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1. PRELIMINARIES

We first fix notation. Let N(resp.Z) denote the set of nonnegative integers
(resp. integers). Let | S | denote the cardinality of a set S.
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We recall some notation on simplicial complexes and Stanley-Reisner
rings. We refer the reader to, e.g., [Br—Hel, [Hi|, [Hoc|] and [St] for the
detailed information about combinatorial and algebraic background.

- A (abstract) simplicial complez A on the vertez setV = {x1,z2,...,2s}
is a collection of subsets of V such that (i) {z;} € A forevery 1 <i < n
and (i) F € A, G C F = G € A. The vertex set of A is denoted by
V(A). Each element F of A is called a face of A. We call F € A an i-face
if | F |= 441 and we call a maximal face a facet. Let F be a face but not a
facet. We call F free if there is a unique facet.‘G such that F C G. If {z;}
is free, we call z; free.

~ We define the dzmenszon of F € A to be dim F —| F | —1 and the
dimension of A to be dim A = max{dim F | F € A}. We say that A is
pure if all facets have the same dimension. In a pure (d — 1)-dimensional
complex A, we call (d — 2)- face a subfacet. We say that a pure complex A
is strongly connected if for any two facets F and G, there exists a sequence

of facets
F=FyF,.. F,=G

such that F;_; N F; is a subfacet forz=1,2,...,m

Let f; = fi(A), 0 < i < d—1, denote the number of i-faces in A. We
define f_; = 1. We call f(A) = (fo, f1,--:, fa—1) the fvector of A. Define
the h-vector h(A) = (hg, b, .. hd) of A by '

. .
Z fz'— d—z Z h td——
=0 ‘

Let H;(A; k) denote the z'—th reduced simplicial fh‘om,ology group.of A with
the coefficient field k.

Let A = k[z;,22,...,%,] be the polynomial ring in n-variables over a

field k. Define Ia to be the ideal of A Whlch is generated by square-free
monomials Ly Ty T, 1<i;<ip <~ - < z,, < n, with {21,22, N -2

A. We say that the quot1ent algebra k[A] = A/IA is the Stanley Rezsner
rzng of A over k.

Next we summarize basic facts on the Hilbert series. Let k be a field
and R a homogeneous k-algebra. By a homogeneous k-algebra R we mean
‘a noetherian graded ring R = @, R; generated by R, with Ry = k. Let
M be a graded R-module with di;nk M; < oo for all ¢ € Z, where dim;, M;
denotes the dimension of M; as a k-vector space. The Hilbert series of M
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is defined by ' .
F(M,t) = (dimg M;)¢".
i€Z : .
It is well known that the Hilbert series F(R,t) of R can be written in the

form
ho + hit + - - - + bt

(1—¢)dimR ’

where ho(= 1), hy,...,h, are integers with deg R := hg+hy +---+h, > 1,
which is called the degree of R. The vector h(R) = (ho, hy, ..., h;) is called
the h-vector of R. We consider k[A] as the graded algebra k[A] = @;5¢ k[A];
with degz; = 1 for 1 < j < n. The Hilbert series F(k[A],t) of a Stanley-
Reisner ring k[A] can be written as follows:

F(R,t) =

F(k[A]t) = 1+§: {’_lf

ho + hlt + e+ hgt?
(1- t)d ’

where dim A = d—1, (fo, f1,.- -, fa—1) is the f-vector of A, and (hg, hy, .. ., hq)
is the h-vector of A. It is easy to see deg k[A] = fs_;. On the other hand,
the arithmetic degree of k[A] is defined to be the number of facets in A,
which is denoted by a-degk[A]. See, e.g., [Ho-Tr| for the definition of the
arithmetic degree of a general ring R.

Let A be the polynomial ring k[z1, 2, ..., Z,] over a field k. Let M(# 0)
be a finitely generated graded A-module and let

0____,6914 ﬂhJ(M) ———*@A Bo,(M)_)M____>0

j€Z ‘ jEZ

be a graded minimal free resolution of M over A. The length h of this
resolution is called the projective dimension of M and denoted by h = pd M.
We call 5;(M) = ¥jcz Bi,j(M) the i-th Betti number of M over A. We define
the Castelnuovo-Mumford regularity reg M of M by

reg M = max {j —i| B;;(M) # 0}.

See, e.g., [Ei] for further information on regularity. We define the initial
degree indeg M of M by

indeg M = min {i | M; # 0} = min {j | B;(M) # 0}.
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Let [ be a natural number. We say that M satisfies (N;) condition if
Biits(M) =0for i <, s+#indeg M.
We denote the number of generators of M by u(M) = Bo(M).

The following two theorem are a starting point for our study.

THEOREM 1.1 (Hochster’s formula on the Betti numbers [Hoc, Theorem
5.1]).

/@w(k[A]) = Z 'dimkﬁj_i_l(AF; k),

FC[n], |F|=j

where
AF:{G€A|GCF}.

It is easy to see:

COROLLARY 1.2. )
reg In = max {i +2 | Hi(AF; k) # 0 for some F C V}.

If F is a face of A, then we define a subcomplex linka F by

linkaF ={GE€A|FNG=0,FUG e A).

THEOREM 1.3 (Hochster’s formula on the local cohomology modules
(cf. [St, Theorem 4.1})).

. ) - ) t_l [F|
F(H,;n(k[A]), t) = Z dlmk Hi_|p|_1(hnkAF; k) 1 .
FecA 1-t

where Hiy (k[A]) denote the i-th local cohomology module of k[A] with re-
spect to the graded mazimal ideal m.

COROLLARY 1.4. :
reg In = max {i + 2 | H;(linka F; k) # 0 for some F € A}.

Next we recall the definition of Alexander dual complexes. For a simpli-
cial complex A on the vertex set V, we define an Alezander dual complez
A* as follows:

A*={FCV:V\F¢gA}
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THEOREM 1.5 [Tel, Corollary 0.3]. Letk be a field. Let A be a simplicial

complezx. Then
reg In = pd k[A”].

2. REGULARITY OF THE SUM OF IDEALS

In this section we give a upper bound for the sums of sqare-free monomial
ideals.

In the rest of the paper we always assume that & is a fixed field.

First we prove the following proposition. It seems to be known, but we
cannot find it in literature.

PROPOSITION 2.1. Let I be a monomial ideal in the polynomia)l ring
A = k[zq,zs,...,z,] and m a monomial in A. Then

pdA/(I + (m)) < pdA/I+1.

The following proof is simplified by suggestion of Eisenbud.

Proof. If we show that
pd A/I > pd (I +(m))/I,
then the mapping cone guarantees that
C pdA/(I+(m) < pdA/T+1

by [Ei, Exercise A.3.30]. We have

(I+(m))/I = (m)/((m)NI)
= (m)/((m) O\ (my, ..., m,)
= (m)/(lem(m,my),...,lem(m, m;))
> A/(m},...,m}) ®a(m),
where I = (my,...,m,), m} = l—cin—(}n"—’—"—) Hence, we have only to show

pd A/T > pd A/(m},...,m)).
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Now we have (A/I),, = A,,/(m},...,m})A,,. Hence we have
pd A/I > pd (A/I)m = pd An/(m),...,m))An = pd A/(m), ..., m).

We are done. - h qed

For the regulanty of the sum of square-free monomial ideals, we have
the following conjecture:

CONJECTURE 2.2. Let Az(#@) be a simplicidl complex fori = 1,2.
Then we have ' S

reg(IAl +IA2) < reg IA1 + reg IA2 - 1.

If In, and I, are complete intersections, then the above inequality
holds. The next theorem gives a weaker upper bound,

THEOREM 2.3. Let A i(F# (Z)) be a szmplzcml complez for t=1,2. Then
we have '

reg(Ia, +In,) < min{reg Ia, -|— a—degk[Aé], reg" I, +'a;degk[A1]} —1.

Proof Only in th1s proof we deﬁne a simplicial complex A by only the
condition (ii) of the definition of a 31mp11c1al complex. We do not require
the condition (i). Then we have (A*)* = A. And Theorem 1.5 also holds
under this definition. :

By the above proposition we have

pd Af(Ia, + IAz) < pd A/IAJ + M(—’Az)
Since IA1 +1Ip, = Insnn,, We have
reg (I(AlﬂAz)"’) < 'reg» IA1 + a-degk[A]]

by Theorem 1.5 and u(Ia,) = a-degk[Aj]. Since we have I(a,na,) =
IA;UA; = IA; N IA;, then we have

reg (Ia: N Iaz) < reg In: + a-degk[A3].
Similarly We haLve | -

reg (Iay NIaz) < reg Iny +a-degk[A]].
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Consider the exact sequence
0— A/(In: N1ay) — A/ln; ® Alla; — A/(Iar +1Ia;) — 0.
By [Ei, Corollary 20.19], we have
reg A/(Ia; + In;) < max{reg A/(Ia; N1Ia;) —1,reg (A/In: @ A/Inz)}-
Hence
reg A/(Ia;+1az) < min{reg I: +a-degk[A3] —1,1eg In; +a-degk[A]]-1}.
We obtained the desired result. qed

REMARK. Since the inequality reg Ia < a-degk[A] holds (cf. [Ho-Tr]
and [Fr-Te]), Theorem 2.3 is weaker than Conjecture 2.2.

3. EISENBUD-GOTO INEQUALITY

In this section we prove Eisenbud-Goto inequality for Stanley-Reisner rings
of pure and strongly connected simplicial complexes.
First we prove a lemma which is necessary for inductive argument.

LEMMA 3.1. Let A be a pure and strongly connected simplicial complez.
Then there erists a facet F €A such that

={HeA| H C G for some facet G(# F) e A}

is pure and strongly connected.

Proof. We define a graph Ga corresponding to A as follows: The vertex
set V(Ga) consists of {yr | F is afacet of A}. The edge set E(Ga) is
defined by: {yr,yc} € E(Ga) if and only if F N G is a subfacet. If A is
pure and strongly connected, G is connected. It is well known that there
exists a vertex yr € V(Ga) such that Gy(g,)\(F} is connected. Then A’ is
pure and strongly connected. : ged

Now we prove the main result in this section.

THEOREM 3.2(cf. [Fr-Te, Theorem 4.1]). Let A be a pure and strongly
connected simplicial complex. Then we have

regla < deg k[A] — codimk[A] + 1
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Proof. Let V be the vertex set of A. Put | V |= n and dim k[A] = d.
We prove the theorem by induction on the number f;_; of facets in A.

First if codim k[A] < 1, then k[A] is a hypersurface. In this case the
theorem is clear.

Suppose codim k[A] > 2 and f;_; > 2. By the above lemma, there
exists a facet F € A such that

A":={H € A| H C G for some facet G(# F) € A}

is pure and strongly connected. Denote by V' the vertex set of A’ and by
fi_ the number of facets in A’. There are two cases. ‘

Case 1 V # V. Put V\ V' = {v}. For W C V with v ¢ W we have
Aw = Ap. On the other hand, for W C V with v € W, Hi(Aw; k) =
Hy( W\{v); k) for i > 1. Since

reg In = max{i + 2 | H;(Aw; k) # 0 for some W C V},
we have |

regla = rtegla |
fii—(n—1-d)+1
fd__]_ - (n - d) -+ 1.

Case 2 V = V'. We have reg I = pd k[A*] . Now we see that k[A*] =
k[(A')*]/(m), where m = II,,ev\r Zi- By Proposition 2.1, we have

INA

reg In < regIa +1
< fea—(n—d)+2
fd—l - (n - d) + 1.

qed

COROLLARY 3.3. Let A be a simplicial complez such that'codimk[A] >
2. Assume I satisfies (N2) condition. Then we have

pdk[A] < pu(la) — indegla + 1.

Proof. If I satisfies (N2) condition, then k[A*] satisfies (S2) condition by
[Ya, Corollary 3.7] and then A* is pure and strongly connected. If A* is pure,
then deg k[A*] = p(Ia). If codimk[A] > 2, then indeglp = codlmk[A ]. We
are done by Theorems 1.5 and 2.4. qed
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Proof of Corollary 0.2. Put In = inP. Then by [Ka-St, Theorem 1], A
is pure and strongly connected. By Theorem 3.2, we have

regP < regla
< degk[A] — codimk[A] + 1
deg A/P — codimA/P + 1.

qed

4. EQUALITY CASE

In this section, we classify pure and strongly conneceted simplicial com-
plexes A which satisfy reg/n = degk[A] — codimk[A] + 1, and give some
characterization for such complexes. _

First we introduce some notation. Put [m] = {1,2,...,m}. We denote
the elementary (m — 1)-simplex by A(m) = 2/™ and put A(0) = {#}. We
put 8A(m) = 2™\ {[m]}, which is the boundary complex of A(m).

Let A; be a (d — 1)-dimensional pure simplicial complex for i = 1,2.
If A; N Ay = 2F for some F with dim F = d — 2, we write A; Up A, for
A; U A,y. We sometimes write Ay U, Ay for Ay Up Ay if we do not need to
express F explicitly.

We define a (d — 1)-tree inductively as follows.

(1)A(d) is a (d — 1)-tree. S
(2)if T is a (d — 1)-tree, then so is T U, A(d). ‘

If Yy, Ys,..., Y, are (d—1)-trees, we abbreviate AU, Y1U, YToU, - U T
as A + ((d — 1)-branches).” '

Let A be a (d — 1)-dimensional pure and strongly connected complex.
Take v, w € V(A). We say v and w are separated in A if {v, w} ¢ A
and that there exists no subfacet F in A with {v}UF, {w}UF € A. If v
and w are separated in A, We denote A(v — w) for the abstract simplicial
complex which is obtained by substitution of w for every vin A. The vertex
set of A(v — w) is V(A)\ {v}.

By Lemma 3.1 we know that every (d—1)-dimensional pure and strongly
connected simplicial complex can be constructed from the (d—1)-dimensional
elementary simplex A(d) by a succession

Ald)= A1 = A = = Ay,

of either of the following operations : . /
(A1 = A; Up 2F) where z ¢ V(4A;), F' is a subfacet of A; and F =
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F'U {z}. : :
(2)Ai1 = (A;Up 2F)(z — y), where € V(A;), F' is a subfacet of A; and
y € V(A;) such that ¢ and y are separated and F = F' U {z}.

Let A; be a simplicial complex for ¢ = 1,2 such that V(A;)NV(A,) = 0.
We define the simplicial join A; * As of A; and Ay by

Al*Azz{FUGIFEAl,GEAg}

LEMMA 4.1. Let A be a (d—1)- dimensional pure and strongly connected
complez. We assume

regls = deg k[A] — codimk[A] + 1 = 3.
Then A can be expressed as follows:
A=A(z—y)x* A(d s) + ((d 1)- branches)

for some (s—1)-tree A' and for some sepamtedm y e V(A with Hy(A'(z -
y)i k) # 0.

Proof. We may assume A has no branches. Then A can be expressed
as A = A'(z — y), where A’ is a (d — 1)-tree and z,y € V(A’) are the only
free vertices in A’. Let F be the facet with x € F and G the facet with
yeGin A",

Let Gar be the graph mtroduce in the proof of Lemma 3.1. Smce A’ is
a (d — 1)-tree with only two free vertices z, y, then Gas is a line with the
end points yr and yg. Hence there exists a sequence of facets '

F=Fy,F,... F,=G

such that F;_{ N F; is a subfacet fori =1,2,...,m. Then F, Fy, ..., F, are
all facetsin A’. Weput W = FNG. If we have z € Fyand z &€ Fiq, then z ¢
F; 5, since Alisa (d — 1)-tree. Then we have W C F; fori=0,1,2,.

Then we have A’ = A; x 2% and A'(z — y) = Aj(z — y) * 2W where A1
is an (s — 1)-tree and s = d— | W | It is easy to check that A (a: — y) is
contractible to the circle S’. - qed

THEOREM 4.2. Let A be a.(d - l)-dimehsicnal pure and strongly con-
nected complez. We put r = regla. Then :

reglpn = deg k[A] — codimk[A] + 1.



if and only if A satisfies the following condition:

(1) A is a (d — 1)-tree which is not the (d — 1)-simplex if r=2.

(2) A = A'(v — w) for some (d —1)-tree A’ and for some separated v, w €
V(A") if r=3.

(8)A = OA(r) * A(d—r + 1) + ((d — 1)-branches) if r > 4.

Proof. First we assume that A satisfies 7 = deg k[A] — codimk[A] + 1.

We use induction on 7. If 7 = 2, then A is a (d — 1)-tree by [Fr].

If r = 3, then by the procedure to construct pure and strongly connected
complexes, (3) is easy to check.

We assume 7 = 4. We prove the statement by induction on dim A. We
may assume A has no branches. Then A is of the form

A= (AI UFI ZF)(CE — y)

where A’ is pure and strongly connected and F = F' U {z} is a facet of
A and y € V(A') such that z and y are separated in A’ Up 2F. We have
deg k[A’] — codimk[A’] +1 = 3 and hence from the proof of Theorem 3.2 we
get reglar = 3. By the assumption of induction and the previous lemma, A’
is of the form A’ = A”(v — w)*A(d—s)+((d — 1)-branches) for some (s—1)-
tree A" and for some separated v, w € V(A") with H;(A"(v — w); k) # 0.
Ifz g V(A" (v— w)*x A(d —s)) orif F' ¢ A"(v — w) * A(d — s), then
the branch part can be contractible to a 1-dimensional subcomplex, then
we have Hy(Ax; k) = 0 for each X C V(A). Contradiction. Since A has
no branches, we have A’ = A"(v — w) * A(d — s) and z € V(A"(v —
w) * A(d'— s)) and F' € A"(v — w) x A(d — s).

Case 1. We assume F' NV(A(d — s)) # 0. In this case A is a cone .
Hence we are done by induction.

Case 2. We assume F' N V(A(d — s)) = 0. In this case d — s < 1.
Then we have d = s or d = s + 1. Then A and its subcomplexes of the
form Ax for X C V(A) are contractible or contractible to a 1-dimensional
complex, unless d = s + 1 and A”"(v — w) = JA(3). Here we omit a detail.
Only case we must consider is s = 1, d = 2 and A = 9A(4). In this case
r = deg k[A] — codimk[A] + 1 = 4.

If r > 5, we prove the statement by induction on dim A. We may assume
A has no branches. Then A is of the form

A=(A"Up2F)(z - y)

where A’ is pure and strongly connected and F = F' U {z} is a facet of
A and y € V(A') such that z and y are separated. We have deg k[A'] —
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codimk[A'] + 1 = r — 1 and hence from the proof of Theorem 3.2 we get
reglar = 7 — 1. By the assumption of induction, A’ is of the form A’ =
OA(r —1)x A(d —r +2) + ((d — 1)-branches). If z € V(0A(r — 1) x A(d —
r+2)) orif F' ¢ dA(r — 1) * A(d — r + 2), then the branch part can be
contractible to a 1-dimensional subcomplex, then we have E[,_Z(A x;k)=0
for each X C V(A). Contradiction. Since A has no branches, we have
A =0A(r—1)«A(d—r+2)and z € V(OA(r — 1) x A(d — 7 + 2)) and
F e dA(r - 1)« A(d—r1 +2).

Case 1. We assume F' NV(A(d — 7+ 2)) # 0. In this case A is a cone.
Hence we are done by induction. v ;

Case 2. We assume F/'NV(A(d—r+2)) =0. In thiscased—r+2 < 1.
Then we have d = r —lord =1 —2. If d = r — 2, then reg Ip <
d+ 1 =r — 1. Contradiction. Hence we have d = r — 1. In this case, for
F(# §), dimlinkaF < d—2 = r —3. Then H,_5(A;k) # 0. Hence we
have A = 8(A(r — 1) * A(d— 7 +2)) Up 2F)(z — y) = dA(r). In this case
r = deg k[A] — codimk[A] + 1.

On the other hand, if A satisfies (1), (2), or (3), then it is easy to check
r = deg k[A] — codimk[A] + 1. ged

COROLLARY 4.3. Let A be a (d — 1)-dimensional pure and strongly
connected complez on the vertez set [n]. Assume r := regls > 4. Then the
following conditions are equivalent:

(1)
reglp = deg k[A] — codimk[A] + 1.
(2)

A = 9A(r)* A(d—7+ 1) + ((d — 1)-branches).

(3) k[A] is Cohen-Macaulay with h-vector (1,n —d,1,...,1(= h,_1)).
(4) |

1, fO']" ’L :.7 = 0
(n—d-1)("7") - ("4, fori=1i=12...,n-d
Bii+i(k[A]) = (n—d—l) for j = .
i1 ) ory)=r—1,1=12,...,n—d
0, otherwise.

(5)

P(Hi(kA]), 8 = { P e
, = —dtr—1 y—dtr—2 4 4—dH2 4 (po gyp—d+l ) g—d )
m ) A 4—(11-:_1): +( d)t‘ 2 vf07‘ i=d
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Proof. (1)= (2) follows by Theorem 4.2. (2)= (3) is easy to show,
since A is shellable. (2)=>(4). It is easy to see that §;;;;(k[A]) = 0 unless
j=0,1,0r,7 — 1 by Hochster’s formula. We see that -

' .5 n—d—1
Biirr—1(k[A]) = > dim H;(Aw; k) = ( P ),
V(BA(r))CWCV(ANV(A(d—r+1))
|W|=itr—1

fori=1,2,...,n —d. We can compute 3;,,1(k[A]) by the Hilbert series of
k[A]. (3)= (5) follows from [St, Theorem 6.4]. (4)= (3), (5)= (3), and,
(3)= (1) are trivial. qged

COROLLARY 4.4. Let A be a (d— 1)-dimensional pure and strongly con-
nected complez on the vertez set [n]. Assume regln = 3 and k[A] satisfies
(S2) condition. Then the following conditions are equivalent:

(1) |
regla = deg k[A] — codimk[A] + 1.
(2)
A = A(l-gon) * A(d — 2) + ((d — 1)-branches)
for some | > 3, where A(l-gon) is the boundary complez of the l-gon.
(3) k[A] is Cohen-Macaulay with h-vector (1,n —d, 1).

(4)
1, fori=73=0
i(n—d—1) (n—d+2 n—d—14+2 . .
. (KIAD = n—d—l—i)(i+1)+(i_1+1 )7 forj=11:=12,...,n—d
ﬁlﬂﬂ( [ ]) - n—d—I142 T
(,-_1+2 ), forj=21=12,...,n—d
0, otherwise

for some l > 3.
¢) | /

‘ ; : 0, fori#d
F(Hm (KA, 1) =\ ctrsaptniged oo

(1—-¢—1)d

_Proof. Note that k[A] satisfies (Sz) if and only if (a)A is pure and
(b)linka F is connected for every F' € A with dimlinka ' > 1. Then (1)=
(2) follows by Lemma 4.1. The rest is similar to the proof of the above
corollary. qed
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REMARK. A Cohen-Macaulay homogeneous ring R with h-vector h(R) =

(L,h1,1,1,...,1) is called a stretched Cohen-Macalay ring (cf.[Oo]). These
corollanes also give the classification of stretched Cohen- Macaulay Stanley-
‘Reisner rings.
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