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Mathematical analysis for

a simplified system of chemotaxis
Bh A &
Takashi SUZUKI

1 Introduction

The purpose of the present paper is to study blowup mechanism for a system
of parabolic equations. It arises in mathematical biology to describe the
chemotactic feature of slime molds.

We take the form proposed by Nanjundiah [20], simplifying the one previ-
ously given by Keller and Segel [14]. It is stated as follows; where u = u(z, t)
and v = v(z, t) stand the density of slime molds and the concentration chem-
ical substances secreted by them, respectively:

u=V-(Vu—uVv) in Qx(0,7T)
Ty =Av—av+u in Qx(0,7T)
Ou/dv =0v/Ov =0 on 00N x (0,T)
Ul,mo =uo(z) in Q
iy = wla) i © | 1)

Here, @ C R? denotes a bounded domain with smooth boundary 89, v is
the outer normal unit vector, and 7 > 0 and a > 0 are constants. The initial
values ug(z) and vo(z) are smooth, non-negative, and ug # 0.

The first equation describes the conservation of mass; the effect of diffu-
sion, Vu, and that of chemotaxis, Vv, are competing for u to vary. The
second equation is linear and indicates that the chemical mateiral v diffuses
by itself, is produced by u, and is destroyed by the rate @ > 0. The constant
7 > 0 is small and shows that the time scales for u and v are different.

Alt [2] approached the problem of modelling from the microscopic point
of view. A stochastic process was introduced, and the first equation was
derived from biophysical and biochemical structures of slime molds. System



(1) is supposed to explain the process of the concentration of mass and the
formation of spores of slime molds. Behavior of the solution global in time
is quite important.

Unique existence, positivity, and regularity of the classical solution of (1)
are assured locally in time by Yagi [26] and Biler [3]. Henceforth, Trax > 0
denotes the maximal time of existence for the classical solution (u,v).

It is easy to see that the first component u preserves L! norm. We have

lu®)ll; = lluoll, =A

from the first equation. This implies also that
@l = e ool + a7 (1= €7 ) A @

from the second equation. SR L T
The existence of Lyapunov function is to be noted. We have

EW(u,v)-I—’r/gvtdw—i-/duIV(logu—v)I dz =0, (3)

where »
W(u,v) = / ulrogdda:—/uvdzv—%l/v (|V0|2+av2) dz.
Q ’ Q 2 Ja

This formula was found by Nagai, Senba, and Yoshida [18], Gajewski and
Zacharias [8], and Biler [3] independently. As a consequence, they were able
to show that A = |ull, < 4m implies Trax = +00 in use of a variant of
the Trudinger-Moser inequality by Chang and Yang [6], and also Moser’s
iteration scheme (c.f. Alikakos [1]). This fact is referred to as the threshold
of the initial mass. : _

Herrero and Veldzquez [10], [L1] applied the method of matched asymp-
totic expansions. They constructed a family of radially symmetric solutions
on Q = {r € R? | |z| < 1}, satisfying

‘u‘v(x,t)dw —  8ndo(dz) + f(z)dz

ast / Tinax < +oo in M(Q), where f € C(Q\ {0})NL*(Q) is a non-negative
function. This fact is referred to as the chemotactic collapse of the solution.

Those properties, threshold of the initial mass and chemotactic collapse of
the solution were suspected by Childress and Percus [7]. They are regarded
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as the consequences of the important phenomenon of biology, formation of
spores described above. | o
The argument of [7] is as follows. Consider the stationary problem of (1):

V- (VU-UVV)=0 in Q
AV —aV +U =0 in Q
OU/ov =90V/O0v =0 on OS2

Writing the first equation as
V. UV (logU = V) =0, |

we see that log U — V' = log o holds with some constant o > 0. In use of the
parameter A = ||U]|,, this relation is indicated as

=X’/ | €Vdz.
U e//ﬂem

Then the elliptic eigenvalue problem with non-local term,

~AV +aV = )\ev// e’dr in Q, Vo on o9 (4)
o Q ov _
arises from the second equation.

Computing numerically, they observed that only constant solutions are
admitted as radially symmetric solutions on Q = {z € R? | |z| < 1} of (4), if
A € (0,87). Those considerations led them to conjecture that X = [Juol|; <
87 implies Tpax = +o0o in (1), while Tpax < +oo can occur if A > 8m,
"because blowup solutions should have radially symmetric features around
blowup points”. Remember that actually it is shown that A < 4 implies
Tmax = +00. v ‘

The threshold on A = |Jug||; for Thax = 400 is expected only when the
space dimension N is two. If N = 1, we always have Tpax = +00. If N = 3,
Tax < +00 can occur regardless of A, and rather interesting features of the
solution can be observed. See [15] and the references therein for those facts
concerning other space dimensions. -

First, Jager and Luckhaus [13] approached that conjecture rigorously.
For a more simplified system they showed that A = [luo||, < 1 implies
Trmax = +00, while Tiax < +00 can happen when A > 1. Later Nagai [15]
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proved that the conjecture holds in the affirmative for radially symmetric
solutions of

u=V:-(Vu—uVv) in Qx(0,7T)
0=Av—-av+u in Qx(0,T)
Ou/0v =0v/Ov=0 on N x (0,T)
Uy = to(z) in Q. (5)

System (5) is the limiting case of (1) as 7 \, 0 and obeys a similar
features to the one introduced by [13]. In this situation, A\ = |luel, < 8=
implies T ,.x = +00, while Ty, < +00 can occur if A > 8r. However, the
discrepancy between 87 and 47 in radial and non-radial cases is essential as
the authors have clarified in [21], [25], and [22].

We began the study by re-examining the stationary problem ([21]). First
observation is that problem (4) has a variational structure; the solution is
characterized as a critical point of the functional

Jr(v) = %/Q ([Vv!2 + avz) dz — Alog ([ﬁl| /Qe"dac>

of v € H'(Q). This implies that the linearized operator around a station-
ary solution V is realized as a self-adjoint one in L%(Q2) associated with the
bilinear form

A,8) = [ (IV6" +as* ~p6) da + 5 ([ poda)

of ¢ € H'(Q), where p = Ae¥/ o €"dz. In particular, the linearized stability

of V is introduced in this sense. We also noticed that the methods developed
in our former works on Dirichlet problem are still valid for this case.

Among others are the application of the complex function theory to the
blowup analysis of the family of solutions ([19]), and the use of the rear-
rangement technique relative to a round sphere for spectral analysis of the
linearized operator ([24]). Consequently, we found that the set of stationary
solutions C = {(A,V)} of (4) is much richer than the suspected, and some
members are taking significant roles in the non-stationary problem. Many
suggestions were obtained such as the behaviors global in time, the blowup
mechanism, the dynamics, and so forth.

For instance, as is expected from the numerical computation, it is ac-
tually proven that if Q@ = {z € R?||z| < 1} and A € (0, 87), each radially
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symmetric stationary solution is a constant. On the contrary, there is a fam-
ily of non-radial solutions bifurcation from constant solutions in this case. It
is absorbed into the hyperplane A = 4w with the singular limit having one
singular point on the boundary up to the rotation of z around the origin.
That bifurcation occurs in A < 4w if 0 < a < 1 and the bifurcated solutions
are linearized stable. Also it is shown that any solution is linearized unstable
if 0 < A — 47 < 1. We suspected that only some constant is admitted as a
stationary solution for 0 < a <« 1 and A € (4w, 8m).

Those observations to the stationary problem led us to conjecture that
the mass of generic non-stationary solutions concentrates mostly to a point
on the boundary as t = 400 if 0 < 4mr — A < 1 and 0 < a < 1, where
A = ||lug||,. Furthermore, the blowup solution of (1) should have only one
blowup point on the boundary if A = |lug||, € (47,87) even in the general
case. We suspected that ”a half spore” will be created on the boundary in
this case.

This conjecture, based on a heuristic argument, was supported by [25]
from the viewpoint of dynamical systems; any linearized stable stationary
solution V (z) of Jy is dynamically stable in (1). More precisely, if V(z) is a
strict local minimum of Jy, then the conditions

luolly =X o = Ullprogr <1, and oo = Vil < 1

imply Tinax = +00 and lim [u(t) = Ulloo = lim |lv(t) — V||, = 0in (1), where
U=2Xe"/ [oedz and || - || og . denotes the Zygmund norm.

Key structures for the proof are the following. First, each term of the
Lyapunov function W(u,v) is regarded as a variant of Zygmund norm of u,
the paring between u and v, and the H' norm of v, respectively. Next, there
are local isomorphism between the Zygmund space Llog L and the Hardy
space H!, paring between #' and BMO, and imbedding H* C BMO. Of
course, the inequality

W (u(t), v(t)) < W (uo,v0)  (t€0, Tma;c))

is made use of. Another observation is that W and J are so related as

Ae?
W (fg e”dm’v) = J\(v) + Alog (A |9]).

See the original paper [25] for more details.
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- The blowup mechanism of (5) is now well understood as is expected by
[22]. If Tiyax < +oo the blowup set of u, : : :

B = {:1: =9) |,ktihere.vexists i:k — xand te /" Tmax
- satisfying u(z, tx) = +o0},

is finite. More précisely, we have

§(BNOQ) +24(BNQ) < [luoll, /(4r).

Furthermore, there exist a mapping m : B — [47,00) with m|z. > 87 and
a non-negative function f € C(Q2\ B) N L*(Q) satisfying:

wz,t)de = 3 m(zo)de(de) + f(z)dz ()

ToEB

in M(Q) as t 7 Tpax. Delicate analysis is made on many places, but a
cancellation scheme of the singularity in a reduced integral equation is a key
structure. Then, some local behaviors of the Green’s function ‘are made use
of o 1 R | ,

The case 7 > 0 is more difficult. Profile of the chemotactic collapse (6) is
proven when the Lyapunov function W is bounded, or « and v are radially
symmetric, or A = 4x ([17], [9]). Right now we expect infinite blowup sets
for other cases. :

Another question is the possibility of m(zg) > 87 for zp € BN Q, or
m(xo) > 4 for zo € BN in (6). It will be studied in a forthcoming paper
of us. ’ B ' . o _

So far, sufficient conditions for Ty, < -+oo have been given mostly for
(5). In the present paper, we refine the condition of [16] concerning the
boundary blowup of the solution in a finite time. Another aim is to give an
alternative proof of a theorem by Horstmann and Wang [12]. It is concerned
with the blowup (possibly in the infinite time) of the solution of (1). We
believe that the argument presented here is more detailed. Applying it to
(5), we shall show that B = {p} and m(p) = 8w occur, if Tjax = +00, u and
v are radially symmetric, and p is the center of . :

Our theorems are stated as follows.

First, in [21], it is shown that if V)’s are solutions to (4), A = X € [0, 00),
and ||Vy||, — 400, then Ay € 4nN. The number of blowup points of this
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family satisfies . , , :
' ‘ A
#(BNON) +24(BNN) = Z%
We have
7y = {Jr(v) | v solves (4) } > ~o0 .

if A € (0,00) \ 47N. The following theorem shows that the blowup of the
non-stationary solution occurs in a finite or the infinite time if uy and v
satisfy ’ ' | , | '

Nluolly, =X and W (uo,v0) < j, +Alog(A[Q]). (7)

It is nothing but the one proven by Horstmann and Wang [12], but we shall
provide different arguments here.

Theorem 1 If (7) holds, then the solution of (1) satisfies

i [ut)].o = +oo. ®
More precisely, we have
lim [ ulogudzr = lim [ uvdr
t /" Tmax JQ 't Tmax JQ
— lim / Vol?de = lim [ e*¥dz = +oo 9)
t Tmax JQ t *Tmax JQ .

for any o > 1. Here the case Tyax = +00 is admitted.

The next theorem gives a criterion for the boudary blowup of the solution
u of (5) in a finite time. It is a refinement of the result obtained by [16].
Suppose that 99 is smooth at zo € O so that there exists a conformal
mapping sending the intersection of 92 and a neighborhood of z¢ into the
real axis. ’

Theorem 2 There ezxists n > 0 such that

/ ug(x)dx > 4w
QNBRr(zo)

and
1

. : N 2 .
— — dr <
2 o tol@ o= 70l do <
imply Tmax < +00 for the solution u of (5), where
Br(zo) = {z € R? | |z — 0| < R}
for R>0. o | |



Precisely, 7 is determined by A = [|lug||, and ||uyl| LY(QNBR(ze))- NOtE that
if A € (4m, 8), there exists exactly one blowup point on ).

2 A blowup criterion

This section is devoted to the proof of Theorem 1. We study (1) for the
general domain, taking a = 1 and 7 = 1 for simplicity.

In the previous work [23], the authors proved (9) for the case of Th,, <
+00. The argument developed there is valid even for the case of Trax = +00
if '

lim W (u(t) o(0) = —oo

is satisfied. We have only to show (9) for the other case,

Thmax = +00  and t}ﬁn W (u(t), v(t)) > —oo. (10)

Actually, relation (8) follows from (9).
We shall show that (10) and (7) imply

t}l'gloo Quloguda: = +o00. (11)
Becaue of »
/ulogud:v < / wvdz + W (u,v), (12)
Ja Q

then , gin uvdz = +oo follows. In use of Young’s inequality we have
o Jq k

a/ wdr < /uloguda:+e"1/ e’ dx (13)
Q Q Q
< /qudw + W(u,v) + 6“1/ e*dz

Q

and hence , }g}l e®@dz = 400 holds for @ > 1. This implies
w0 Ja

lim /Q IVu(t)? dz = +oo

t /oo

by Chang-Yang’s inequality (see [23]). The proof will be complete in this
way.
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Suppose the contrary: ltII/I‘I +inf / ulogudr < +o00. There exist a constant
o Jo

C, > 0 and a sequence t;, /* +oo satisfying
/Qu(tk) log u(ty)dx < Ci.
Assumption (10) now gives
/0 /Q (7 + |V (logu — v)[?) dedt < +oo. (14)
Letting k > 1, we may suppose that
| [ vidzdt <1.
tr Q
In [23], the inequality

d 1
———/Qulogudx <2K*? ||u0||f+1/9vt2dw

dt
+4]9] exp (4K2 /Q uloguds + 4K %! |Q|> (15)
is shown with a constant K > 0 determined by Q. Take 8, > 0 satisfying
1
5. {2K [luo|l} + 419 exp (4K (C. + 1) + 4K %™ 1)} = i

For some %, € (t, t + ,) we have
/Q u(t)logu()der < Cu+1  (ti St <)
Then inequality (15) implies
~ - 1 foo ‘
/Qu(tk) log u(ty)dz < 1 /tk /Qvfdmdt + /Qu(tk) log u(ty)dz
+ (2K ||uo|l? + 42 exp (4K* (C. + 1) + 4K e 121)) (B — t)
1

<Ci+ 2.
S +2

Because t € [tg, ti + 0i] — / u(t) log u(t)dz is continuous, this means that
Q

/Q w(t) logu(t) de < Co+1  (t <t <ty +6.). (16)
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Here, 4, > 0 is independent of k. We have

lim inf /Q (02(t) + u(t) IV (log u(t) — v(t))[?) do

k—00 tE(t,ti+0x)

< 67! lim /tk+6* /Q (vtz(t) + u(t) |V (log u(t) — 'u(t))|2) dxdt
= 0

by (14). With some #; € [ty, tx + 6] it holds that

. . - A a2
klg& A (vf(tk) + u(ty) 'V (log u(ty) — v(tk))[ ) dz = 0. (17)
We have ‘
12 .12
4|V (logu — v)|* = 4e” V(ue‘”)2 > 4‘V (ue“")2
and hence " '
: £\ ,—v(te) _
klir& HV (u(tk)e k ) = 0
follows.

On the other hand we have /Q ue”"dz < |lul]|, = A. Passing through a

subsequence, we get

1 N 2\ 1/2
. —v(tx) -
lim 9] /Q (u(tk)e k ) dz = Gy

k—o0
with a constant Cy > 0. Therefore, Poincaré-Wirtinger’s inequality implies
- : \\1/2
(u(tk)e_”(t")) N Co in H'(Q), and hence we have
e ® G2 in LP(Q) (18)

for any p > 1.
Relation (17) gives

kli_}r{.lo Hvt(fk)Hz = 0. ' (19)

Noting |[u(t)|]l; = A, we apply an inequality of Brezis and Merle [4] to the
second equation of (1). With some a > 0 it holds that

sup / R dz < +o0.
k Ja
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Inequalities (13) and (16) imply
supLu(fk‘)v(tAk‘)dac < +oo.
The second equation of (1) gives that

' : 1 1
|IVUI|§+||v||§:‘/guvda:—/ﬂvtvdx§ /quda;+§||vt||§+§ ||v|i§.‘

Relation (19) now implies

< -+00.

SUp “‘v(t}“)‘ H(Q)

Passing through a subsequence, we have :

vE) = v in H'(Q) and @ e’ i LP(Q)  (20)
with some vy, € H'(Q) for p > 1. The latter convergence is a consequence
of the compact imbedding H*(2) € L?(Q) and Chang-Yang’s inequality and
details are left to the reader.

We set t = £ and make k — oo in the second equation of (1). Relatmns
(18) and (20) imply

u(ty) = (u(t )e b ) cete) —y O2eve in LP(Q)
for p > 1. In use of (19) and (20), we get |

Mo
By =0 on BQ

~Avgo + Vg = C2e" in Q,

Furthermore, equality (2) gives ||ve ||, = A and hence Cj = A/ /Q e’>dzx.
Letting us, = Ae”>/ / e'=dz, we have u(f;) — Us in LP(2). This implies
Q

k—o0 JO

lim | u(f)logu(ty)dr = /Q Ueo lOg uoodé:.

We also have P
kll)rrolo /Q,u(tk)v(tk)da: = /Quoovood;v



and
li’lcfliglf A (‘Vv(fk)iz + v(fk)2> dz > /Q (IVUOOI2 + vgo) dz.

Those relations contradict assumption (7) as
W (ug, v0) > Jim W (u(fk),'u(fk)) > W (Uoos Voo)
= Jx(Veo) + Alog (A|2]) = ja + Alog (A[€2]).

The proof is complete. a
For solutions of (5), inequality (12) is improved as
/ ulogudzx < l/ wvdz + W (u,v).
Q 2J/a

This fact implies that a can be taken as a > % in (9) in the case of (5).
Except for this improvement, the results stated in Theorem 1 are still valid
for solutions of (5). A related result is shown in [9] for solutions of (1).

3 Boundary blowup of the solﬁtion

This section is devoted to the proof of Therem 2. We study (5) on the general
domain  with 02 sufficiently smooth around zo € 0€2, and u denotes the
solution. Theorem 2 is proven by localizing the argument of [15].

There exists a conformal mapping X = (X, X3) defined on @ N Br(zo)
satisfying X : Q N Br(zo) — R2 = {(z1,22) € R? | 2z, > 0} and X(0Q N
Br(z)) C OR2. We have (8X;) / (0v) = 0 on 85. Without loss of general-
ity, we can assume xy = 0, v(zo) = (0,—1), and

%(wo) ~id. (21)

Let ¢ be a smooth function defined on Q satisfying the homogeneous
Neumann boundary condition. In [22], it is shown that

gz /Q updz

holds, where p(z,y) = Vé(z)-V.G(z,y)+Vo(y)-V,G(z,y) with G = G(z, y)
being the Green’s function for —A + 1 with the homogeneous Neumann
boundary condition. The following lemma is a consequence of Lemma 6 of
[22].

1 ~ 2
< 8¢l llwolly + 5 18]l oaxay l1uolly
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Lemma 3.1 Letting , :
Ao(t) = /Q u(z, )(z)dz,
we have

i

with a constant L > 0 determined by 2.

< L”¢“02(9)</\2 + )‘) (t € [OaTmax))

Given R > 0 sufficiently small, we take smooth functions ¢; (i = 1,2)
defined on R? satisfying 0 < ¢; <1,

1 (¢ € By(0))
#i(z) = { (o ¢ Bara(0)),

and 0¢;/0v = 0 on 0. Letting ¢; = ¢} and m(z) = |X (z)|? /2, we can
show the following. ‘

Lemma 3.2 We have

ole,9) ~ ~tr(zWalv)
< CR7 (|a] + ly) 1> (@)v2(y) + CR™ |yl v ()
for |
p(z,y) = [V(ma)(2) - VoG(z, v)] $a(y) + [V(map1)(y) - Vo G(,y)] $a()
with a constant C > 0 independent of R.

Proof: We set (z1,22)* = (21, —xz) From the proof of Lemma 6 of [22],
we have

1 1 1 1
G(z, lo + —log — —— + K(z,y) (22
@9) = 58 oy xS - x@y] ey ()
for £,y € Bar(0) NN with K € CY¥(Bs3r(0) NQ x B3ar(0) N2) and 6 €
©,1).

First, we take the term associated with

1

Gi(z,y) = ei§,n) = —21—10g =
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where £ = X(z) and n = X(y). Because X is conformal, it holds that

(2)(39-
Letting c(¢) = l%)f and U;(¢) = z/),—('m), we have
p(z,y) = Ya(y)Ve(mih)(z) - VoGi(z,y)
o He(x)Vy(my)(y) - VyGi(z,y)
= O Ve (P L1() - Veer(£,m)
e A&)Vy (1 a() - Taer(6,7)

€-m
ame — n?
—c(m)¥2(&) (20T (n) + 112V, T (n))} -

This implies py = I + 11+ III + 1V 4+ V with

X

-0_.% 'ld.

I = %c(g)wl(é)%(n)

11 = EoM T () 0(€) - en)Ta()Ta(n))
2 |€ — |

£ — 2 2
I - ﬁ-ml@)c@wz(n) (€l ~ nl?)
v = L2 (0, - V0 m) &)W m) ]
- 4m |€ — 7]
v = $20 G w )€ W) — cn)Tale)) Inf.
4 |€ — n)

In use of (21), we get c¢(£) = 1+ O(|z|) and hence

I= 51; (1 + O(lz])) w1 ()5 ()

follows. Similarly, we obtain

_ &=mn ey
"‘2wm—nf“(9 (1) 2(n)¥1(§)

{(©)Ta(m)(281(8) + €17Vl ()

108



109

+e(n)Ta(n)(L1(€) — Wa(n)) + () (Ta(m) — La(§)) Ea(m)}
O(In) T2()1(€) + O(In)O(R™)To(n) + O(Im)O(R™*)¥1(n)
O(ly)) (%2 (2) + O(R™)a(y) + O(B)n (v)

mr = I @~ €+ )
= O(¢| + In)O(Ve¥1(£))c(€) T2 (n)
= O(lz| + ly)O(R™)91(€)*s(y)
IV = O(In]*)O(R™*)¥3(n) = O(In|)O(R™ )2(y)
V = O(In)O(R)O0(V,¥1(n)) = O(In)O(R™ ) (y) 2.
We get |

Ipl(x,y) —~ %wl(w)wz(y)l < %(lwl + Iyl)wl(m)l/?wz(yH %Iyldzz(y)m

- by 9y > 9.
We turn to the term associated with

1 1
G2($,y) = 62(6,77) - Z_{:log Ig _ n*l

Because of 0y;/0v = 0 on 012, we get

ov;|
—* =0 23
862 £=0 ( )

for i = 1,2. We obtain

Y2(y) Ve(man) (@) - VaGa(2,9) + ¥2(2) Va(mi)(¥) - Vi Ga(z,y)

pa(z,y) =
= O TmVEPTE) - Veesldn)
5o €)o7 T3 () - Vaealé,n)
= VI+VII+VIII+IX
with
b &-m)

{C(ﬁ)fl‘l’x(f)‘l’z(n) - 0(77)771\1’1(77)‘1’2(5)}

2m|€ — |2
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VIl = 4552__:'71*)[2 {OIEP T1¢, () T2 (m) = c(mlnl 1y, (m) T2(€) }
Vi = S (9600 + e (O}
IX = (S (0 + i (O}

Similarly to G, the estimate

(& — 771)2
R AL AU

< CR™(|z| + ly)w1(2)*¢a(y) + CR™|yla(v)*
holds. On the other hand, we have

virr = S o6
T {(e(6) — ) (O el
+c(m)(¥1(§) — L1(m)Wa(n) + c(n) 1 (n)(P2(n) — ¥2(€))}
— 2w ©nm)
ot PR~ ) (1O ) + O(R sl
FO(R™) U1 (1))

\VI+VII-

Noting (23), supp¥; C Bsr(0), & > 0, g2 > 0, and |D*Y;| = O(R™1°1), we
get
Ui, (6) + T(n) = & (1+OR)O(])) +me (1 + OR)O(In])
= (& +m) (1+O0RO(E| + Inl))
= O(R7)(& +m).
This implies

(& +m2)

IX =
4m|& —

{(c(&) — cn)) €[ W1¢,(€) Ta(n)



+e(M)(KE1* = [1*) 16, (€)Ta(n) + c(m)In* (Y16, (6) + Y1y (1)) L2(n)
—e(n)InP* 1 (m)(L2(n) — ¥2(€)) }

— S8 L {o(e - a0
+e(n)O(I€ = n)O(IE] + Inl) 1, (€) Ta(n)
+c(n)|n* (& + 1) O(R™1)Ta(n)
+c(n)nf*(n) U1, (MOR™)O(IE = m) }

= O(R™IEPLL(€)Ta(n) + O(R™O(IE] + [n)¥Y(€) Ta(n)

+O(R™2)n[2wy*(n).

Those relations are summarized as

Ip2(2,9) = 51 @Wa(0)] < (1l + Iy =)o) + lubn(s)2

Finally, because K is a C*? function, we have
Yo(y) V(mipn)(2) - VoK (2,9) + 2 (v) V(mar)(y) - VK (2, )
= () (0()lzl¢1 () + O(R™) |z 1" (x))
+a(z) (O()lyls (v) + O(R7Y) |y (v))
= 0(1) (lzlvs(2)a(y) + olr(2)2a(y))
+0(1) (vl (W)va(2) + |yl (v)*va(z)) -

The proof is complete.

Now, we are able to give the following.

Proof of Theorem 2: We have
om (1 .,0X\ 08X
w Y (‘z‘vf'f' ‘5}) = X
= Q‘—X—Z-ngo on 0f).
Ov .
Also (21) implies that m(z) = 3lz|> + O(|z[*), ms, = z; + O(|z|?), and
Mgz; = 5ij + O(l:l?l) as l:L'I — 0.
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Let
In(t) = [ u(@, tim(@)i(a)de

The first equation of (5) gives

i1—],,,1 = /ﬂutmwldx = —/S;(Vu —uVv) - V(miy,)dz

dt
= —/QU,A(m’(bl)dIE + /Qqu - V(may,)dzx
= IT+11I.
The inequalities
Vol <R and JAg] < CRT
hold for ¥; = ¢?. We obtain

I

/ w{ Am + 2Vm - Vipy + mAY;} dz

IA

2 f wprdz + CR™ / |1 *uda
< 2\, +CRTAL).

The second equation of (5) implies
11 = | [ u(z,)V.G(@,y) - Valrmapr) @)uly, ) dady
= [ [ 6@t ) VaG(z,9) - Valmpp) @uly, thdady

+ [ [ w1~ @) VaGle,) - Vo) (@)uly, dady
= [IT+1V.
Here, we have
dist(supp(1 — v), suppy) > dist(R*\ Bisr(0), Bsr(0)) = 8R
and hence

v

IA

CR™! / / ol (@)u(z, tyu(y, t)dzdy
CR™A /Q X ()91 (2)Y2u(z, t)dz
CRT\N/*1)°

1

VAN

IA



follows. On the other hand, we have

111 =3 [ [ (e, )o(,vyuty, Odsdy,
and Lemma 3.2 implies
1
(1T = Ay Ay
[ [ u(at)3l0(@9) ~ @iy, Odady
< ORI [ et @u(e, o + [ lvavuly, iz
= CR™A [ Jal(1(@)/? + 1 (@))u(z, t)de
+OR™A [ [21(9a(2) — 1 (@))u(e, t)de
< CRWIY 4 Ca /Q (Ws(z) — $1(2))ulz, t)dz.

IA

Consequently, we obtain

: . |
11T < 5208, + CRNL 1 OX [ ($ale) — $a(0)ula, t)do.

Those relations are summarized as

1 ;
:Zi.r,pl <20y, = oo Ny, HCRTNLE H CAO, — M) (29)

for t € [0, Tinax) With a constant C, > 0 independent of R.
By Lemma 3.1, there exists a constant L > 0 satisfying

R2(A2 4+ ))

| Ay <
for i = 1,2. Letting 6 = Ay, (0) — 47 > 0, we take T} >0in
LT(\ + )R + C.LTy (X + N)R™? < 6/4.

This implies

Mul8) = A (O] + CA A, (1) ~ A (0)] < (25)
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in particular, where ¢ € [0, min(7}, Tyax).
We suppose that n > 0 is so small that

T,

I, (0) < (26)

and

N O

1
C.R021Y%(0) + EC*R“2/\I¢2(0) <

hold. In this case we have
C*R_l’\3/21¢1 (0) 12 + C*/\(/\ng (O) - )‘1/11 (0))

< CRNPLL O + O, (0) <

The right-hand side of (24) at ¢ = 0 is less than

6 4 36

(27)

N &

For ¢ > 0 sufficiently small, I, () is monotone decreasing.

We suppose T,,.x = +00 and derive a contradiction. For this purpose,
first we show that I, is monotone decreasing on [0,77]. In fact, otherwise
we have T € (0,7}) satisfying

d
;lszl (To) =0

with I, being monotone decreasing on [0, Ty]. In use of (25) with Ay, (0) >
47, we see that the right-hand side of (24) at ¢t = Tj is less than

5\ 1 5\’ ;
2 (30 §) - 5= (M@= §) + R, 02

+C*)\()‘1112 (O) - /\'¢'1 (O))
FCOA ([ A (To) = A (0)] + [ A, (To) = Ay, (0)])
< *g’—fr (47r + 3{) + CLRTIN2L,, (0)2 4 Cod(Agy (0) = Ay (0)) + 525-

This implies
d )

Eil"ﬁl (TO) <- ‘?);



by (27), a contradiction.
At the same time we have proven that
d )
—1 —— )
dt Y1 (t) < 2 (t € [OaTl))

Therefore, (26) implies I, (71) < 0. This contradicts the positivity of the
solution, and hence Ti.x < +00 has been proven. The proof is complete. O

The case zo € Q is treated similarly. If

1
ug(z)dzr > 87 and —/ uo(z)|z — Z0|2dz <
L, .. w0 2 o 0@l — 30l <

holds for sufficiently small R > 0, then T;,., < +oo follows. Here, n > 0is a
constant determined by A = |luo||, and ||uol 115y (o))
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