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Abstract

Algebraic approaches to some optimization problems on graphs applying Conti-Traverso
algorithm to Gr\"obner bases of finite graphs have been studied in recent years. On the other
hand, the complexity of normal form algorithms in Conti-Traverso algorithm is not well
understood. In this paper, we study the number of steps of reductions in Conti-Traverso
algorithm. We especially focus on the minimum cost flow problems and the transportation
problems on acyclic directed graphs, and experiment the number of reductions in Conti-
Traverso algorithm.

1 Introduction

Conti-TMaverso [3] showed an algorithm based on Gr\"obner bases for toric ideals to solve integer
programs. Some approaches to network problems by applying this algorithm to the vertex-edge
incidence matrices of graphs have been studied in recent years [7, 8, 10, 11]. On the other hand,
for the normal form algorithm which is used in $\mathrm{c}_{\mathrm{o}\mathrm{n}\mathrm{t}}\mathrm{i}-\eta$} $\mathrm{a}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{O}$ algorithm, although the worst
case complexity of the number of reduction in general case has been studied [6], the number of
reduction for the special case such as Gr\"obner bases for toric ideals are not known.

The number of elements in Gr\"obner bases of graphs is related to the complexity of normal
form algorithm, and for the case of complete graphs, complete bipartite graphs and acyclic
directed graphs, the number of elements in Gr\"obner bases for some term orders remain in
polynomial order [7, 8, 11]. In particular, for the case of acyclic directed graphs the number of
elements in Gr\"obner bases seems to remain in polynomial order for any term order.

In this paper, we analyze the complexity of normal form algorithm in Conti-Traverso algo-
rithm for the case that Gr\"obner bases are already given. Especially we focus on the minimum
cost flow problems and the transportation problems, and examine the number of reductions
in normal form algorithm during Conti-ibaverso algorithm when we apply some methods on
negative cycle canceling method [1] for the minimum cost flow problems.

2 Preliminaries

In this section, we give basic definitions of Gr\"obner bases, toric ideals and Conti-Tbaverso al-
gorithm. We refer to $[4, 5]$ for the introductions of Gr\"obner bases, [12] for the intrOdluctions of
toric ideals, and $[3, 14]$ for the Conti-haverso algorithm.
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2.1 Gr\"obner Bases

Let $k$ be a field and $k[\mathrm{x}]:=k[x_{1}, \ldots , x_{n}]$ be the ring of polynomials in $n$ variables. For a set

of variables $\mathrm{x}=$
$(x_{1}, \ldots , x_{n})$ and a non-negative integer vector $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{\geq 0}^{n}(\mathbb{Z}\geq 0$

means the set of all non-negative integers), we denote $\mathrm{x}^{\alpha}:=x_{1n^{n}}^{\alpha_{1}}\ldots x\alpha$ . For a fixed term order
$\succ$ and $f\in k[\mathrm{x}]$ , we call the largest term in $f$ with respect to $\succ \mathrm{t}\mathrm{h}\mathrm{e}$ initial term of $f$ and write
$in_{\succ}(f)$ .

Definition 2.1 F$ix$
-

a term $order\succ$ , like a lexicographic order, and let $\mathrm{c}\in \mathbb{R}_{\geq 0}^{n}$ be a non-negative
vector. We define $a$ refinement $\succ_{\mathrm{c}}$ of $\mathrm{c}$ with respect $to\succ such$ that

$\mathrm{x}^{\alpha}\succ_{\mathrm{c}}\mathrm{x}^{\beta}\Leftrightarrow \mathrm{c}\cdot\alpha>\mathrm{c}\cdot\beta$ or ( $\mathrm{c}\cdot\alpha=\mathrm{c}\cdot\beta$ and $\mathrm{x}^{\alpha}\succ \mathrm{x}^{\beta}$ ).

Definition 2.2 Let $f,g_{1},$ $\ldots,g_{s}\in k[\mathrm{x}]$ . $f$ is reducible by $g_{i}$ if there exists some term $f_{i}$ of $f$

such that $f_{i}$ is divisible by $in_{\succ}(g_{i})$ . Then we write $farrow rg\dot{.}$ where $r=f- \frac{f_{i}}{in_{\succ}(g_{i})}g_{i}$ .

$f$ is reducible by $G=\{g_{1},.\cdots , g_{s}\}$ when $f$ is reducible by some $g_{i}\in G$ , and then we write
$farrow rG^{\cdot}$ In addition, if

$farrow f_{1^{arrow}}f_{2}arrow\cdotsarrow f_{k}ccGG$
(1)

and $f_{k}$ is not reducible by $G$ , then $f_{k}$ is called $a$ normal form of $f$ by $G$ and written as $\overline{f}^{G}$

In general, the normal form of $f$ by $G$ is not unique. The central idea in Gr\"obner basis is to
enlarge $G$ so that the normal form of any polynomial becomes unique.

Example 2.3 Let $f=xy^{2}-x$ and $G=\{g_{1}=xy+1,g_{2}=y^{2}-1\}$ in $k[x, y]$ $and\succ be$ a
lexicographic order such that $x\succ y$ . Then $-x-y$ is the normal form of $f$ since $farrow-x-yg_{1}$ ’

and $0$ is also the normal form of $f$ since $farrow 0\mathit{9}2^{\cdot}$

Let enlarge $G$ to $G’=\{g_{1},g2,g3=x+y\}$ . Then the normal form of $f$ is only $0$ . 1

Definition 2.4 Let $I\subseteq k[\mathrm{x}]$ be an ideal and fix a term $order\succ$ . $G=\{g_{1}, \ldots , g_{s}\}\subseteq k[\mathrm{x}]$ is a
Gr\"obner basis for $J$ with respect $to\succ if$ $G$ satisfies the following:

1. I is generated by $g_{1},$ $\ldots$ , $g_{s}$ , and

2. for any $f\in k[\mathrm{x}]$ , the normal form $\overline{f}^{c}$ is unique.

In addition, -Gr\"obner basis $G$ is reduced if $G$ satisfies the following:

1. for any $i$ , the coefficient of $in_{\succ}(g_{i})$ is 1, and

2. for any $i$ , any term of $g_{i}$ is not $di\dot{m}sib\iota e$ by $in_{\succ}(g_{j})(i\neq j)$ .

The following is the algorithm $\mathrm{w}^{l}$hich calculates one of the normal forms of $f\in$ $k[\mathrm{x}]$ by a
polynomial set $G=\{g_{1}, \ldots,g_{s}\}$ .

Algorithm 2.5 (Normal Form $\mathrm{A}\iota_{\mathrm{g}}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}(1)$)
Input: $f\in k[\mathrm{x}],$ $G=\{g_{1}, \ldots,g_{s}\}\in k[\mathrm{x}]and\succ$

Output: One of the normal $f_{ormS}\overline{f}^{G}$

WHILE there exists a term $f_{i}$ in $f$ and $\mathit{9}j\in G$ such that $in_{\succ}(gj)|fi$ and $f\neq 0$ do

$f:=f- \frac{f_{i}}{in_{\succ}(g_{j})}g_{j}$

Output $\overline{f}:=fG$ .
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For the number of iterations of “WHILE” loop in this algorithm, only the upper bound has
known [6].

Theorem 2.6 ([6]) For a fixed term $order\succ,$ $f\in k[\mathrm{x}]$ and $G=\{g_{1}, \ldots,g_{s}\}$ , the number of
iterations $L_{G}(f)$ of “WHILE” loop in Algorithm 2.5 is at most

$L_{G}(f)\leq\{$

$L$ $l–1$
$(1+Rc,\succ^{U)L}$ $l=2$
$2^{R_{G,\succ}U}L$ $l\geq 3$

where $L$ is the number of terms in $f,$ $l$ is the maximum of the number of terms in $g_{i}\in G$ ,
$R_{G,\succ}\geq cd^{n}$ ($c$ and $d(\geq 2)$ is a constant which depends $on\succ and$ $G$), and $U=O(\deg(f))$ where
$\deg(f)$ is the total degree of $f$ .

2.2 Toric Ideals

Fix a matrix $A\in \mathbb{Z}^{d\cross n}$ and let $\mathrm{a}_{i}$ be the i-th column of $A$ . Each vector $\mathrm{a}_{i}$ is identified $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\backslash$ a
monomial $\mathrm{t}^{\mathrm{a}_{i}}$ in the Laurent polynomial ring $k[\mathrm{t}^{\pm 1}]:=k[t_{1}, \ldots, t_{d}, t_{1}^{-1}, \ldots, t_{d}^{-1}]$ .

Definition 2.7 Consider the homomorphism

$\pi:k[x_{1}, \ldots, x_{n}]$
.

$arrow k[\mathrm{t}^{\pm 1}],$ $x_{i}\mapsto \mathrm{t}^{\mathrm{a}_{i}}$ .

The kernel of $\pi$ is denoted $I_{A}$ and called the toric ideal of $A$ .

Every vector $\mathrm{u}\in \mathbb{Z}^{n}$ can be written uniquely as $\mathrm{u}=\mathrm{u}^{+}-\mathrm{u}^{-}$ where $\mathrm{u}^{+}$ and $\mathrm{u}^{-}$ are non-
negative and have disjoint support.

Lemma 2.8

$I_{A}--\langle \mathrm{x}^{\mathrm{u}_{i}^{+}}-\mathrm{x}^{\mathrm{u}_{i}^{-}} : \mathrm{u}_{i}\in \mathrm{k}\mathrm{e}\mathrm{r}(A)\cap \mathbb{Z}^{n}, i=1, \ldots, s\rangle$

Furthermore, a toric ideal is generated by finite binomials.

Definition 2.9 A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is called circuit if the support of $\mathrm{u}$ is minimal wiih
respect to inclusion in $\mathrm{k}\mathrm{e}\mathrm{r}(A)$ and the coordinates of $\mathrm{u}$ are relatively prime. We denoie the set
of all circuiis in $I_{A}$. by $C_{A}$ .

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{v}^{+}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}2.10$
A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A}$ is called primitive if there exists no other binomial

$\mathrm{x}$ $-\mathrm{x}^{\mathrm{v}^{-}}\in I_{A}$ such that both $\mathrm{u}^{+}-\mathrm{v}^{+}$ and $\mathrm{u}^{-}-\mathrm{V}^{-}$ are non-negative. The set of all primitive
binomials in $I_{A}$ is called the Graver basis of $A$ and written as $Gr_{A}$ .

Let $\mathcal{U}_{A}$ be the set which is the union of all Gr\"obner bases for $I_{A}$ with respect to all term
orders. $\mathcal{U}_{A}$ is a Gr\"obner basis for $I_{A}$ with respect to any term order, and called the universal
Gr\"obner basis of $I_{A}$ .

Proposition 2.11 ( $[l2$ , Proposition 4.11.]) For any matrix $A$ ,

$C_{A}\underline{\mathrm{C}}\mathcal{U}_{A}\subseteq Gr_{A}$ .
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2.3 $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}^{r}-\mathrm{b}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}$ Algorithm

Conti and Traverso [3] introduced an algorithm based on Gr\"obner basis to solve integer programs.
We describe the condensed version of Conti-Traverso Algorithm$(\mathrm{S}\mathrm{e}\mathrm{e}[12])$ . This version is useful
for highlighting the main computational step involved. For the original version of Conti-Traverso
Algorithm, see [3].

Let $A\in \mathbb{Z}^{d\cross n},$ $\mathrm{b}\in \mathbb{Z}^{d},$
$\mathrm{c}\in \mathbb{R}_{\geq 0}^{n}$ . We consider the integer program

$IP_{A,\mathrm{c}}(\mathrm{b}):=minimi_{Z}e\{\mathrm{c}\cdot \mathrm{x}:A\mathrm{x}=\mathrm{b}, \mathrm{x}\in \mathbb{Z}_{\geq 0}^{n}\}$.

Conti-Traverso Algorithm is a algorithm using the toric ideal $I_{A}$ which calculates $\mathrm{x}$ such that $\mathrm{x}$

is minimum in the set $\{A\mathrm{x}=\mathrm{b}, \mathrm{x}\in \mathbb{Z}_{>0}^{n}\}$ with respect to the term $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\succ_{\mathrm{c}}$ , that is one of the
optimal solution of $IP_{A,\mathrm{c}}$ . Let $IP_{A,\succ_{\mathrm{C}}}\overline{(}\mathrm{b}$) the problem that calculate this $\mathrm{x}$ .

Algorithm 2.12 (Conti-Traverso Algorithm)
Input: $A\in \mathbb{Z}^{d\cross n},$ $\mathrm{b}\in \mathbb{Z}^{d},$

$\mathrm{c}\in \mathbb{R}_{>0}^{n}$

Output: An optimal solution $\mathrm{u}’\overline{f}orIP_{A,\succ_{\mathrm{c}}}(\mathrm{b})$

1. Compute the reduced Gr\"obner basis $G_{\succ_{\mathrm{C}}}$ of $I_{A}$ with respect $to\succ_{\mathrm{c}}$ .
2. For any solution $\mathrm{u}$ of $IP_{A,\mathrm{c}}(\mathrm{b})$ , compute the normal form $\mathrm{x}^{\mathrm{u}’}$ of $\mathrm{x}^{\mathrm{u}}$ by $G_{\succ_{\mathrm{c}}}$ .
3. Output $\mathrm{u}’$ . $\mathrm{u}’$ is the unique optimal solution of $IP_{A,\succ_{\mathrm{C}}}(\mathrm{b})$ .

Conti-brvaerso algorithm has given insight into the structure of integer programming by
associating reduced Gr\"obner bases with test sets in integer programming [13].

3 Application to Toric Ideals of Acyclic Directed Graphs

Let $G=(V, E)$ be an acyclic directed graph such that $V=\{v_{1}, \ldots, v_{n}\}$ and $E=\{e_{1}, \ldots , e_{m}\}$ .
The vertex-edge incidence matrix $A=(a_{ij})$ of $G$ is $n\cross m$ integer matrix such that

$a_{ij}=\{$

1 $v_{i}$ is the initial vertex of $e_{j}$

$-1$ $v_{i}$ is the terminal vertex of $e_{j}$

$0$ otherwise

With regard to the toric ideal of the incidence matrices of graphs, applications of Conti-
$r_{\mathrm{b}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}}$ algorithm to complete graphs, complete bipartite graphs, directed graphs, and trans-
portation of the incidence matrices of undirected graphs correspond to solve the minimum weight
perfect $f$-matching problems [7], the transportation problems [8], the minimum cost flow prob-
lems [11], and the vertex covering problems [10], respectively.

3.1 Toric Ideals of Acyclic Tournament Graphs

In this section, we consider the toric ideals of acyclic tournament graphs. The toric ideals of
acyclic tournament graphs are important since, as we will show in the next section, the Gr\"obner

bases for toric ideals of acyclic directed graphs or bipartite graphs can be obtained from those
for acyclic tournament graphs automatically.

Let $D_{n}$ be an acyclic tournament graph with $n$ vertices which have labels 1, 2, . . . , $n$ such that
each edge $(i,j)(i<j)$ is directed from $i$ to $j$ . Let $m=$ be the number of edges in $D_{n}$ . We
associate each edge $(i,j)$ with a variable $x_{ij}$ in the polynomial ring $k[\mathrm{x}]:=k[x_{ij} : 1\leq i<j\leq n]$ .
Let $A_{n}$ be the vertex-edge incidence matrix of $D_{n}$ .

A walk in $D_{n}$ is the sequence of vertices $(v_{1}, v_{2,.*}. , v_{p})$ such that $(v_{i}, v_{i+1})$ or $(v_{i+1}, v_{i})$ is
an arc of $D_{n}$ for each $1\leq i<p$ . A cycle is a walk $(v_{1}, v_{2}, \ldots, v_{p}, v_{1})$ . A circuit is a cycle
$(v_{1}, v_{2}, .. . , v_{p}, v_{1})$ such that $v_{i}\neq v_{j}$ for any $i\neq j$ .
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Definition 3.1 Let $C$ be a circuit of $D_{n}$ . If we fix a direction of $C$ , we can partition the edges
of $C$ into two sets $C^{+}$ and $C^{-}$ such that $C^{+}$ is the set of forward edges and $C^{-}$ is the set of
backward edges. Then the vector $\mathrm{u}=(u_{ij})_{1\leq i<j}\leq n\in \mathbb{R}^{m}$ defined by

$u_{ij}=\{$

1 if $(i,j)\in C^{+}$

$-1$ if $(i,j)\in C^{-}$

$0$ if $(i,j)\not\in C$

is called the incidence vector of $C$ .

Lemma 3.2 ([2, Proposition 2.17]) A binomial $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in I_{A_{n}}$ is a circuit if and only if
$\mathrm{u}$ is the $incidenc_{\wedge}e$ vector of a circuit of $D_{n}$ .

Proposition 3.3 ([12, Exercise $4(8)]$ ) For the case of $I_{A_{n}},$ $C_{A_{n}}=\mathcal{U}_{A_{n}}=Gr_{A_{n}}$ .

(Proof) If $\mathrm{x}^{\mathrm{u}^{+}}-\mathrm{x}^{\mathrm{u}^{-}}\in Gr_{A_{n}}$ is not a circuit of $I_{A_{n}}$ , then there exists a circuit $\mathrm{x}^{\mathrm{c}^{+}}-\mathrm{x}^{\mathrm{c}^{-}}\in I_{A_{n}}$

such that

supp $(\mathrm{c}^{+})\subseteq supp(\mathrm{u}^{+})$ , supp$(\mathbb{C}^{-})\subseteq supp(\mathrm{u}^{-})$ .

By Lemma 3.2, since each element in $\mathrm{c}^{+}$ and $\mathrm{c}^{-}$ is either $0$ or 1, $\mathrm{x}^{\mathrm{u}^{+}}$ is divisible by $\mathrm{x}^{\mathrm{c}^{+}}$ and
$\mathrm{x}^{\mathrm{u}^{-}}$ is divisible by $\mathrm{x}^{\mathrm{c}^{-}}$ . Then $\mathrm{u}$ is not primitive, which is contradiction. 1

Corollary 3.4 The universal Gr\"obner basis $\mathcal{U}_{A_{n}}$ is the set of binomials which correspond to all
of the circuits of $D_{n}$ .

Corollary 3.5 The number of elements in $\mathcal{U}_{A_{n}}$ is of exponential order with respect to $n$ .

3.2 Gr\"obner Bases for Acyclic Directed Graphs

We now consider the toric ideals of acyclic directed graphs and (undirected) bipartite graphs.
Let $B_{n}$ be the vertex-edge incidence matrix of acyclic directed graph $G_{n}$ with $n$ vertices and

$C_{m,n}$ that of bipartite graph $K_{m,n}$ with vertex sets $V,$ $W$ such that $|V|=m,$ $|W|=n$ .
We consider $G_{n}$ as a subgraph of $D_{n}$ , and let

$E’$ $:=\{(i,j) : (i,j)\in E(D_{n})\backslash E(G_{n})\}$

where $E(D_{n})$ (resp. $E(G_{n})$ ) is the edge set of $D_{n}$ (resp. $G_{n}$ ).

Proposition 3.6 $I_{B_{n}}=I_{A_{n}}\cap k[x_{ij} : (i,j)\not\in E’]$ .

(Proof) If $f=\mathrm{x}^{\mathrm{c}^{+}}-\mathrm{X}\mathbb{C}^{-}\in I_{B_{n}}$ , there exists a cycle $C$ in $G_{n}$ such that for a suitable orientation
of $C$ , the support of $\mathrm{c}^{+}$ is the set of forward edges in $C$ and the support of $\mathrm{c}^{-}$ is the set of
backward edges in $C$ . Then $C$ is also a cycle in $D_{n}$ , which implies that $f\in I_{A_{n}}\cap k[x_{i}j:(i, j)\not\in E’]$ .

Conversely, Let $f=\mathrm{x}^{\mathrm{c}^{+}}-\mathrm{x}^{\mathrm{c}^{-}}\in I_{A_{n}}\cap k[x_{ij} : (i, j)\not\in E’]$ . Since $f\in I_{A_{n}}$ , there exists
a cycle $C$ in $D_{n}$ such that for a suitable orientation of $C$ , the support of $\mathrm{c}^{+}$ is the set of
forward edges in $C$ and the support of $\mathrm{c}^{-}$ is the set of backward edges in $C$ . Furthermore, since
$f\in k[x_{ij} : (i,j)\not\in E’],$ $C$ contains no edge which is contained in $E’$ . Then $C$ is also a cycle in
$G_{n}$ , which implies that $f\in I_{B_{n}}$ . I

Let $G_{m,n}$ be a subgraph of $D_{m+n}$ such that the edge set $E(G_{m,n})$ of $G_{m,n}$ is

$E(G_{m,n}):=$ { $(i,j):1\leq i\leq m$ and $m+1\leq j\leq m+n$}.

$G_{m,n}$ is obtained from $K_{m,n}$ by orienting each edge from the vertex in $V$ to the vertex in $W$ .
Let $C_{m,n}’$ be the vertex-edge incidence matrix of $G_{m,n}$ .
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Proposition 3.7 $I_{C_{m,n}’}=I_{C_{m,n}}=I_{D_{m+n}}\cap k[x_{ij} : (i,j)\in E(G_{m,n})]$ .

(Proof) The i-th row of $C_{m,n}’$ equals the i-th row of $C_{m,n}$ for $1\leq i\leq m$ and $(-1)$ times the
i-th row of $C_{m,n}$ for $m+1\leq i\leq m+n$ . Thus $I_{C_{m}’n},=I_{C_{m,n}}$ since $\mathrm{k}\mathrm{e}\mathrm{r}(C_{m,n}^{l})=\mathrm{k}\mathrm{e}\mathrm{r}(C_{m,n})$ .

The proof of the second equality is similar to that of Proposition 3.6. I
By Proposition 3.6 and Proposition 3.7, Gr\"obner bases of acyclic directed graphs and bi-

partite graphs can be obtained from those for acyclic tournament graphs using the following
elimination theorem.

Theorem 3.8 ([4, Chapter 3, \S 3. Theorem 2 and Exercise 5]) Fix an integer $1\leq l\leq n$

and $let\succ be$ a term order on $k[x_{1}, x_{2}, \ldots, x_{n}]$ such that any monomial involving at least one of
$x_{1},$ $\ldots,$ $x_{l}$ is greater than all monomials in $k[x_{l+1}, \ldots, x_{n}]$ . $Let\succ’$ be a term order which is the
restriction $of\succ to$ $k[x_{l+1}, \ldots, x_{n}]$ . If I is an ideal in $k[x_{1}, x_{2}, \ldots, x_{n}]$ and $G$ is a Gr\"obner basis
of I with respect $to\succ$ , then $G\cap k[x_{l+1}, \ldots, x_{n}]$ is a Gr\"obner basis for $I\cap..k[x\iota+1,$. $\sim..\cdot\cdot, x_{n}.]$

with
respect $to\succ’$ .

3.3 $\mathrm{c}_{\mathrm{o}\mathrm{n}}\mathrm{t}\mathrm{i}-\mathrm{n}_{\mathrm{a}\mathrm{v}}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}$

. Algorithm for Acyclic Directed Graphs

Using Algorithm 2.12, reduced Gr\"obner bases for $I_{A_{n}}$ can be applied to minimum cost flow
problems on $D_{n}$ or the subgraphs of $D_{n}$ , or to transportation problem on the bipartite graphs
$K_{m,n}$ .
. . Minimum cost flow can be solved by the cycle canceling algorithm, that is, for a feasible
flow the algorithm iteratively finds negative cost directed cycles in the residual network and
augments flows on these cycles. If the residual network contains no negative cost cycle, then
the flow is the minimum cost flow [1]. Since the elements of Gr\"obner bases for acyclic directed
graphs correspond to the circuits of the graphs by Corollary 3.4, the cycle canceling algorithm
corresponds to Conti-Raverso algorithm in which the reduction is done by the universal $\mathrm{G}\mathrm{r}\ddot{\mathrm{o}}\mathrm{b}\mathrm{n}\mathrm{e}\Gamma$

basis. Since in the cycle canceling algorithm we augment by each cycle as much as possible,
corresponding normal form algorithm in $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}^{r}- \mathrm{b}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{O}$ algorithm is rather different with the
original normal form algorithm in Algorithm 2.5.

Algorithm 3.9 (Normal Form $\mathrm{A}_{\mathrm{o}\mathrm{r}}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}(2)$ )
Input: $f\in k[\mathrm{x}],$ $G=\{g_{1}, \ldots,g_{s}\}\in k[\mathrm{x}]and\succ$

Output: One of the normal $f_{ormS}\overline{f}^{G}$

WHILE there exists a term $f_{i}$ in $f$ and $g_{j}\in G$ such that $in_{\succ}(g_{j})|fi$ and $f\neq 0$ do

$f:=f- \frac{f_{i}}{in_{\succ}(g_{j})}g_{j}$

WHILE there exists a term $f_{k}$ in $f$ such that $in_{\succ}(g_{j})|f_{k}$ and $f\neq 0$ do

$f:=f- \frac{f_{k}}{in_{\succ}(g_{j})}g_{j}$

Output $\overline{f}^{G}:=f$ .

We remark that, in the normal form algorithm during Conti-Traverso algorithm, the input
polynomial $f$ is a monomial, and thus intermediate polynomial $f$ is also monomial since each
$g_{j}\in G$ is binomial. And in Theorem 2.6, $l=2$ since $I_{A}$ is a binomial ideal, $L=1$ since $f$ is a
monomial. Thus the worst case complexity of the number of reductions is $O(d^{n}\cdot\deg(f))$ .

4 Experiments

To analyze the efficiency of Conti-Traverso algorithm if the Gr\"obner basis is already given, we
measured the number of reductions during Conti-Traverso algorithm for acyclic tournament
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graphs, acyclic directed graphs, and complete bipartite graphs. We examined Algorithm 3.9 to
compare the number of canceling cycles during cycle canceling algorithm.

In the normal form algorithm Algorithm 3.9, we may have many choice of $g_{j}$ in the first
“WHILE” loops. We used four strategies to choose $g_{j}$ . Let $\mathrm{c}$ be a cost vector and $g_{i}=$

$\mathrm{x}^{\mathrm{a}_{i}}-\mathrm{x}^{\mathrm{b}_{i}}\in G(\mathrm{x}^{\mathrm{a}:}\succ \mathrm{x}^{\mathrm{b}_{i}})$ .

(i) Most Leading Term Method Choose $g_{i}$ such that $\mathrm{c}\cdot \mathrm{a}_{i}$ is the largest.

(ii) Most Improvement Method Choose $g_{i}$ such that $\mathrm{c}\cdot \mathrm{a}_{i}-\mathrm{c}\cdot \mathrm{b}_{i}$ is the largest.

(iii) Minimum Mean Cycle Method Let $M_{i}$ be the number of no.n-zero elements in $\mathrm{a}_{i}$ and
$\mathrm{b}_{i}$ . Then choose $g_{i}$ such that $(\mathrm{c}\cdot \mathrm{a}_{i}-\mathrm{C}\cdot \mathrm{b}_{i})/M_{i}$ is the largest.

(iv) Best Improvement Method Let $N_{i}$ be the number of iterations of the first “WHILE”
loop for $g_{i}$ in Algorithm 3.9. Then choose $g_{i}$ such that $N_{i}(\mathrm{C}\cdot \mathrm{a}_{i}-\mathrm{C}\cdot \mathrm{b}_{i})$ is the largest.

(i) and (ii) are the methods described in [14]. (ii) and (iii) correspond to the most improve-
ment method [1] and minimum mean cycle canceling method $[9, 1]$ , respectively, both are known
as polynomial time algorithms for the minimum cost flow problems. (iv) is that we choose $g_{i}$

such that the improvement after the first “WHILE” loop for $g_{i}$ is the maximum.
The data types used are the following:

Acyclic tournament graphs: The data name $T[v]$ means the tournament graph with $v$ ver-
tices. $(4\leq v\leq 8)$

Acyclic directed graphs: The data name $D[v]R[r]$ means that the data is generated $\mathrm{h}\mathrm{o}\mathrm{m}$

$T[v]$ by deleting each edge randomly.. by $\mathrm{t}..\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}.\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}$,ility 1 $-$
. $.r/101\cdot \mathrm{o}$ . $(v=7,8,,$ $r=$

$50,60,70,80,90)$

Complete bipartite graphs: The data name $K[m][n](m\leq n)$ means the complete bipartite
graph with the vertex sets $V,$ $W$ such that $|V|=m,$ $|W|=n$ . $((m, n)=(3,3),$ $(3,4),$ $(3,5)$ ,
$(3, 6)$ , $(4, 4)$ , $(4, 5))$

For each graph, we give each edge the integer cost among $0$ and 50 randomly, and give
each edge the initial flow among $0$ and 20 randomly. We examined each data 100 times and
averaged the number of iterations of the first “WHILE” loop in Algorithm 3.9. We used $G$ in
Algorithm 3.9 as the reduced Gr\"obner basis with respect to the refinement of $\mathrm{c}$ and the universal
Gr\"obner basis for toric ideal of each graph (which corresponds to the cycle canceling algorithm).

Comparing the results using reduced Gr\"obner bases, the strategies (ii) and (iii) which are
efficient in the cycle canceling algorithm are also efficient for Conti-haverso algorithm, and
the strategy (iv) is not so much efficient than (ii) or (iii). Comparing the result using reduced
Gr\"obner bases and that using universal Gr\"obner bases, $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}’-\mathrm{b}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{O}$ algorithm is not so much
efficient than cycle canceling algorithm. This shows that the number of reductions does not
depend on the number of elements in Gr\"obner bases.

From the viewpoint of calculation time, the $\mathrm{m}\mathrm{e}\mathrm{t}\acute{\mathrm{h}}$ods using $\mathrm{r}\mathrm{e}\acute{\mathrm{d}}$uced’ Gr\"obner $\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}$

:

seem
to be more efficient. Calculating the reduced Gr\"obner bases takes large time, and calculating
the universal Gr\"obner bases (enumerating all circuits in the graphs) also takes large time by
Corollary 3.5. On the other hand, deciding the basis to reduce for the case of reduced .Gr\"obner
bases takes much shorter than for the case of universal Gr\"obner bases since the number of
elements in reduced Gr\"obner basis is much smaller than that in universal Gr\"obner basis. In
fact, for the data $T8$ average calculation time of most improve method using reduced Gr\"obner
basis is 0.03 second while that using universal Gr\"obner basis is 168.65 seconds (these results are
timed on Sun $\mathrm{U}\mathrm{l}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{p}\mathrm{A}\mathrm{R}\mathrm{c}_{- \mathrm{I}}\mathrm{I},$ $450$ MHz workstation with $2\mathrm{G}\mathrm{B}$ memory).
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5 Conclusions

In this paper, we have studied the reductions in $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}^{\Gamma}-\mathrm{b}\mathrm{a}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{O}$ algorithm and have experimented
for the minimum cost flow problems and the transportation problems. The strategies which are
used in cycle canceling algorithm are also efficient for $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}- \mathrm{b}\prime \mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}$ algorithm. The $\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{C}\mathrm{u}r$lation
time is almost same as the cycle canceling algorithm.

Although the theoretical calculation time is not known, $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}-\prime \mathrm{b}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{S}\mathrm{o}$ algorithm will be
useful if the fast algorithms to calculate Gr\"obner bases for toric ideals are constructed.
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