, are strictly pseudoconvex, we have

(fiy) = f1(®), -, foly) — fo(T)) € intRE,

which contradicts to the fact that Z € X is a weakly efficient solution.of (VOP).

3. Weak Vector Variational Inequality

We consider the following weak Stampacchia type vector variational inequality
(WSVI) and weak Minty type vector variational inequality (WMVI):

(WSVI) Find Z € X such that for any z € X,

(V@) ~7), -, V(@) — 7)) & —intRE.

(WMVI) Find 7 € X such that for any z € X,

(Vi) (z—2),- , V() (z — %)) & —intRE.

Giannessi [3] proved the equivalence between solutions of weak Miuty type and
Stampacchia type vector variational inequalities for gradients and weakly eflicient
solutions of a differentiable convex vector optimization problem.

Now we show the equivalence between solutions of (WSVI) and weakly efficient
solutions of (VOP) involving pseudoconvex functions. '

Theorem 3.1. Let X is nonempty convex subset of B" and f;, i == 1,--- ,p,
continuousely differentiable and pseudoconvex functions. Then & € X is a weakly
efficient solution of (VOP) if and only if £ € X is a solution of (WSVI).

Proof. Let T € X be a weakly efficient solution of (VOP). Because of the
convexity of X, we have 7 + «(x — %) € X for all z € X and all o € (0, 1). Hence

[(Z+a(z—7)) —~ f(T)

v

¢ —intRh.
Since f;, i =1, ,p, are differentiable, we have
(VA@E) (z - %), V(@) (z - 1)) € -intR, Vye X

Conversely, let 7 € X be a solution of (WSVI). Suppose to the contrary that
T € X is not weakly efficient solution of (VOP). Then there exists y € X such that

(@) < fu(@), -, Foly) < £,(E)) € @—-intl?ii..
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By the pseudoconvexity of f; at T for each ¢ = 1,--- ,p, we have
(VAE) (y—3), -, Vp(E) (y — 7)) € —intR.
Thus 7 € X is not a solution of (WSVI). This completes the proof.
The following theorem give the equivalence of (WSVI) and (WMVI).

Theorem 3.2. Let X be a nonempty convex subset of R™ and f;, it = 1,--- ,p.
continuousely differentiable and strictly pseudoconvex functions. Then z € X is a
solution of (WSVI) if and only if z € X is a solution of (WMVI).

Proof. Let T € X be a solution of (WSVI). Suppose to the contrary that ¥ € X
is not solution of (WMVI). Then there exists ¥y € X such that

(VAW (y = 2),+ . V() ' (y — £)) € —intR].
Since f;, 1 =1,--- ,p, are strictly pseudoconvex functions, we have
(f1(y) = [1(@), -, foly) = fp(T)) € —intRY.
5o T € X is not weakly efficient solution of (VOP). By Theorem 3.1, T € X is not
solution of (WSVI). This is a contradiction. Hence T € X is a solution of (WMVT).

Conversely, let Z € X be a solution of (WMVT). Because of the convexity of X,
we have T+ a(y —Z) € X for all y € X and all « € (0,1) and

(VAE+aly—z)laly = 2), -, V(T +aly — 7)) aly - 7)) & —intRE.

Since each f; is continuously differentiable, for each ¢ = 1,--- | p,

Vi@ +aly—12)) = Vfi(z) asa— 0"
Then we have
(VA@) (y—2), -, VHE) (y—2)) ¢ —intRL, Vye X

Hence z € X is a solution of (WSVI).

4. Vector Variational-Like Inequality

Let X be a nonempty subset of R and n: X x X — R a vector-valued function.
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Definition 4.1. A set X is said to be an n-invex if, for any z,y € X, a € [0, 1]
y+an(z,y) € X.

Definition 4.2. A function f : X — P is said to be invex with respect to 7
if, for each z,y € X and eachi=1,--- |p

fiw) = fity) 2 V fi(y) n(z, ).
Now we consider the following vector variational-like inequality (VV-LI):

(VV-LI) Find % € X such that for any z € X,

(Vfl(a":)tn(a:, j)’ T ,pr(fi‘)tn(:p, 7)) ¢ _intRﬁ-'

The following theorem give the equivalence of (VOP) and (VV-LI).

Theorem 4.1. Let X be n-invex, and let f be differentiable and invex with
respect to 7. Then Z is a weakly efficient solution of (VOP) if and only if 7 is a
solution of (VV-LI).

Proof. Let  be a weakly efficient solution of (VOP). If x € X and « € (0, 1],

then Z + an(z,z) € X since X is n-invex. Hence

[z + on(z, 7)) - f(Z)

(8%

¢ —intRE, Va e (0,1].
Since f is differentiable, it follows that )
(Vfi(®)n(z, &), -, Vp(E)n(x, 7)) € —intR,, Vze X.

Hence Z is a solution of (VV-LI).
Conversely, let Z € X be a solution of (VV-LI). Since f is invex, we have

Hence we obtain

(fi(e) = (@), fo(z) = f(E)) ¢ —intRL.

This complete the proot.
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