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Abstract An example of convergent star product is described. The
Moyal product is considered for the linear Poisson algebra associated
with the Heisenberg Lie algebra. The product is absolutely convergent
in a certain class of entire functions. The critical exponent of entire

functions for convergence is obtained.

1 Introduction

‘The purpose of this note is to give a concrete example of convergent
deformation quantizations for certain Poisson algebras. This note is
besed on the joint work of H. Omori, Y. Maeda, N. Miyazaki and A.
Yoshioka [7, 8].

We have proposed the notion of the deformation quantization of a
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Fréchet-Poisson algebra in [7], which means convergenct star products
for the Poisson algebras in the Fréchet categories. Similar notion has
been studied in the C* framework by Rieffel [9].

Different from formal deformations [1], if we consider their convergence
of star product, we have met anomalous phenomena. In fact, we showed
in [7] that the Moyal product converges for the entire functions on C?
with certain order; it makes sense as an associative product for order
less than 2, but it failed the associative properties for order > 2.

Subsequent to [7], we attempt this argument to the linear-Poisson
structures of Heisenberg Lie algebras. The classes of Fréchet algebras
will be also taken in the space of entire functions on complex 2n+1-space.
Introducing various families of semi-norms, we study the convergence of
star products for the Fréchet-Poisson algebras in certain classes of entire
functions. We also study some algebraic properties for the closure of
free tensor algebras. The techniques in [7] proceeds to find a similar
phenomena to [7] even in their paper. We have similar features and dif-
ferent properties from [7] according to the semi-norms, which are shown
in the last section.

2 Fréchet Poisson algebras

2.1 Fréchet algebras of C**1.

We first introduce a system of semi-norms on the set of entire functions
to obtain Fréchet algebras. Let C"*! (n > 0) be a complex (n+ 1)-space
with the complex coordinates (zg, 21, ,2y), and P(C**!) the set of
all polynomial functions on C**1.

Let p, b denote (n + 1)-tuples p = (po,p1,- - ,Pn), b= (bo, b1, -+, bp)
withp; > 0and b; > 0 (1 =0,... ,n), respectively. By dropping the com-
ponents po and by, psx and b, denote p. = (p1, -+ ,Pn), bsx = (b1,--+ ,bpn),
respectively. Let rg and Ny be positive real number and non negative
integer. We define semi-norms || - ||pp, || - lp.,bsro a0d || - |[ps 5., ON
P(C™*1) as follows:

Definition 2.1 For f(zo,...,x,) € P(C"*) we set

£ llpp = sup |flexp(— Y bilail”) (2.1)
1=0

(150 3ttt ,zn)ECTH"l
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n
1fllpepre = sup  sup |flexp(= > bileil™)  (22)
=1

[zo|<ro (21, ,2n)EC™

No
£ llpwpuiie = D Ifu(@15- - 5 20 lpu s (2.3)
k=0
where we expand f in xo variable:
f(x()awla"' 7mn) :ka;(.’l?l,"‘ ,fEn)ﬂ?g- (24)
k

For a fixed p, we consider the completions of P(C**!) under the sys-

tems of seminorms {|| - [lp}es {Il - llp. b.,r0 s .m0 @0 {] - llp. ., N0 }bu, N0
respectively. We set the completions:

(E.1) & (C™) with respect to {|| - ||ps}es
(E'2) gHOI,p* (Cn-.-l) WIth respeCt to {H : Hp*,bx,TO}b*ﬂ'O
(E'3) SOO,P* ((Cn+1) With respeCt to {H ' Hp*ab*aNO}b*yNU'

Let £(C™*!) denote the space of all entire functions on C**1. Then,
it is easy to see EH(C™1) (resp. Emolp, (C™1)) consists of f € £(C™HY)
such that ||f||p < oo for Vb (resp. ||f||p. b.,ro < 00 for Vby,ro). But as
to the third space we have

Eoo0.p. (C"1) = £, (C)[[z0]] (2.5)

as topological spaces where the topology of the right hand side is given
as the space of formal power series in xg.

For simplicity we denote by €g;(C*1) any one of the spaces given in

(E.1) —(E.3) according to j = 1,2, 3 in the sequel.

Lemma 2.1 Each space Eg;(C™*Y) for j = 1,2,3 becomes a commuta-
tive Fréchet algebra by the usual multiplication of functions.

2.2 Fréchet Poisson algebras £g;(C"th).

Let F be a commutative associative Fréchet algebra over C, i.e., F
has a metrizable complete topology defined by a system of semi-norms,
and a product dented by the dott - is smooth.
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Definition 2.2 F is called a Fréchet Poisson algebra if F has a con-
tinuous bilinear operation { , }: F x F — F (called a Poisson bracket
on F) such that for any f,g,h € F,

(Pl) {fvg}z_{gaf}y
(P'2) chclic{fv {ga h’}} =0,
(P.3) {f,9-h}y={f,g9}-h+g-{fh}.

The Fréchet Poisson algebras we discuss in this paper are as follows:
Consider the complex (2n+1)-space C?**!. For convenience in notation,

set (zg,T1,-.. ,%2n) = (2,z,y), where zg = 2, z = (z1,...,2,) and
Yy = (Tp+1,--- ,Z2n). We now define the following Poisson bracket on
C2n+1:
— o o~ =
{f,9} e = 2(f (0 - Oy — Oy - 0z)9) (2.6)

- = = >
for every functions f=f(z,z,y) and g=g(z,z,y), where Oy - 9y — Oy - O

stands for a bidifferential operator:

~ =

— =
FOs -8y —0y-02)g=>  0u,f Oyg — 0y, f Ousg. (2.7)

It is easily seen that {,}x gives a Poisson bracket on P(C?"*1), called
of Heisenberg type. We have

{z,zi}g =0, {z,u}ag =0, {ziy;}n =20 (2.8)

which gives a linear Poisson structure on C2"*! associated with the
Heisenberg Lie algebra.
By definition, P(C?"*!) is dense in each £g;(C?" 1), hence we have

Lemma 2.2 Let Egj(C?"*1) be one of (E1)-(E3). Then Eg;(C*F1Y) is
a Fréchet Poisson algebra with Poisson structure {, }g.

2.3 Deformation quantization of £g;(C*"*1).
Now, we consider a noncommutative product on P(C?**1):
© (i Z)k - =
) Y

frg=2 Sy [0 0y -

k=0

 By)kg, (2.9)

144



~ o ~ -

where (O - Oy — Oy - 9z)* denotes the k-th power of the bidifferential
operator (2.6). Asfor f=f(z,,v), g=g(2,7,y) € P(C***?), the product
(2.9) gives an associative product since * is given by the Moyal product
formula. We focus to a question how (2.9) extends to Fréchet Poisson
algebra £g;(C?"1). In this section, we are concentrated with the case
of the weights

b= (pOaph' .. 7p1)7 b= (bO’blﬂ"' 7b1)' (210)

One of goals in this note is to show the following:

Theorem 2.1 Let (Eg;(C*Y),-,{,}u) be a Fréchet Poisson algebra
given by Lemma 2.2. Assume that p satisfies (2.10). Then the following
properties hold:

(1) (Egj(C+1), %) is an associative Fréchet algebra if and only if

2po
A1) For (E.1), 0 < py < ,
(A1) For (E.1) S

(A2) For (E.2), 0 <p1 <2,
(A8) For (E.3), 0 < p1.

(2) For any case (A1)-(A3), the algebra (Egj(C*1), %) has the follow-
ing properties:

) [2,EE(CPT)] =0, i.e. z is a central element.

) [5Ej(C2n+1),gEj(C2n+1)]* C z % 5Ej((C2n+I)

i) Egj(CH) = Eg1(C™) @ 2 % E; (C*)  (direct sum)

iv) (Self-similarity) z#, and xz are continuous linear isomorphisms
of EE]-(C%“) onto z*gEj(C2n+1).

(v) a — @ gives an involutive anti-automorphism of (Eg; (C27+1) %)

i
i

(i
(i
(i
(i

such that zZ = z.

(Vi) Nmzo#™ * E€Ej (€)= {0}

where [, ] is the commutator bracket with respect to the product *. Here
Eg1(C) = &,,(C™) consists of entire functions of (21,...,2n) vari-
ables satisfying the condition (2.1) given by p. = (p1,...,p1) and by =
(b,...,b1).

If we use the notion of regulated algebras defined in [6], the properties
(1)—(vi) above gives a special case of a regulated algebra: Replace (i) by
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() [ €Ri(C%)] C 2+ ER;(C?) * 2.

Definition 2.3 An associative (Fréchet) algebra A with the properties
(i’)-(v) is called a z-regulated (Fréchet) algebra (cf. [6]). If A satisfies
(i), then A is called z-central. If A satisfying (vi) is called analytic (resp.
formal) when every element is analytic with respect to z varible (resp.
every element is a formal power series of z).

We have several typical deformation quantization from the product *
as follows.

(i) By replacing z by hz in (2.9), we have a product *.

Corollary 2.1 Assume (£,(C?"*1), ) satisfies (A 1) of Theorem 2.1.
Then, (Ep(C?™*1), %) is a deformation quantization of the Fréchet Pois-
son algebra (E,(C?"*Y),-, {,}u) absolutely convergent with respect to
heC.

(ii) For f(z,y),9(z,y) € &, (C?), we set a Poisson bracket by

+

{f,g}o = f(0Or - 5; - :9_;, - 5;)9. (2.11)

Then we have a Fréchet Poisson algebra (&, (C?"),-,{, }o) with the
relation {z;,y;}o0 = ;-

Now consider the algebra (Egolp, (C>"1), ) under the condition (A
2) of Theorem 2.1. Replacing z by 7 in Egol p, (C?"11), we get the space
of analytic functions of & with values in &,, (C*").

Corollary 2.2 Assume (Epop, (C?1), %) satisfies (A 2) of Theorem

2.1. Then (€. (C?"), x4) is a deformation quantization of (€, (C*),-, {, }o)

absolutely convergent with respect to the parameter h € C.

(iii) As we have seen in (2.5), replacing z by ik in o p, (C?F1) gives
the space &, (C?™)[[A]]: In the case (A 3) of Theorem 2.1, the product
xp implies a formal deformation quantization:

Corollary 2.3 Assume (Esop, (C2), %) satisfies (A 3) of Theorem
2.1. Then (£, (C™)[[A]],*r) is a formal deformation quantization of
the Fréchet Poisson algebra (€, (C™),-, {,}o).
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3 Free tensor algebra
3.1 Completion of Free tensor algebra

Let 7 be the free tensor algebra over a (n + 1)-vector space V:

o
T = Z ®V®  (finite sum) (3.1)
k=0

where VO =C, V®* =V ®..-® V (k times).

We introduce a system of semi-norms in 7. Similarly as in §2.1, we
use the notation : 7 and s denote (n + 1)-tuples 7 = (79,71, -+ ,7n) and
s = (89,81, ** ,8n), where 7, > 0,5, > 0, (¢ = 0,...,n). By forgetting
70 and sg, 7« and s, denote 7, = (7, -+ ,7,) and s, = (81,82, - ,5n)-
Also t and Ny denote a positive real number and a nonnegative integer.

Let us fix a basis Xg, X1,--- , X, of V. Then an element of 7 is given
by a finite sum

T=) cuXu, (cw€C), (3.2)
w
where X, = Xy, ® --- Q@ Xy, w = (w1,... ,wg) are words. For a word

X, we denote by m;(w) the number of X; in X, (¢ =0,...,n), and
set m(w) = (mo(w),- -+ ,mn(w)) and m(w) = (M1 (w),- -, mn(w)).

Using these notations, we set

Xwlrs = Mg (7 ms(w Tim"(w)sTimi(w) 3.3
” 1=0 i

Xl s = Iy (73 g (w)) i () T () (3.4)

1

Definition 3.1 For an element T = ). cwXyw € T, we set semi-
norms:

T |lrs =D lewl - [ Xulrs (3.5)
w
and
HTH’T*,S* = Z |Cw| : |Xw"r*,s* (3.6)
w

Using the second semi-norm we also set

[T 0t = Z ”Tj”n,s*tj 3.7)

J
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No
”T”T*,S*,No = Z “Tj Ty Sx (3.8)
J=0

Here, T} is the component of T' which contains Xo j times in X,,, and
we may write as T =3, T, T; € T.
The following inequality is useful
Lemma 3.1 Let uy,...,u; > 0. Then, we have
,u11£1 . u}tz < (Ul 4.+ ul)u1+...+uz < lu1+...+ulu1fl . ,u‘;l'l.

It is easy by using Lemma 3.1 | Xy, ® Xy |7,s < [ Xw|r2s | X |r,2s which
yields

Lemma 3.2

”Tl ®T2”T,s < ”T1||T,2$“T2”7',23 (3-9)

”Tl ®T2||T*,5*,t S “Tl||7'*,2S*,t||T2“'T*725*;t (310)

”Tl ®T2”T*,3*aNO S ”T]-”T*g25*,N0”T2“T*,23*,NO (3‘1]‘)

For a fixed 7, consider the system of semi-norms {|| - |l,s}s, {| -
7,50t bsut @and {|| - ||l s.,N0 } 5., N0, Where s = (sg, 81, ,8,) such that

si >0 (i =0,...,n) and £ > 0, Ny € Z;. By taking completions
of 7 with respect to the above semi-norms, we introduce the following
Fréchet spaces: '

Definition 3.2 Under the above notation, we set

Tr={T T |||T||rs < o0 forVs} (T.1)
Tholr, ={T €T | ||T|lrs,5.,6 <00 for Vs, V¢ >0} (T.2)

Tooe ={T €T | IT||r,,5.,No < 00 for Vs«, YNy € Zy } (T.3)
Tr;j denotes any one of (T.1)-(T.3) according to j = 1,2,3.
Lemma 3.2 gives

Proposition 3.1 Let Tr; be any one of (T.1)-(T.8) in Definition 3.2.
Then, (Trj,®) is a Fréchet algebra.
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3.2 Subspace of symmetric elements
We first introduce a symmetric product
| FoG=%(F®G+G®F)
in 7 and set (cf. [4])
(Fo)* .H=Fo(Fo(---(FoH)---)),  (k-times) (3.12)

(Fo)t - (Go)! - H = (Fo)* - ((Go)' H) . (3.13)

Using these notations, we define a linear subspace S of 7 as fol-
lows. Let us fix a basis {Xp, X1,...,X,} of V. For a multi-index
a=(ag,...,an) we set a term X as

X=X 0XM"O...0 X3 = (Xgo)* .- (Xp0)* - 1. (3.14)
Then we set a linear subspace

S={FeT|F=) caXg} (3.15)

Putting a commutative product ® for monomials as

((Xgo)@0 -+ (X,0)2 - 1) © ((X o)ﬂo ... (XHO)'B" 1)
0= (Xgo)eotho ... (Xno)an+0ﬂn 1, (3.16)

we extend ® on S. Thus, (5,0) is a commutative associative algebra.
Denote by St; the closure of S in 77;, that is, the topological space Sr;
is the completion of & with respect to the system of semi-norms given
in Defintion 3.2.

Lemma 3.3 We have for a word X, = Xy, ® - @ Xy,
1(Xo0)™ ™) - (Xy10)™ @)+ (Xpo)™ () 17g = | Xplrs - (3.17)

Hence, by Lemma 3.3, we see

I F1 © Fallr,s < | Fillr2sl| Fallr2s (3.18)
|1F1 © Fallr, 50t < 1 F1lm 250t | F2ll 7 260 8 (3.19)
”Fl O] F2“’r*,s*,No < ”FlllT*,2S*,NO“F2“T*,23*,N0 (3-20)
for F1, Fy € St;.
We show the following: For 7 = (79,71, ,7s), 7i > 0, put wieghts

= (g s ) and i = (7 ).
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Proposition 3.2 We have the following isomorphism as a commutative

Fréchet algebra:

(i) For (T.1), we have (S;,®) = &£,-1(C*H).
(i) For (T.2), we have (SHolr,,®) = EHoir, (CMH1).
(i13) For (T.3), we have (Seo,r,,®) = (Sr,[[z0]], ®) = o r—1(C™1).

Proof. We give a proof for the case of 1-variable, since the multi-variable
cases are direct consequences of 1-variable case. We first show the case
(i). Put Z = Xp and consider an element a = ) o> ja,Z™ € S;. Then
by definition, for every s > 0 there exists a constant C > 0 such that

lallrs < CY lanl(rr)™s™,
n>0

hence |ag| < C and |ay| < C(rn) " ™s ™ foralln =1,2,....
Now we will show the power series f = " a,2™ defines an element of
&p(C) for p = 771 The estimate for a, above yields

Z]an||z|"<C+CZTn (ﬁ) , (2€C).

™
For the domain |z| < s7, it holds 1 + >, (7n)™™ (|zl%/s) < M
where M =1+ ,(7n)™™ < co. On the domain |z| > s7, we devide
the summation into two parts ;

oo ™ ng—1 1 1\ Tn
(tm) (ﬁ) = Z (tn)™™ (%) + Z (|Z| ) )
n=1 n=1 n=ng

where n is a poistive integer such that (7n)~™ < [rn]~[™ for alln > ng
(say, o > (€)™). The first part is a polynomial of |z of degree ng — 1.
For the second part, we estimate as

o0 o
Z (Tn)~7nu7n < Z UJ" [Tn]—[Tn]u[Tn]
n=no n=ng
where we put u |z{l/s and 6, = ™» — [tn] < 1. Using [rn]! <
[rn]™™ and u® < u for u > 1, we have Yo (T7) MU < wet < e

Thus, the second part is bounded by the functlon exp (%Iz[é) Since
the first part is a funciton of polynomial degree, the total summation is
also bounded above by the function C’exp ( %1z|%> for certain positive
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constant C’' depending on s. Then, we see the estimate on the whole
complex plane

S lnlll” < 00" exp (2117

n

for certain constant C”, which yields || f||, 2s-1 < C”|lal|rs. Then S; is
continuously embedded into the space £,(C) for p = 771
We show the converse. Assume f € &,(C), i.e., for every b > 0, f

satisfies

supl£(2)] exp~HlP) < co. (3.21)

Putting f(z) = Y o2 anz"™ and using the Cauchy integral formula on
the contur of raduis R, we have estimates |ag| < C and

. e’ ebp »
Ianl < I}Zl;{)lc R =C|— ’ (n =12,... )7 (322)

n

where C' = sup,¢c | f(2)| exp(—b|z|F). Now, we show the power series a =

oo 1

~0anZ" defines an element of S; where 7 = p For an arbitrary

s > 0, using the estimate (3.22) we calcalulate as

naur,3=§ian|( ) %sij {ebs)F}" :Cﬁiﬁ)? (3.23)

by taking b small enough, say b < 1/(es), which indicates &,(C) is

continuously embedded into the space S, for 7 = p~!. Thus, case (i) is

obtained by extending the above arguments to multi-variable functions.
To show the (ii), we remind estimate of the semi-norms for Xy in S,
and for zg in &, is same. Thus, the above argument also yields for case
the (ii). Case (iii) seems rather trivial. Remark S, = Sr, [[:1:0]] and
Eoop, (CPTL) = &, (C™)[[z0]], and their topology are the ones of the
formal power series. Using the above observation for &, (C") and Sz,
we have case the (iii).

3.3 x-product on St;

In this subsection, we work with (2n + 1)-generators Xy, X1,... , Xon-
In what follows, we assume the weights

T =(70,T1y---,7T1)s S =(S0,51,---,51)- (3.24)

151



For convienience, we write as (Xo, X1,... ,X2n) = (Z,X,Y) where
X =(Xy,...,Xp) and Y = (Xp41,... ,Xon). We introduce an (com-
mutative) associative product, denoted by *, on St; C Trj, where Tr;
is any one of Definition 3.2.

Consider an element F' = _ cxap ZEoX*eYh e Stj, where a =
(al,... ,an) a,ndﬁz (ﬁl,... ,ﬂn)

Ox.F =) crapaiZ* 0 X4 0Y* (3.25)
OF =) crapBiZ* @ X* 0 YP4.

By a simple estiamte, we get Ox,F,0y,F' € St; and these operations
are continuous. Similary, we define higher derivatives Bg}(?i?F as usual,
and 882 F € Sr;. For Fi, Fy € Stj, we set

(F,F}=F (z ©FTx0dy-9y0 ﬁx)) Fy. (3.26)

Then, by Proposition 3.2, (S7;,®,{, }) is a Fréchet Poisson algebra
which is isomorphic to (£g;(C*"*1), -, {, }u)-
We also transform the formula given by (2.9) to St; : for Fy, Fy € Srj,

we set

1 ) — — - - \*
Fl*FQ =ZWF1 (’LZ@(aX @aY —81/ @a}()) FQ (327)
k=0 ) _

which is an associative product on St;.

Due to the identifications given in Proposition 3.2, Theorem 2.1 is
induced from the following theorem:.

Theorem 3.1 Under the assumption (3.24) on 7, let Tj denote any one

of (T.1), (T2) or (T.3) and consider Fréchet Poisson algebra (S15,0,{, })-

Assume
0<79<2n -1 for (T.1). (A’.1)
$<mn for (T.2). (A’.2)
0<7 for (T.3). (A’.3)

Then, (Stj,*) is a Z-central, Z-regulated Fréchet algebra according to
j = 1,2,3, respectively. Further, it is analytic for (A’.1) and (A’.2),
and formal for (A’.3).
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4 Convergence of the product

In this section, we show the sufficiency part in Theorem 2.1.

4.1 Case T;

Let 7, and S, be as in §3. To show Theorem 2.1, we consider the
following product on S3 :

iZ « S -
Fl*FQ:Flexp7® (8X®8Y——8Y®3X) F (4.1)
for
Fi =" ttymyn, (Z0)"1(Xo)™ (Yo)™ - 1,

Fy = brymyny(Z0) (Xo0)™(Yo)™ - 1€ S..

In this section, we show the following:

Theorem 4.1 Assume 7 = (19,71,...,71),0 < 70 < 211 — 1. Then,
(Sr,*) is a Z-central, Z-regulated analytic Fréchet algebra.

Proof. Let F}, F5 be as in (4.1). Computing

Nak .
Fi+x Fy Z ol Z Akyminy bk2m2n2( )|J| ‘ (4.2)
P iigi=p
p! ml! nl! m2! ’I’LQ!

X : ; - -
i3]t (m1 = 9)! (na — §)! (m2 = 5)! (ng — 9)!
% (Zo)p+k1 +k2 (X o)mtmz “P(Yo)utna—p,

By using the definition of semi norms and inequality k) k), < mk, we
have the following estimate:

pl o
||F1 * F2|ITS < Z Iak1m1n1ku2m2n2l Z 2p 1 Z ﬁman{m%ng
p>0 “ P iki=p U
X [|(Zo)PHHths (X oymatma=p (Y oymtna=Pl
Remarking mimining < (Jmi| + |ma| + |n1| + |n2|)?%, and using the
inequality of Lemma 3.1, we have

||F1 * F2||TS < Z |ak1m1n1||bk2m2n2t Z |m1| + l'n’ll + ‘mQI + ‘n2|)

N, K1tk —2
x Ny sttt 2)8? !mlHImZIHnlIan' P), (4.3)

153



154

where
Np = 10(p + k1 + k2) + 1i(|ma| + |m2] + |n1| + |n2| — 2p).
We have the inequality
Ny» < 2Ne NN N V2

where

N =7o(k1 + k2), N2 = (10 — 271)p + 11 (|m1| + [ma| + |n1] + |na]).

Using the assumption 79 < 277 — 1, we have

N3 < (ri(|ma] + [ma] + [na] + nal)) M.
Hence we see
(Imal + | + ma| + nal PNy < 2% NV Mg (ro=2ritUptn b

where
M = |m| + [n1| + [ma| + |na].
Using the assumption 79 < 277 — 1 again, we have
1
ZH(Imll + || + [mal + [n2])?

p=0 '
Np 7o(pt+ki+k2) 11i(|ma|+|mz|+|ni|+|nz|—2p
X ]VPPSOO( 1 2)311(| 1| | 2| | 1| l 2| )

| =

<
p=0

(M sg0sy ™ )P N (r M) ™M (250) V1 (251) M

3

Thus, we have

”Fl * F2[|7':5 < Z Iaklmlnl “bk2m2n2| 'eXp[(m1 +ny +mo + n2)58051_27'1]
(1o(k1 + k2))°®1+R2) (7 (my + my + ny + ng)) (M TM2tN1$N2))
X(230)70(k1+k2)(281)71(m1+m2+n1+n2)

< Z |ak1m1n1||bk2m2n2l

x (1o(k1 + kQ))To(k1+k2)(7.1 (m1 + ,m2)71(m1+m2))(7.1 (ny + n2))n(n1+n2))

—-271 10, —1
X(230)‘ro(lcl+lc2)(4631 Ls707; 31)71(m1+m2+n1+n2)_

By the definition of semi-norms, we remind the following identity:

”Fl © F2||7',0' (4.4)

= > |@kimin [[Brymany | (To(ky + k2)) 0152 (7 (my + my))ma(matma)

ki1+k mi+mo+ng+
X(Tl(?h+n2))T1(n1+n2)0'go~( 1 2)0,‘1rl( 1+me+ni+nz)



Therefore, we have

||F1*F2||T,s S “FI ®F2H7',0'7 (45)

-2m 10,.—1
where o = (2s9,4€®1 %0 1 g1).

The properties (i)—(vi) in Theorem 2.1 are easily obtained.

4.2 Case Troir, 712> 5

Theorem 4.2 Assume 7o = (70, T1,--- ,71), T1 > % Then, (SHol,r.,*)
18 a Z-central, Z-requlated Fréchet analytic algebra.

Proof. By following the computations as in §4.1, we see Theorem 4.2.
In particular, we put 79 = 0 in (4.3). Then, the same computation gives
the following estimates:

“Fl * F2||T*,s*,t S ”Fl © F2||T*y31* (4'6)

where s1, = (exp 7151‘2“)31.

4.3 Case Tor,, T« >0

By the definition of (3.27), the product * is well-defined for any
F\,F; € To,r,- Then, we have

Theorem 4.3 Assume 7 = (11,...,71), 1 > 0. Then, (Seo,r.,*) 5 @
Z-central, Z-requlated Fréchet analytic algebra.

4.4 Remarks on the star product.

We remark the assumption in Theorem 4.1 is the best possible in the
following sense, which give the necessity part in Theorem 2.1.

Proposition 4.1 Assume 7 = (19, 71,...,71) with 9 > 0,73 > 0,79 >
271 — 1. Then, * does not give a Fréchet algebra structure on S;.

Proof. We show the statement for the case of 3 generators Z, X,Y for

simlicity, which implies the general cases.
o n

Let U(t) = Z ntﬁ (a > 0). We set
n=1
Uo(Z,X)= %{—Q)—n, Uo(Z,Y) = (—Z%/@—)T—L. (4.7)

n=1 n=1
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If a > 19+ 7, then Ug(Z,X),Us(Z,Y) € S;. In fact, the semi-norm of
Us(Z,X) is

”U@(Z’X)HT,S = Z non nle—(r0+71)}

n=1

(Ton)(“’”)(Tln)(ﬁ")s((f“")sgn" i( T080) ™ (7181)™ )n

and it is obviously convergent.
Compute the product

Us(Z, X)+Us(Z,Y) | (4.8)

min(n,m)

- noem mom = 2°p! (n — p)! (m — p)!

(Zo)" "™ P (Xo)" P(YO)™ P
Then, we get

]' T T
1U6(2, X) * Uo(Z, Y )llrs 2 3 ez 5y (1) Bol)*™'sg™ (4.9)

2’1'
by taking the terms in ||Up(Z, X) * Ug(Z,Y)||rs for n = m = [ and

1
p = 1. We put the coefficients- of (ngo) as g; in the right hand side of
(4.9). Note that the rate a;/a;4; is equal to

l!(3,7.ol)37'ol(l + 1)2a(l+1)2l+1
(122020 (1 + 1)!(370(l + 1))@+

—- (1 + 1/1)(211—370)! i (l + 1)2a—3rg—1 (4.10)

1

= 2=
37

- 0 asl—o> o0

if we choose a = 79 + 71 + ¢, for a sufficiently small ¢ > 0 because
20 =319 — 1= —19+ 271 — 1+ 2¢ < 0. Thus, we have (4.8) diverges for
any s. As to the case (Hol, 7..), similar computation gives the following :

Corollary 4.1 Assume 11 < % Then a * b diverges for some elements
mn SHol,‘r* .

If o > 7y, then Up(X),Up(Y) € Sholr,- In fact, the semi-norm of
Uo(X) is

00 Tn(Tln) ('rln) oo s1)t\ "
DX = 32 T2 37 ()

k=0 n=0




and it is obviously convergent. For Ug(X),Ug(Y) by taking the terms
of n=m=101n ||Ug(X) * Ug(Y)||r, 5.t We see

1 1
1U(X) * Uo(llrsnt 2 D 72t - S (% (4.11)

We put the coefficients of ¢! as b in the right hand side of (4.11). Note
that the rate b;/b;4; is equal to

l!(l + 1)2a(l+1)2l+1

EEET T S 2 AT AT 50 asl oo

if we choose o = 71 + ¢, for a sufficiently small € > 0 because 2a —1 =
271 — 1+ 2¢ < 0. Thus, we have ||Ug(X) * Up(Y)||r s.,t diverges for any
sand t > 0.

Note that if 77, = T(eo,r)> 71 > 0, there is no complementary case.
Hence, the argument in this section gives the “only if” part of Theorem
2.1.

4.5 Quotient of Tr;

As defined in §3, let 7 and T be the free tensor algebras with gener-
ators Xo = Z, X1 = X, Xo =Y and with X; = X, X5 =Y, respectively.
Let Z be the two sided ideal of relations in 7 generated by

X®Z-ZX,Y®Z-ZQY,and XQY -Y ®X —1iZ.

Denote by Zr; the closure of Z in Tr;.
In spite of Proposition 4.1 and Corollary 4.1, we see that Ar; =

Trj/Ir; is a Fréchet algebra We denote the induced product from ® -

by *.

First, we observe the algebra structure of (Arj,*%). We remark the
following: Let S, be the completion of S in 7 with respect to the
family of semi-norms {|| - ||~ s. }-

Theorem 4.4 For j = 1,2,3, (Arj, %) is a Z-central, Z-regulated, an-
alytic Fréchet algebra such that

Ar; = S;, ® Z%Arj. (4.12)
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Proof. Let T =) ta X € Trj. We remark for every X, the following:
(i) If X, does not contain Z, then X, can be viewed as

X = S + Pa, where S, € S,., Py € Z ® Trj + Irj, (4.13)

and moreover the semi-norms of X, and S, are equal.
(ii) If X, contains Z, then X, can be viewed as

Xo = Py, where P, € Z ® Trj + Irj. (4.14)
Repeat this computation for X,. Then, T is written as
T=) taSa+Z®Q+R (4.15)
where Q € Trj, R € Zrj. Thus we have
Tri/(Z ® Trj + Ir;) 2 S-., (4.16)

which yields (iii). The other properties in Theorem 4.4 are obvious.

4.6 Properties for A,

We study algebraic properties on A, = 7;/Z; where 7 = (79, T1,... ,T1)-

We denote by * the induced product from the closure of free tensor al-
gebra T,. We first show the following:

Theorem 4.5 Assume for 7 = (79,71,...,71) and 0 < 79 < 217 — 1.
Then, we have

T =8 @I (direct sum) (4.17)
Moreover (S;, %) is isomorphic to (Ar, %).

Proof. Let 1 be an algebra homomorphism from (7, ®) to (S, *) defined
by
PY(Xoy ® - ® Xa,) = Xoy 5+ * Xa, (4.18)

where the product * is given by (3.27). We now show that 3 extend
continuously to the map from (7;,®) to (Sr,*). Let Y* and X* denote
Y*---xY and X x--- x X. We first note that

Y™ x X" = i ( m ) ad(Y)E(X)" + Y™k, (4.19)

k=0 k

158



159

where ad(Y).(X)" = [Y, X"]. . Using ad(Y).(X)* = —niZ « X", we
have
min{m,n} ml nl
m n i : : l Xn—l Ym—-l. 4.90
yreX Z%(Z)Mm—DNn—MZ* St (4.20)

Let a = (a1, - an), B = (1, - ,0n) be n-tuples of nonnegative inte-
gers. By (4.20), we have ‘

VO XPL V2 4 XP2 4. 4 VO 4 XPr (4.21)

_ Ykt tkn ! At
B k:(klz,_; ,kn)( i) kil(a1 — k1)! (B — ka)! *
e (a1+"'+01n—(k1+"'+kn_1))! B!
knl(ar + -+ an— (k14 +kp))! (Bn — kn)!
w 21 4 x1BI-IE 4 ylal-Ikl

where || = a1+ +an, |[B| =061+ -+ Bn and [k| = k1 + -+ + kn.
Note that (a;n) < (Z) Using

<a1+a2—k1)m<a1+---+an—(k1+---+kn_1))

(%) 077
(o1 + -+ a)!
< )
ol ap!
we have
a1! ﬁl'

Frl(ar — k) (B — k)l
“.x(a1+---+an—(k1+-~+kn~1))! B!
kn!(al +top— (b1t + kn))' (Bn "“kn)!
1 a!---ap! B! B!

Rl (o= TR (B — k! (B — ko)

y a1 + oy — Kk o+t ag— (k1 + -+ kp-1)
9 (877}

. 1 ]! Bl Bl
T kleckal (Jof = [BDH(BL — R (Bn = k)t

Thus, we have

[V s XPLx Y2 5 XP2 ... s YO *Xﬁ"HT’s

Z 1 ley|! Bl B
k=(k1, kn) kil kn! (Jo| = [EDH(BL — k1)t (Bn — kn)!

| Z1*l « X811kl yled=lEl)

<



Using the estimate for the semi-norms in Theorem 4.1, we have

HYal*Xﬁl*Ya2*X'B2*"'*Ya"*XﬂnH*r,s (4.22)
1 |a]! B! Bn!
< « o .
- k-—(kz o Rl Eal (laf = k) (B = Fa)! (Brn — kn)!
=(k1, ,kn)

X(Tolkl)mlkl . (7-1(|a| + WI _ 2lk|))n(|a|+|5[—2|k[)
(sh)Tol¥l (51 ) +181-28)

. !
for some s’ = s'(79, 71, S0, 51)- Since (aa_|k)! < |a|l*l, we have

”Yal * XPL s V2 XP24...5Y% *X'B"HT,s

By . (Bn) o
<
k:(k;l’...’kn)
x (1olk|)™! - (1 (|a| + |8] — 2|k|))7 (el +IBI=2IkD
(sh) oIkl (5) T2 el +1B1-2k)
Notice

lklrolkl(!a[ +18| - 2lk|)n(|a|+]m_2|k|)
< (la| +|8| = |k|)T/kI+mlal+181=-2lk)
< (Ja] + | 8]) o~ 2r)lkl+mi(lal+AD

Then using 79 < 271 — 1, we have
[a['k||k|70|k|(]a| +18| - 2|k()ﬁ(Ial+lﬂ|—2lk!) < (la| + |8])7el+BD,

Thus, we have

[|[Y o « XP1 4 V22 5 XP2 ... x YV « Xﬁn”r,s
< ) (»31> ( ) )70l (55 yolkl (1 )2l
k=(k17"' akn)

x(r1(laf + 1) (eFHID (57 el1D
< (14 720(sh) ™ (sh) T2 (71 (Joof + |8])) 2 elHIBD (57 )a(lel+IBD

Hence we have

[V 5 XP1sY @2 5 XP2 54 YO & XPr||, (4.23)
< e+ (7 (|a| + |ﬁ|))71(|a|+lﬂl)

for some constant C.
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Thus, if
F=Y a4apZ® Y0 X" @ .. @Y @ X"
satisfies ||F||,,s < 0o, then for
PF) = a50apZ% Yo 5 XP1 s YO 5 XP0
we have

1 (F)llr,s < [|Fl7s (4.24)

for some § = §(79, 71, S0, 51). Thus, 9 is extended to a continuous map
from 7; to S;.

Recall how @-product is defined in §3.2. We can define ®-product in
A by using ¥-product instead of ® by a similar manner as ®. Since
ao(boc)— (aob)oc= %ba,c|]] where aob = 3 (a%b + bka), we see
that if a,b,c are generators then X;0Y; = Y;®X;. Hence O-product
is a commutative product (see [4]) without any artificial definition. By
this we see, the replacement of ® by * gives the identity on S; C 7
and it follows that 1|S; is the identity. Since the kernel of 1 contains
Z-, ¥ induces a homomophism 15 : Ay — S, which is onto by the above
argument. It is easy to see P(ZFGX*OYP) = Z¥ ® X* @ YP. Then we
see A, and S, are linearly isomorphic which shows Ker ¥ = Z,. Thus,
we obtain Theorem4.5.

As to Thol,r., by the same procedure as above, we have the following:
Theorem 4.6 Assume % < 71. Then we have

THOI,T* = SHOl,T* 2 Z-Hol,'r,. (direct sum). (425)

Moreover, (Skol,r,*) is isomorphic to (Agol,r,*r)-

Reminding that S -, coincides with S..[[Z]], we have easily
Theorem 4.7 Let 71 > 0. Then, we have
Toor, = S, [[Z]] ® Toor. (direct sum) . (4.26)

Moreover, (Aco,r.,*) s isomorphic to (S 1[Z]], %)-
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5 Degeneration of algebraic structure

In §4, it is shown that, (Stj, *) is a Fréchet algebra which is isomorphic
to (Arj, %) under certain assumption on the weights 7 and 7. In this
section, we study algebraic structure of (Ar;, ¥) for the cases where 79, 7
do not necessarily satisfy the condition in Theorems 4.5 and 4.6.

We study the Fréchet algebra (A, ¥) for 7 = (79,71, ... ,71), satisfying
T9 > 211 — 1,70, 71 > 0. If further , > %, then we see easily that

AT(’),n DA D A'ro,'r{ where 7’6 =27 — 1’7-{ - %_(7_0 +1)

~y

where we write Ar -, = A(s, 7,,..,n)- By Theorem 4.5 we have A, =
Spm and Ag 0 = S 0, but Proposition 4.1 shows that Ar, 7, # S,
since Sy, 7, is not closed in . It follows that 77, -, # Sr,r @ L3, 4,

Next, we consider the case % > 11 > 0. In this case, the algebra A, ,
collapses to an almost formal algebra in Z.

Theorem 5.1 Assume 7 = (70,7T1,--- ,T1), 70 > 0,% > > 0. (If
70 = 0, then we read this as Hol or oo.) Then, for any complex number
such that a # 0, there exist Ry € I, and H, € T, satisfying

1=(a—2)® H, + R,.

2 =2i
Proof. Set X* =+ ® (1 - e(gX@Y), X =%01-eg XGY) where
elXOY = 3% ';—:(X ®2Y)l, and + takes the factorization by X for the

power series for (1 —eg XQY). Computing the following identity
(X*3X)®X°-X*Q®(X®X°)=0. (5.27)

Since the computations modulo Z; is the Moyal product, the product
formula gives

VA 2 —2i
X0 =X+ (1-2)® (e e x - X @ey " V)eI, (5.28)
Hence
1 ixpy — =AXQY, o
YQ(EG — e ) €E(Z —a)+Z;

where (Z — a) + Z; is a closure of the two sided ideal generated by Z —a
in 7. Thus, we have

1
X

ZXeY =2 X oY
Oleg " —eg )

Zixoy £ '¢0) 4 2 2 xoy =2 xoy
= (e§ - ey )+Z-a®(e® + ey

X ® (

)
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Thus we have

2iyey  =EXeY ZxoYy =2AXOY, T
e2” " —eg +2(ea” % teg O ) €(Z—a)+1,.
We can write the same equality by replacing a by the complex conjugate
a. Reminding that our system is stable under the complex conjuga-
tion. Thus, using that the conjugate mapping is an involutive anti-
automorphism, we get

+EXQY o
eq* © €(Z —-a)+1I,.

Since dx f, Oy f can be written by using commutator bracket, this shows
that

+Z XY

(X™OY™) ® %0y e, o X™ oY™)e(Z—-a)+I.
-—ﬁX@Y S ——
Hence, we have (X™ O Y™") ®eg*® € (Z — a) + Z,. It follows

1,2 k SUXQY o
(Y 5Exey) Yoo eZ-a+T.
k=0

Taking m — 0o, we have the lemma.

Theorem 5.1 gives the following.

Theorem 5.2 Under the same assumption as in Theorem 5.1, any ele-
ment a—Z for a # 0 in (Ar,*) has an inverse, and (V>0 Z¥ @77 = {0}.
Furthermore, I, has no complementary closed subspace in Tr.

This shows that A, is almost formal.

Proof of Theorem 5.2. For a polynomial p(Z) of Z, we define a family
of semi-norms:

(D)o = 3 laxlk™ s, p(2) = ap2*

We denote by Z,, the completion of Z = {p(Z) : polynomial in' Z} by

(5.29)

the system of semi-norms (5.29). Then, Z,, is a closed algebra of 7.
But in general, Z,, + Z, is not a closed subalgebra in 7. We, however,
get Z;, NZ, = {0} by Theorem 5.1. ' -

Consider the algvebray (Ar,%). We denote by 3 the closure of the aigebfa
generated by Z and 1 in A,. Then 3 is a commutative Fréchet algebra,
and @ — Z a # 0 is invertible. Now, we get

Zry 2 Zny[(Zrg N Iry) C (Zry +Iny) [Iro =3 (5.30)
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where (Z;,NZ;,) denotes the closure of Z,,NZ,,. Thus, Z,, is contained
in 3 and 3 is viewed as a completion of Z,, by taking a weaker topology
than the previous one.

Proposition 5.1 3 is contained densely in the space of formal power
series ring C[[Z]] and also contains the space of C((Z)) of convergence
series in Z.

Proof. Since Z; does not clash, 3 is contained densely in C[[Z]]. Let D,
be the disk with the radius -71; with the boundary C,, with the center at
the origin. Let f(6) be a continuous function on C,,. By the completeness
of 3, we have

2m/ f(o )~1dg € 3. (5.31)

f is holomorphic on D, and extends continuously to C,. Conversely,
such function is written as the form. By moving n, we see that 3 contains
every function which converges on an appropriate disk.

Remark Thus, if 79 > 21— 1, and 71 < 2, the algebra (A;, %) collapses
to the trivial one, if we insert to Z a non-zero number a. This fact may
assert that 3 is a local ring.
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