FINITE SUMS OF NILPOTENT ELEMENTS IN PROPERLY INFINITE C^* -ALGEBRAS

Nobuhiro Kataoka

ABSTRACT. We prove that A is the linear span of elements $x \in A$ with $x^2 = 0$ if A is stable or properly infinite. Moreover, we prove the same statement for any closed two-sided ideal I of such C^* -algebras.

1 Introduction

Recall that a C^* -algebra A is called stable if A is isomorphic to $A \otimes \mathbb{K}$, and a unital C^* -algebra A is called properly infinite if there exist projections $e, f \in A$ such that $e \sim f \sim 1$ and ef = 0, where $A \otimes \mathbb{K}$ is the tensor product of A and the C^* -algebra \mathbb{K} of compact operators on a separable infinite dimensional Hilbert space, and $e \sim f$ means that there exists a partial isometry $x \in A$ such that $e = x^*x, f = xx^*$. We prove that A is the linear span of elements $x \in A$ with $x^2 = 0$ (or in particular the linear span of nilpotent elements of A) if A is stable or properly infinite. Moreover, we prove the same statement for any closed two-sided ideal I of such C^* -algebras. Denoting by [A,A] the linear span of commutators [a,b] = ab - ba, with $a,b \in A$, T.Fack proved in [2] that [A,A] = A if A is stable or properly infinite. We also show the same statement for any closed two-sided ideal I of such C^* -algebras.

The author would like to thank Prof. A. Kishimoto for some helpful comments.

2 Main Results

For each C^* -algebra A, we denote by N(A) the linear span of elements $x \in A$ with $x^2 = 0$. We have the following result;

Theorem 1. Let A be a properly infinite unital C^* -algebra. Then I = N(I) for any closed two-sided ideal I of A.

When $\{A_k\}_{k=1}^{\infty}$ is a sequence of C^* -algebras, we denote by $\bigoplus_{k=1}^{\infty} A_k$ the direct sum C^* -algebra $\{\bigoplus_{k=1}^{\infty} a_k : a_k \in A_k, \lim_{k \to \infty} \|a_k\| = 0\}$. We also denote by M_n the $n \times n$ matrix algebra, and by I_n the unit of M_n . We begin with the following lemma;

Lemma 2 Let B be a C*-algebra, and suppose that $A = B \otimes (\bigoplus_{\ell=1}^{\infty} M_{3\ell})$. Define $E_0^{\ell} \in M_{3\ell}$ for $\ell \in \mathbb{N}$ by

$$E_0^{\ell} = \frac{1}{\ell} \begin{pmatrix} I_{\ell} & 0 & 0 \\ 0 & -\frac{1}{2}I_{\ell} & 0 \\ 0 & 0 & -\frac{1}{2}I_{\ell} \end{pmatrix}.$$

Then $x \otimes (\bigoplus_{\ell=1}^{\infty} E_0^{\ell}) \in A$ is a element in N(A) for any $x \in B$.

Proof. Define $E_m^{\ell} \in M_{3\ell}$ for $\ell \in \mathbb{N}$, m = 1, 2, 3, 4 by

$$\begin{split} E_1^\ell &= \frac{1}{\ell} \begin{pmatrix} I_\ell & I_\ell & I_\ell \\ -\frac{1}{2}I_\ell & -\frac{1}{2}I_\ell & -\frac{1}{2}I_\ell \\ -\frac{1}{2}I_\ell & -\frac{1}{2}I_\ell & -\frac{1}{2}I_\ell \end{pmatrix}, \\ E_2^\ell &= \frac{1}{\ell} \begin{pmatrix} 0 & -I_\ell & -I_\ell \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ E_3^\ell &= \frac{1}{\ell} \begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{2}I_\ell & 0 & \frac{1}{2}I_\ell \\ 0 & 0 & 0 \end{pmatrix}, \\ E_4^\ell &= \frac{1}{\ell} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{2}I_\ell & \frac{1}{2}I_\ell & 0 \end{pmatrix}. \end{split}$$

Then $(E_m^{\ell})^2 = 0$, $E_0^{\ell} = \sum_{m=1}^4 E_m^{\ell}$ and $\lim_{\ell \to \infty} ||E_m^{\ell}|| = 0$ for each m. Thus $x \otimes (\bigoplus_{\ell=1}^\infty E_m^{\ell}) \in A$, $(x \otimes (\bigoplus_{\ell=1}^\infty E_m^{\ell}))^2 = 0$ for each m and

$$x \otimes (\bigoplus_{\ell=1}^{\infty} E_0^{\ell}) = x \otimes (\bigoplus_{\ell=1}^{\infty} \sum_{m=1}^{4} E_m^{\ell})$$
$$= \sum_{m=1}^{4} x \otimes (\bigoplus_{\ell=1}^{\infty} E_m^{\ell}) \in N(A).$$

Note that E_0^{ℓ} equals $\frac{1}{\ell} \{ \sum_{i=1}^{\ell} e_{i,i}^{\ell} - \frac{1}{2} \sum_{i=\ell+1}^{3\ell} e_{i,i}^{\ell} \}$ by denoting the matrix units of $M_{3\ell}$ by $\{e_{i,j}^{\ell}\}$.

Lemma 3 Let B be a C*-algebra, and suppose that $A = B \otimes \mathbb{K}$. Denote by $\{e_{i,j}\}$ the matrix units of \mathbb{K} . Then $x \otimes e_{1,1} \in N(A)$ for each $x \in B$.

Proof. Define a sequence $(\lambda_i)_{i=1}^{\infty}$ by

$$\lambda_i = \begin{cases} \frac{1}{4^{k-1}} & (4^{k-1} \le i \le 2 \cdot 4^{k-1} - 1) \\ \frac{1}{4^{k-1}} \cdot (-\frac{1}{2}) & (2 \cdot 4^{k-1} \le i \le 4 \cdot 4^{k-1} - 1), \end{cases}$$

for each
$$i \in \mathbb{N}$$
 (i.e. $(\lambda_i)_{i=1}^{\infty} = (1, -\frac{1}{2}, -\frac{1}{2}, \cdots, \underbrace{(-\frac{1}{2})^{k-1}, \cdots, (-\frac{1}{2})^{k-1}}_{2^{k-1}terms}, \cdots)$). Then

$$\begin{split} e_{1,1} &= \sum_{i=1}^{\infty} \lambda_i e_{i,i} - \sum_{i=2}^{\infty} \lambda_i e_{i,i} \\ &= \sum_{k=1}^{\infty} \sum_{i=4^{k-1}}^{4^k-1} \lambda_i e_{i,i} + \sum_{k=1}^{\infty} \sum_{i=2 \cdot 4^{k-1}}^{2 \cdot 4^k-1} (-\lambda_i) e_{i,i} \\ &= \sum_{k=1}^{\infty} \frac{1}{4^{k-1}} \left\{ \sum_{i=4^{k-1}}^{2 \cdot 4^{k-1}-1} e_{i,i} - \frac{1}{2} \sum_{i=2 \cdot 4^{k-1}}^{4 \cdot 2 \cdot 4^{k-1}-1} e_{i,i} \right\} \\ &+ \sum_{k=1}^{\infty} \frac{1}{2 \cdot 4^{k-1}} \left\{ \sum_{i=2 \cdot 4^{k-1}}^{2 \cdot 2 \cdot 4^{k-1}-1} e_{i,i} - \frac{1}{2} \sum_{i=2 \cdot 2 \cdot 4^{k-1}}^{4 \cdot 2 \cdot 4^{k-1}-1} e_{i,i} \right\}. \end{split}$$

For each $\ell \in \mathbb{N}$, define *-monomorphisms $i^{\ell}: M_{3\ell} \to \mathbb{K}$ by

$$i^{\ell}(e_{i,j}^{\ell}) = e_{\ell+i-1,\ell+j-1} \qquad 1 \le i, j \le 3\ell.$$

Then

$$i^{\ell}(E_0^{\ell}) = \frac{1}{\ell} \{ \sum_{i=\ell}^{2\ell-1} e_{i,i} - \frac{1}{2} \sum_{i=2\ell}^{4\ell-1} e_{i,i} \}$$

and $Ran(i^{4^{k-1}}) \perp Ran(i^{4^{k'-1}})$, $Ran(i^{2\cdot 4^{k-1}}) \perp Ran(i^{2\cdot 4^{k'-1}})$ for each $k, k' \in \mathbb{N}, k \neq k'$, where $Ran(i^{\ell})$ is the range of i^{ℓ} and \perp means the orthogonality relation. Thus the maps

$$i_1 = id_B \otimes (\bigoplus_{k=1}^{\infty} i^{4^{k-1}}) : B \otimes (\bigoplus_{k=1}^{\infty} M_{3 \cdot 4^{k-1}}) \to A$$

 $i_2 = id_B \otimes (\bigoplus_{k=1}^{\infty} i^{2 \cdot 4^{k-1}}) : B \otimes (\bigoplus_{k=1}^{\infty} M_{3 \cdot 2 \cdot 4^{k-1}}) \to A$

are well-defined homomorphisms and injective, where id_B is the identity map on B. Since $\iota_1(N(B\otimes (\oplus_{k=1}^\infty M_{3\cdot 4^{k-1}}))), \iota_2(N(B\otimes (\oplus_{k=1}^\infty M_{3\cdot 2\cdot 4^{k-1}})))\subseteq N(A)$, it follows by lemma 2 that

$$x \otimes e_{1.1} = i_1(x \otimes (\bigoplus_{k=1}^{\infty} E_0^{4^{k-1}})) - i_2(x \otimes (\bigoplus_{k=1}^{\infty} E_0^{2 \cdot 4^{k-1}})) \in N(A)$$

for each $x \in B$.

Proof of Theorem 1. Let $e, f \in A$ be projectons such that $e \sim 1 \sim f$, ef = 0, and $u, v \in A$ be isometries such that $u^*u = v^*v = 1$, $uu^* = e$ and $vv^* = f$. For each $x \in I$, since x = exe + ex(1-e) + (1-e)xe + (1-e)x(1-e) and (1-e)xe, $ex(1-e) \in N(I)$, we only have to prove that exe, $(1-e)x(1-e) \in N(I)$. Set e_i , $f_i \in A$ for each $i \in \mathbb{N}$ by

$$e_{i} = \begin{cases} v^{i-1}ue & (i \geq 2) \\ e & (i = 1), \end{cases}$$

$$f_{i} = \begin{cases} u^{i-1}v(1-e) & (i \geq 2) \\ 1-e & (i = 1). \end{cases}$$

Note that e_i 's are partial isometries with mutually orthogonal range projection and with the same initial projection e, and that f_i 's are partial isometries with mutually orthogonal range projections and with the same initial projection 1-e. Define *-isomorphisms $\varphi: eIe \otimes \mathbb{K} \to I, \psi: (1-e)I(1-e) \otimes \mathbb{K} \to I$ by

$$\varphi(a \otimes e_{i,j}) = e_i a e_j^*, \qquad a \in eIe, \qquad i, j \in \mathbb{N},
\psi(b \otimes e_{i,j}) = f_i b f_j^*, \qquad b \in (1-e)I(1-e), \qquad i, j \in \mathbb{N}.$$

Then $\varphi(a \otimes e_{1,1}) = a$ for each $a \in eIe$ and $\psi(b \otimes e_{1,1}) = b$ for each $b \in (1-e)I(1-e)$. Thus by lemma 3,

$$exe = \varphi(exe \otimes e_{1,1}) \in \varphi(N(eIe \otimes \mathbb{K})) \subseteq N(I),$$

$$(1-e)x(1-e) = \psi((1-e)x(1-e) \otimes e_{1,1}) \in \psi(N((1-e)I(1-e) \otimes \mathbb{K})) \subseteq N(I).$$

Corollary 4. Let B be a C^* -algebra such that the multiplier algebra M(B) is properly infinite, and C be a C^* -algebra. If $A = B \otimes C$ (for instance, if A is a stable algebra, a tensor product with a Cuntz-algebra O_n) then I = N(I) for any closed two-sided ideal I of A, where the tensor product can be taken with respect to any C^* -norm.

Proof. The multiplier algebra M(A) of A is properly infinite and A is a closed two-sided ideal of M(A). Thus I is a closed two-sided ideal of M(A) and I = N(I) by theorm $1.\blacksquare$

Recall that a unital C^* -algebra A is called infinite if there exists a projection $e \in A$ such $e \neq 1, e \sim 1$.

Corollary 5. If A is a simple unital infinite C^* -algebra then A = N(A)

Proof. By [1], A is properly infinite. Thus A = N(A) by Theorem 1.

If we do not assume that A is simple in corollary 5 then the conclusion does not follow in general. For instance, the Toeplitz algebra $\mathfrak T$ is a unital infinite C^* -algebra with a closed two-sided ideal $\mathbb K$, and the quotient C^* -algebra $\mathfrak T/\mathbb K$ is isomorphic to $C(\mathbb S)$, where $C(\mathbb S)$ is the C^* -algebra of complex continuous functions on $\mathbb S$ and $\mathbb S=\{z\in\mathbb C:|z|=1\}.$ Then $N(\mathfrak T)=\mathbb K\neq \mathfrak T$. For $N(\mathbb K)=\mathbb K$ by corollary 4, and $N(\mathfrak T/\mathbb K)=N(C(\mathbb S))=\{0\}.$ Thus $N(\mathfrak T)\subseteq Ker(\pi)=\mathbb K=N(\mathbb K)\subseteq N(\mathfrak T)$ since $\pi(N(\mathfrak T))\subseteq N(\mathfrak T/\mathbb K)=\{0\}$, where π is the quotient map from $\mathfrak T$ onto $\mathfrak T/\mathbb K$.

Finally we consider the relation between [A, A] and N(A).

Proposition 6. For any C^* -algebra A, $N(A) \subseteq [A, A]$.

Proof. For each $x \in A$ with $x^2 = 0$, set x = u|x|, where $|x| = (x^*x)^{\frac{1}{2}}$ and u in the double dual A^{**} of A is the partial isometry of the polar-decomposition of x. Then since $u|x|^{\frac{1}{2}} \in A$,

$$x = [u|x|^{\frac{1}{2}}, |x|^{\frac{1}{2}}] \in [A, A].$$

Corollary 7. Let A be a properly infinite C^* -algebra. Then I = [I, I] for any closed two-sided ideal I of A.

Proof. By theorem 1 and proposition 6, $I = N(I) \subseteq [I, I] \subseteq I$.

Corollary 8. Let B be a C^* -algebra such that the multiplier algebra M(B) is properly infinite, and C be a C^* -algebra. If $A = B \otimes C$ then I = [I, I] for any closed two-sided ideal I of A, where the tensor product can be taken with respect to any C^* -norm.

Proof. The multiplier algebra M(A) is properly infinite and A is a closed two-sided ideal of M(A). Thus I is a closed two-sided ideal of M(A) and I = [I, I] by corollary 7.

References

- [1] J. Cuntz, The structure of multiplication and addition in simple C*-algebras, Math. Sacnd. 40(1977), 215-233.
- [2] T. Fack, Finite sums of commutators in C*-algebras, Ann. Inst. Fourier, Grenoble 32(1982), 129-137.
- [3] G. Pedersen, C*-algebras and their Automorphism Group, Academic Press, London/New York/San Francisco(1979).
- [4] N. E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford University Press, Oxford/ New York/ Tokyo(1993).

Department of Mathematics, Hokkaido University, Sapporo 060, Japan E-mail adress: kataoka@math.sci.hokudai.ac.jp