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Constructing gradient flows for quasiconvex functionals
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Dedicated to Professor Norio Kikuchi on his sixtieth birthday

1 Introduction

Let © € R™ be a bounded domain with Lipschitz continuous boundary and let F' =
F(z,u,p) be a function defined on §2 X RY x R™. First of all we suppose that

(1.1) min{n, N} < 2.
Now let us consider the functional
(1.2) ’ J(u) = /QF(JU, u, Du)dz,
i ou . . L
where Du = (Dyu') = ( 8:1;0‘)' The equation of gradient flow for J is given by
ou’ 0
(1.3) 5 (t,z) = %{Fpa(m,u, Du(z))} + Fu(z,u, Du(z)) =0, =z €.
) - a=1

We impose the initial and the boundary conditions
(1.4) o w(0,z) = uo(z), z€Q,

(1.5) u(t,z) =w(z), z€T,

where T' is a subset of 9Q with H* }(I') > 0. We suppose that up and w belong to
W2(Q, RY) and that yup = yw on I (y is the trace operator to 9Q).

We say that a function u € L®((0,00); W2(Q)) N Urso WH2((0,T) x Q) is a weak
solution to (1.3)—(1.5) if u satisfies s—%i\r‘% u(t,z) = up(x) in L3(2), yu(t) = yw on I’ for

L'-a.e. t, and for any ¢ € C§°((0,00) x )
N oo ) ) n .
16 X[ [ {2t ) + 3 F (e Du)Daii(h,2)
=1 a=1
+Fi(z, u, Du)p'(t, z) }dzdt = 0.

If u is a weak solution to (1.3), then J(u(t)) is absolutely continuous and it holds that
dJ(u(t))/dt = —(us, u) 2y < 0 for L-a.e. t. Thus this defines a gradient flow for J.
We suppose the following facts for the function F.
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(Al) F e C¥Q x RY x R™) .

(A2) F is quasiconvez with respect to p, that is,

1 ‘
Z0) /D F(zo, w0, po + Vep(z))dz > F(x0, U0, Po)

for each bounded domain D C R", for each (zg,ug, o) € Q x RY x R™, and for
each p € Wy™(D; RY).

(A3) There exist positive constants y, A, and a constant y with 1 <y < 2* (the Sobolev
exponents for 2) such that

Apl? < F(z,u,p) < p(1+ |u]” + |p?)
\Eoly [Faply |1 Fuly [Foul < p(1+|ul~1 + |p])
[Pl < (1 +1u72), |Fpuls [Fppl < u,

(A4) There exists a positive constant m such that

5> 3 [ (o, D) D Do > m [ Dt

a,f=11,j=1
for any 4 € Wy (Q, RM), ¢ € W(}’Q(Q,RN).

Remark. If a quadratic function, F(p) = Zam papB, satisfies the strong Legendre-
Hadamard condition

Do a ' 2 vIEP? (v >0, €€ R, ne RY),
then we easily find (A4) holds with m = v. Thus, if F' has the form
F(z,u,p) = Fo(p) + G(z,u, p),

where Fy is a quadratic function which satisfies the strong Legendre-Hadamard condition
and where G satisfies |Gpp| < cv with ¢ < 1, then F satisfies (A4) with m = (1 — c)v.

FExample. Let n = N = 2. The function

F(p) = (p1)* + (p3)* + (%) + (p3)* + 3(pip3 — p3p?)
+e(y1+ ()t + (0h)* + (P2)* + (3)* + (ppd — pip?)2 — 1)

satisfies (A1)—(A4) if e is sufficiently small. However this is not convex.

We construct an approximate solution to (1.3)—(1.5) by the method of discretization
In time and minimizing variational functionals. In recent several years this approximat-
ing way is widely applied to constructmg weak solutions to nonlinear partial differential
equations.
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Let h be a positive number. A sequence {u;} in W2(Q, R") is constructed as follows:
we let 1 be as in (1.4) and for I > 1 we define u; as a minimizer of the functional

Fi(v) = %/Q'—U—:Zl_—lpdm +J(w) (Jisasin (1.2))

in the class w + WE2(Q, RY), where Wr?(Q,RY) = {u € WH*(Q,R");yu = 0 on I'}
(that is, among functions in W%(Q, RY) with yv = qw on I'). The existence of a
minimizer of F; is assured by the quasiconvexity of F' and (A3) (see, for example, [2,
Chapter 4, Theorem 2.9]). Note also that (A3) assures F; is Gateaux differentiable.
Approximate solutions u"(t, ) and @"(t,z) ((¢,z) € (0,00) X §) are defined as, for (I -
1)h <t < lh,

t—(—1)h Ih—t

; w(x) : u—1(x)

ul(t, x) =

and ;
(L, z) = w(z).

Then the following facts hold (see, for example, [10] or other references cited in [7]).

Proposition 1.1 We have

1) {1l w? || z20,00x) } 18 uniformly bounded with respect to h

2) {11 T" || Lo ((0,00)wr2(02)) } iS5 uniformly bounded with respect to h

3) {I|w" || Loo((0.00ywr2 } is uniformly bounded with respect to h

4) for any T > 0, {||v" lwrz(oryxqy} s uniformly bounded with respect to h.
Then there exist a function u such that, passing to a subsequence if necessary,

5) @' converges to u as h — 0 weakly star in L>((0, 00); W12(Q2))

6) for any T > 0, uP converges to u as h — 0 weakly in W((0,T) x Q))

7) uP converges to u as h — 0 strongly in L*((0,T) x )

8) " converges to u as h — 0 strongly in L*((0,T) x )

9) s- hmu( ) = ug in L?(Q).

Proposition 1.1 9) means that u satisfies (1.4) in a weak sense. Proposition 1.1 5) implies
that u satisfies (1.5) in a weak sense since @" —w € L*((0, c0); W22 () for each h (note
that Wp?() is a closed subspace of W2(Q)). Thus the problem is whether u satisfies
(1.6). Since w; is a minimizer of F;(v), dFi(u +ep)/de|.=q = 0 for any ¢ € Wa?(€), and
noting that, for (I — 1)h <t < h, ul(t, ) = (w(z) — w-1(x))/h, we have

(1.7) Z/ﬂ{(uf)’(x)apl(x) + i: F, ‘ix(w,Uh, DT Do'(z) + Fui(z,@", DT") " (z)}dz = 0

for any ¢ € Wg*(Q) and any t € U2o((£— 1)k, £h). This equality leads us to expect that
the limit u is a weak solution to (1.3)—(1.5). In fact our main theorem is

Theorem 1.2 (Main Theorem) wu is a weak solution to (1.3)=(1.5).
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It is the same as other nonlinear problems that the difficulty lies in showing the con-
vergence of nonlinear terms. If the functional J is convex, it can be obtained by the use
of monotonicity of grad J. But in this article we are assuming only quasiconvexity, and
thus it is necessary to introduce a different technique. In [7] a weak solution to a single
fourth order parabolic equation is obtained by the use of varifold convergence and Allard’s
rectifiability theorem, and this method is possibly available for many other equations in-
cluding our problem. However, since we are treating a vectorial case, the geometrical
observations should be more complicated. For example this method requires (1.1) in a
geometrical reason.

2 Varifold setting

Let U be an open set of R™™ (we are going to use the varifold theory for the case
that U = Q x RY), and let G = G(n + N, n) be the collection of all n-dimensional vector
subspaces of R"™. A Radon measure on U x G is said to be an n-varifold in U. Suppdse
that M is a countably n-rectifiable set in U (refer to [12, Chapter 3] for the definition and
basic properties of an n-rectifiable set) and that 0 is a 1oéally ‘H"-integrable function on
M, where H™ is the n-dimensional Hausdorff measure. An n-rectifiable varifold v(M, 6)
is a varifold in U, i.e. a Radon measure on U x GG, defined by a continuous linear functional
o = [po(z, T,M)0(2)dH™, where T, M denotes the approximate tangent space of M at
z. We call § a multiplicity function. When 6 = 1, it is simply denoted by v(M). Let V
be an n-varifold in U. The weight of V is defined by uy(B) = V(B x G) for each Borel
set B C U. Clearly pv is a Radon measure on U. ‘

Let I(p,n) be the set of multi-indices o = (ov,...,05) With1 <oy < --- < p < m.
For a € I(p,n) we set |a| = p. @ € I(n — p,n) denotes the complement of a € I(p,n)
in {1,2,...,n}. Let {e1,...,en,€1,...,n} be the standard orthonormal basis of R*™.
We use such notations as e, = €q; A -+ A €4,. For convenience we set I(0,n) = 0 and
eo = €9 = 1. Let A,, R™™ be the set of all n-vectors. For each ¢ € A, R*™ we write

(2.1) E= > PeqNeg.
lod+|8l=n
Let M be a map from R™ to A, R™" defined by

Mp)= Y o(a,@)Ms(p)ea A e,
jal+1Bl=n

where M? denotes the (@, 3) minors of p and MS(p) = 1. Let ¥; denote the image of
the map M and A; be the convex hull of ¥; in A, R™™ (see [6, II Section 1.2.1]). These
notations are based on [6]. We possibly use other notations without explanations, then
consult to [6].

Proposition 2.1 (Theorems 4 and 5 of [6, I Section 3.1.5.]) Let v be a function in
Whe(Q, RN, ¢ > 1, and suppose that |M(Dv(z))| € L}(Q).
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1) The graph G, is countably n-rectifiable.

2) HY(G,) = | IM(Dv(a))]ds.

3) For L™-a.e. z € Q, the approzimate tangent space T(y ()G exists, and furthermore
|M(Dv(z))|"*M(Dv(z)) is an n-vector which orients G,,.

Proposition 2.1 2) implies that for each Borel set C C Q
(2.2) H (" H{(C)NG,) = /C \M(Du(z))|dz,

where 7 is the projection U 3 z = (z,y) — z € Q. Especially, if C C Q is an L™
null set, then 7=1(C') N G, is an H" null set. Hence Proposition 2.1 3) holds for H"-a.e.
z = (z,v(z)) € G,.

Suppose that U = Q x R, Let S € G(n+ N,n) and let ¢ = £(S) be the n-vector
which orients S, that is, £(S) = 7 A --- A 7, for an orthonormal basis {7, -+, 7.} of
S. Let £%(S) denote the af-element of £(S) in the expression as in (2.1). For each
S € G there are two orientations. We choose the orientation so that £9°(S) > 0. Then
the orientation is uniquely determined if £€%°(S) > 0. Further we easily obtain that £0°
is continuous on G and £*? (|a| + |8 = n, B8 # 0) is continuous in G \ irr(G), where
irr(G) = {S € G;£%(S) = 0}. Proposition 2.1 shows £%(T,G,) = |M(Dv(x(z)))| and it
is positive for H™-a.e. z € G,. Further we have, for H"-a.e. z € G,,

(2.3) §(T.Gy) = |M(Dv(n(2)))| " M(Dv(n(2)))

In particular we see that Du(z) = ((—=1)""*€%(T,G,)/E®(T,G,)). By (2.2) we have, for
each measurable function g on 2,

(2.4) | 9@IMDua)ldz = [ gln(2))dm"(2)

v

By the use of (2.4) we have the following proposition.

Proposition 2.2 Let v be a function in WH4(Q, RY), ¢ > 1, and suppose that
|M(Du(z))| € LL.(Q). Then there exists a rectifiable varifold V = v(G,) and satisfies

/f:w Du(z dx—/ f(z 500 )500( )dV(z, 5)

for each nonnegative continuous function f on £ x RN x R™ where Q¢ = ((—1)""%€%).

Proof. By Proposition 2.1 1) the set G,, is countably h—rectiﬁable, and by 2) we have
HY G, N x RY) = / |M(Dv(z))|dx < oo for each Q' CC . This shows the function

0 =1 is locally ‘H"™ 1ntegrable on G,. Hence a rectifiable varifold V = v(G,, 1) = v(G,)
is defined.
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When spt f is compact, f(z, g%%)gﬁ"w) is continuous in U x G. Thus we have by
the definition of n-rectifiable varifold
Qe(s) £00( Qe(r:6.) |00
= av(z = T,G,)dH"™
e e E(S) /f % e TG (2)

By (2.3) the right hand side of above coincides with [ |M(Du(w(2))|™! f(z, Dv(r(2)))dH™.
Applying (2.4) to the case that g(z) = |M(Dv(x))|* f(z,v(z), Dv(n(z))), we obtain the
conclusion for a function f with a compact support. ' ' ‘

Suppose that f is a general nonnegative continuous function. Then, a,pprdximating f
with an increasing sequence of functions in C(Q x RN x R™), we obtain the conclusion
by the monotone convergence theorem. Q.E.D.

Suppose that u € L*((0,00); WY2(Q)) N Urso WH2((0,T) x Q) is a weak solution to
(1.3)-(1.5) and satisfies |[M(Du(t,z))| € LL.((0,T) x Q). By Proposition 2.1 1) and
Proposition 2.2 there is a rectifiable varifold v(Gy,)) in U for £L'-a.e. t. By (1.6) and
Proposition 2.2 we have, for each 9(t) € C§°(0,00) and $(z) = d(z,y) € C(U) (we use
notations z and z = (z,y) for variables in Q and U = Q x R", respectively),

25) 3 [TV [t 2)6' @ ut 2ot [ 15 By 5 )(aza( E0(S)+

U><G 500( )
08 1y Q 5
Zayj £9(8))+Fus(z, ong“))sm( )¢'(2)]dVi(z, S)}dt = 0,

where V; = v(Gy,)). Conversely suppose that a function v and a general varifold V; with
a parameter ¢t € (0, 00) satisfy (2.5). Then u is a weak solution to (1.3) if

(2.6) Vi = v(Gyy,y) for Ll-ae. t.

3 Proof of the Main Theorem (the former half)

Let u"(t,z) and w"(t, z) be approximate solutions constructed in Section 1. Up to this
step we do not require condition (A4). By the use of (A4) we more have the following
fact. But this proposition is just a result for the second derivatives with respect to only
z variables, and in general we cannot expect the strong convergence of Dw". Thus this
does not directly imply the convergence of the nonlinear terms.

Proposition 3.1 For any Q' CC Q and for any T > 0,

{|| Do Dgu" |l 2(0myxry; @, 6= 1,2, - -+, n}

is uniformly bounded with respect to h.
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Proof. The proof is carried out by the use of difference quotient method (refer to the
proof of Theorem 1.1 of [5, Chapter II]). In this proof we omit the dependence of ¢ in
each functions. Let {ey,...,e,} be the standard basis of R" and let ¢ be a function with
compact support in Q. Let &k be a sufficiently small positive number depending on the
support of ¢. We insert ¢(z — ke;) in (1.7) instead of p(z), make the change of variables
y =z — ke, in the second and third terms, and rewrite y as x again. Then we have

(3.1) Z/{(ut “(z—kes) +ZFZ (z+kes, T (z+ke,), DT (x+ke,)) Do (z)

a=1

+Fyi(z+kes, 0 (x+kes), DT (z+ke,)) @' (z) }dz = 0.

We subtract (1.7) from (3.1) and divide it by k. Then we obtain

(3"2) o Z:{ Q(u?)i(af)DsQOi(x—Tkes)
+ D [Forps () D (2) + 3 Fusgs (- )& )j($+ke;) ~ @) i)

' ) (x + key) — (Th) (x .
+ ZZ/Qsz,pg<---> Dy PR Z TP i

N TV (2 + ke.) — (G (z) .
b B ) @) + 3 B IR TV s

P Yy [E. Dy )J(w+ke}z> = @PE)) 5y vdatr 0

where
() = (z + Thkes, 70" (x + ke,) + (1 — 7)@"(2), DT (z + ke,) + (1 — 7) D (z)).

Let Bg be a ball with radius R. We take n € C§°(Bg) such that Bsg CC Q,0 <7 <1,
n =1 on Bgys, and |Dn| < C/R. Now we insert in (3.2)

ot _ —h
o(z) = (x—}—kel:) u(a:)n(m)2

Note that, by the change of variables x — x — Tke,, we have

zz/

ij=1la,f=1
(2 + kes) — (@) (@) w")(z + kes) — (a")'(2)
k

Dﬁ(w)( .
)iz — 7T €s €s — (@ (z -7 €s

4,j=1la,f=1

n(2)) D

(@) (x — Tkes + kes) — (@) (z — Tke,)

Da( k

n(x — Tkes))dx,
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where (- -) has been changed to
(z, 70" (x —Tkes+ke,) + (1 —7)0"(z — Tke,), TDT" (x — Thes +ke,) + (1 —7) DT (z — Tke,)).
Then by the use of (A4)

=h(. _amgh(y —
I> m/ [D(u (z — Tkes + kelz) w(z — Tkes)
Q

n(z — Tkes))|*dz.

Returning the variables z — 7kes — z, we obtain by (3.2) and (A3)

' (z+kes) — u(z), o 2 s 9
/BR/2|D( (”“k) ())|dx<CRn{/|ut dm+/| ””+kek) T 243,

This implies for any 7' > 0

//BR/2|DDU |dxdt<CRn{//|ut |dxdt+// DT (x) [2dudt}.

It follows from Proposition 1.1 2), 4) that the right hand side of the above inequality is
less than a constant which is independent of h. This completes the proof. Q.E.D.

In this article p’ and p* denote the dual and the Sobolev exponents for p, respectively.

Corollary 3.2 For any ) CC Q) and for any T > 0 we have

1) {l| Du" || Lso(o,ryxe) } s uniformly bounded with 'r’espect to h, where sy = 2/ (27/2) +
2—4/n+2 fn>3,=4ifn=1,2
2) {7 || L2+ (0.ryxs)} 1 uniformly bounded with respect to h.

Proof. By Holder’s inequality
T T
/ / D@t dzdt = / | Dt 2| D0~ 2dzdt
0 Qf 0 Qf
< /T(/ IDﬂhIQ*dl')Q/Q*(/ |D—hi 30"2)(2*/2)'da:)l/@*/”'dt.
0o Jar v

Since sg is defined so that (so — 2)(2*/2)" = 2, we have

P . __hn2/(2%/2) _ .
(3.3) / / |D@"|*odzdt <|| Du"||2/5 (é%) Lyl DB 320 12 ) -

It follows from Sobolev’s imbedding theorem and Proposition 3.1 that || DT" || 2o )2 (@)
is uniformly bounded with respect to h. Hence the right hand side of (3.3) is uniformly
bounded by Proposition 1.1 2).

Assertion 2) immediately follows from Assertion 1) and Sobolev’s imbedding theorem
(note that we can obtain higher integrability than 2*). Q.E.D.

Proposition 3.3 For any Q' CC Q and for any T > 0 there exists go > 1 such that
{|| M(DT") || Lo 0,myxy } 1 uniformly bounded with respect to h.



100

Proof. By (1.1) we have s > min{n, N}. Hence the conclusion immediately follows
from Corollary 3.2. Q.E.D.

Corollary 3.2 and Proposition 3.3 imply that there exists a constant Ko = Ko(T, )
which is independent of h such that

(3.4) | DT || oo 0.y <y, 1T Lo 0 mywarys | M (DT || ao 0,20 < Ko

In particular we have, for L'-a.e. t, |M(Du"(t,-))| € LE,(Q). Thus by Proposition 2.2
there exists a one parameter family of rectifiable varifolds

V= V(Gars,)-

Further by Proposition 2.2 again we can rewrite (1.7) as (2.5): for each ¢(t) € C§°(0, c0)
and ¢(z) € C§°(U)

N oo
OB o A (O A L CR A ORI
= Qf (S) Y aqsl n—j¢~aj
b o3 Bl BN GE () + + 3 5(CE(S)
+ Falz, 500(53)5"%8) ¢'(2)|dV;"(=, S)}dt = 0.

By (3.4) and Hélder’s inequality we have (/OT(/Q, | M( Dﬂh(t :10))[’dac)qf’dt)l/q0 < K,
where K = K(T, ) = L)% Ko(T, ). Noting that/ / pyp = H*(Gang, )N
U'), where U’ = Q0 x R", we have by Proposition 2.1 2)

(36) (LT[ ole8)dvt e, 9)mde < Ksup ol

for any ¢(2,5) € C3(U x G) with spt ¢ C ' x RY x G and K = K(T, Q).
The following proposition can be obtained by the use of (3.6) in the same way as in the
proof of Proposition 4.3 of [4].

Proposition 3.4 There ezists a subsequence of {V;*} (still denoted by {V,*}) and a one
parameter family of varifolds V; in U, fort € (0,00), such that, for each (t) € L%(0,T)
and (2, 5) € C3(U x G),

T

lim [ 900) [ ol )4V, )t = /Oqu(t) [ olz8)avi(z, S)dt

h—0Jo %

Lemma 3.5 Let gy and 7y be as in Proposition 3.3 and (A3), respectively, and suppose
that 1 < q < go- Then for any @ CC Q, {1+ |u"(t,z)|” +|Du"(t, x)|? + | M (DT (t, z))|7}
is equiintegrable in (0,T) x Q' with respect to h.
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Proof. Let s; = (2* /), s2 = (s0/2), s3 = (go/q)’. Since v < 2%, 2 < 3¢, and q < qp,
we have 1 < 51, sg, s3 < co. By Holder’s inequality and Corollary 3.2 we have for each
subset £ C (0,T) x & '

// 1+ [@"(t, )" + |DT(t, ) |> + |M(Dw"(t, ))|9)dzdt

< En—!—l( / 151d1‘dt)1/31 H h“

((0,T)x Q)

//;} 182d$dt)1/s2 I[DﬂhHLSO((O,T)xQ’) +(//E 153dxdt)1/33 ”M(Dﬂ—h) Il%qo((O,T)XQ’)
< LYYE) + LY E)/RKY + LN (B2 K + LM (E) YK,

which implies the conclusion. ' Q.E.D.

Proposition 3.6 Let f(z,p) be a continuous function on U x R™ and let q be as in
Lemma 3.5. Suppose that {z; f(z,y,p) # 0 for some (y,p)} C ' for a set Q' CC Q and
that for each z = (x,y) € U and each p € R™

(3.7) @) < pm(+y + [plP + M (p)]%)

holds with a constant py. Let T be any positive number. Then, if {V;*} and V; are as in
Proposition 3.4, for each (t) € L*(0,T) we have

T .
jim [0 (e,

o T e g0 )

) T : Q 00
DE(S)AV (= S)dt= [ wv)] f 50;‘(‘3))% (S)dVi(z, 5)dt

Proof. Let ¢ be an increasing continuous function on R with «(r) =1 for r > 2, ¢t =0
for r < 1, and we put £°(5) = £°(5):(6%(5)/e) and fe(2,p) = f(2,p)(1 — tlee(y, p))),
where e(y,p) = 1+ |y|" + [p|> + M (p)?. Note that £9(S) = £%9°(3) for £9°(S) > 2, f. = f
for e(y,p) < et fo = 0 for e(y,p) > 2¢~1. Thus f.(z,p)E%®(S) converges to f(z,p)E%(S)
for each (z,S) € U x G. Further we have |f.(z,p)| < 2ue™! by (3.7). For simplicity, we
omit the dependence on S of Qg, €%, and £%. Now

58 [ ww] g())é““dvh( Syt = [ 00) [ 1 SV il
< [ [ It e - @Oldv;h(z,S)dt
+[ 1[I @ (2, £00)|§°°dvh<z S)dt
It follows from Proposition 2.2 that

B9 [ WO e IR = Xl S)a
= O 1 G = o€ )V, )
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IN

/OT |%(t)] /Q, | fo(z, @t ), D¢, z))||1 — o(1/e| M (Da(t, x))|)|dzdt
[[L WOl 4, 2), D (,2) s

il llmoay [ [ (U4 [, )7 + DTt ) + | M (DT (8, 2) ) o,

IN

VAN

where E. = {(t,z); |M(Du"(t,z))| > (2¢)7'}N(0, T) x . It also follows from Proposition
2.2 that

(3.10) /|¢ [ 1t 500 j gzns‘mdvh(z )t
Q Qe )10
= /0 Wl [ | (el ee(z/,—gf))nfmdvt (2,8)dt
< [T w1 [ 17, 2), DUt )] [deela(t,2), D1, ) dedt

<[] WOl (1, 2), DT (1, 2))|dede

i 19l =) // (1+ [@ (2 + DT (2, 2)| + | M (D" (t,2)) ")z,

IN

where F. = {(t,z); e(u(t, z), Du"(t,z)) > e} N (0,T) x €. By Chebyshev’s inequality
we see that L7Y(E,) < (2Kge)® and L™ (F,) < Kie, where K is as in (3.4) and

(3.11) Ky =TLYY) + (TLYQL)) KG + (TLYQ)) V2 KG + (TLM(Q) = K§

with s1, $2, s3 as in the proof of Lemma 3.5. By (3.8), (3.9), (3.10), and Lemma 3.5 we
have that, as £— 0,

/ / iz 600 )e0dVh (2, §)dt — / o 600),500@1\/’1@ S)dt

uniformly with respect to A.
On the other hand, since f.(z, Qg) 0 ¢ CO(U X G) Proposition 3.4 implies

500 €
(3.12) hm/¢ / iz gf) )EQGVR (2, S)dt = /¢ / (2 500 €YD 4V, (2, S)dt.
By Proposition 2.2, (3.4) and (3.7) we have
| / / 500 )ELIVR (2, S)dt| < / (t)| / 500 £)(€%0dV (2, S)d

< [ WO [+ D)+ D6, )P +MDEE, 2)I)dode < Ko [ (o,

where K7 is as in (3.11). This and (3.12) imply

l/ /U éoo) ?Oth(z S)dt| < Ky || ] eocor) -
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Without loss of generality we may assume that f and i are nonnegative, and then we have
P(t) fo(2,p)EPL < ¥(t) fur (2, p)ER whenever € > £/. Hence by the monotone convergence
theorem we have, as € — 0,

T Qe
/O O R ACS Eoo)goodvt S)dt — / / £z, ) €604V (2, S)dt

Thus we have the conclusion by the use of a standard fact in iterated limits. Q.E.D.

Proposition 3.7 The function u of Proposition 1.1 and V; of Proposition 3.4 satisfy
(2.5).

Proof. Possibly passing to further subsequences, we have by Proposition 1.1 5) and
6) that the first integral of (3.5) converges to that of (2.5) as h — 0. Since, in (3.5),
spt ¢ C (0,7 for some T, we apply Proposition 3.6 to the case that

N n
- 313 Byl

Then the second integral of (3.5) converges to that of (2.5) as h — 0. Q.E.D.

e+ > SO+ Pl p)d'(2)

4 Proof of the Main Theorem (the latter half)

Proposition 3.7 implies that Theorem 1.2 is equivalent to (2.6). There are three steps
in proving (2.6):

Step 1. py, and H"LGy,) are mutually absolutely continuous for Ll-a.e. t € (0,00).
(This step implies in particular that spt py, = spt H"LGy,.)-)

Step 2. V; is an n-rectifiable varifold v(Gy,, 0:) for L'-a.e. t € (0,00).

Step 3. 0;(2) =1 for H™-a.e. z € Gy, for L1-a.e. t.

Lemma 4.1 Put C = {(fap)iaj+igi=n € COEOVP™ ;1T a1 ipizn fap(2)? < 1 for 7 €
Q}, where p(n+N,n) = (n+N)!/nIN!. For each € L*(0,T), ¢ € CQ(U), and (fap) € C
we have '

/OT"gb(t)/Qd)(x,u(t,x)) Z Fap(z) M (Du(t 2))dzdt

le|+|Bl=n

= [0 [0 T fapl)eB(S)aVitz, S)at

o +18l=n

Proof. Tt follows from Proposition 1.1 5), 8), Proposition 3.1, and the Piola identities
that ME2(Du"(t, z)) converges to M2(Du"(t,z)) weakly in L®((0,T) x ). Thus, for any
P € L2(0,T),
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@1) lim [ 900 [ $eT00) Y fopla) ME(DT (1, x)dact

le|+|8]=n

= [(90) [ e ut,) S faslx) ME(Du(t, 2))doal

le]+[Bl=n

On the other hand, since Proposition 2.2 implies

| @ 02) S fasle) ME(DT(t,2))d

led+18|=n

L/‘f‘:

)E%(S)dV (2, S),

[ Y fasle)

UxG ol +Bl=n £%(s

we have by Proposition 3.6

42) Jim [ 60 [ T (00) S fuala) MEDT 1, 2))ddt

lal+18|=n
g £=8(5)
= [Tve [ G T fuola) g SNV Sy
Thus the conclusion follows from (4.1) and (4.2). Q.E.D.

When f5, =1 on 7(spt ¢) and fos =0 (|| # 0) in Lemma 4.1, we have

@) [0 [ st = [ 90) [ s S
Proof of Step 1. By (2.4) we have
9@ ult,2))de = [ 9(z)1M(Du(r(2)| 7 dH LG ).

By Lemma 38.4 of [12] there is a probability Radon measure n‘vj) for py,-a.e. z € U such
that

[ Bz 9) = [ ([ Bz S)dn? (9)duv.
Then we have by (4.3) that, for L'-a.e. ¢ € (0,00),
|, $@IM DU dH LG = [ () [ €(S)an? (5

for each ¢ € CJ(U). This means, for L!-a.e. ¢ € (0, 00),

(44) [ 1M DU LGue) = [ ([ €2(S)dn) (S))dmy,
for each Borel'set A C U. '

When a Borel set A satisfies uy,(A) = 0, we have /A |M(Du(r(2))| d(H L Grgsy) = 0
by (4.4), which implies (H"LGuy,))(A) = 0. Thus H"LGy, is absolutely continuous
with respect to uy, for Ll-a.e. t € (0,00).

Conversely, when (H"LGy4,)(A) = 0, we have /AXGfﬁo(S)dV;(z, S) = 0 by (4.4).
Then V,(A x (G \ irr(G))) = 0 for L'-a.e. ¢ € (0,00). On the other hand, noting
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= |M(D(@"(t,z))|* and M(Du"(t,z)) € L¥([0,00) x ), we have by Proposition 3.6
that, for any positive number 7', for each ¢ € L*®(0,T) and ¢ € C(U), and 1 < ¢ < qo,

hm/w /(b z, @ (t, )| M(Da"(t, z) qua:dt—/zp /UXG (z)EﬁO(S)—(q_l)d%(z, S)dt.
By (3.4) the left hand side of the above is less than Ky || % ||zeo(o,r) sup |¢|. This implies
V(U x irr(G)) = 0 for L'-a.e. t € (0,00). Thus we have uy,(A) = Vi(A x G) =0 for L-
a.e. t € (0,00). Then py, is absolutely continuous with respect to H"LG,,) for Ll-a.e.
t € (0,00). Q.E.D.

In our theory we need Allard’s rectifiability theorem ([1]). We define for S € G(n+N,n)
and X = (X1,..., X"V} € C}(U; R*™Y)

" 0X
(4.5) - divgX = > vé 57

4,j=1

The first variation 8V for an n-varifold V on U is given by
(4.6) SV (X) = /U _divsX(2)aV (s, S).

We say that V' has locally bounded first variation in U if for each W CC U and each
X € C}(U; R*™N) with sptX C W there exists a constant C > 0 such that |6V (X)| <
Csup | X|. Let ©*(uy, 2), ©(uy, 2) denote the upper and lower densities of uy at z € U,
respectively. If ©*"(uy, z) = O7(pv, 2), this common value is'denoted by ©™(uv, 2) and
it is called the n-dimensional density of py at z. Now we assert Allard’s Rectifiability
Theorem (refer to, for example, [12, Theorem 42.4]).

Allard’s Rectifiability Theorem Suppose that V' has locally bounded first variation
in U and ©™(pv, z) > 0 for py-a.e. z € U. Then V is n-rectifiable.

Allard’s Rectifiability Theorem implies that Step 2 immediately follows if we obtain the
following two facts.

Lemma 4.2 V; has locally finite first variation for L'-a.e. t € (0, oo)
Lemma 4.3 0"(uy,,2) > 1 for py,-a.e. z € U, for L-a.e. t € (0,00).

Proof of Lemma 4.2. Let T be any positive number and let W be any open set in U
such that € := (W) CC Q. Suppose that X € C}(U; R™") satisfies spt X C W. Note
that by (4.6)
(6VP)(X) = / ) divs XdVP = / d1vMXdH”

U x

where M =T, h(tm))G k() Then we have by (4.5)
n+N 6X'I, n+N y aXz
6V (X / Y piisrd —/ S pl S | M (D) | da.

Pyv—57
J
“1_71 =1 Oz




106

). S AL A N[ () LN :
Since 57 = EE(X (z,u") — Z 3 —~(z,q") oy ) (j =1,2,...,n), it holds that

n+N i n+N —h)k

A S O = SIS X )+ o) )3 g )

2,7=1 =1 j=1

Now noting that each vector vy, := {(— D(@")¥, &) is normal to M (k = 1,2,..., N), where
{e1,...en} is the standard basis of RY, we find that the second term of (4.7) vanishes

and by integration by parts

n+N n

(4.8) EVHX) =-S % / P9 M (DE")|) X (z, 7" da.

=1 j=
Moreover by a straight forward calculus we have
i 1 ij _
Pl = W 3 S O sME(DT" YM(Da"),

la+[B|=N [v|+[6|=N

where s's are constants. We have by (1.1) and Proposition 3.1 that, changing go > 1

aﬁ'y
if necessary, {|| DsM(DW")||Le0(0.r)x)} is uniformly bounded with respect to h. Hence,

for Y € C1((0,00) x U; R*™") with spt Y C (0,T) x W, we have

|/ (VM(Y)dt] < C3 || DaM(DT) || sso((oimysry Sup Y| < Crwsup [V,

s=1
where Cr is a constant independent of A. This inequality implies that the linear func-

tional o0
CL((0,00) x U; R*N) 5 Y — / (6VM(Y)dt € R
0

has a unique extension to a functional Ly on C3((0,00) x U; R*") and that |LpY| <
Cwrsup|Y|. By the Banach-Alaoglu theorem and the Banach-Steinhaus theorem there

exists a subsequence (still denoted by {Ls}) and a functional L such that L,Y converges
to LY for each Y € C9((0,00) x U; R*") and for Y with spt Y C (0,T) x W

(4.9) ILY| < Crwsup|Y].

By the Riesz representation theorem there are a Radon measure v on (0,00) X U and a
v measurable R™" valued function v with |v| = 1, v-a.e., such that

LY = v-Ydy.
(0,00)xU

Inequality (4.9) implies

v((0,T) x W) = sup{ o) A Ydv;Y € C3((0,T) x W; R*™), |Y| <1} < Crw-
0,T)x

We define p(A) = v(A x W) for a Borel set A C (0,T). It is well-known that for p-a.e.
t € (0,T) there exists a probability Radon measure my on W such that dv = dmy(2)dp(t)
(refer to [3, Chapter 1, Theorem 10]). Then for Y € C3((0,T) x W; R )

(4.10) Ly = /0 ’ /Wv-Ydmtdp.
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Let X be a vector field in C}(U; R*Y). It follows from (4.5) that divgX(2) is contin-
uous with respect to (2,5) € U x G. Noting (4.6), we have by Proposition 3.4 that for
each T > 0 and ¢ € L%(0,T)

1) lim /0 ) zp(t)avth(X)di - /0 " B()VA(X)dt.

Thus, since Ly(¢¥X) = /Oo Y(t)§VH(X)dt and }llirr(l) LY = LY, we have for ¢ € C2(0, 00)
. 0 -

and X € C}(U; R*™)

(4.12) LX) = /0 B(£)6Vi(X ) dt.

For X with spt X C W and for ¢ with spt ¢ C (0,T) we have by (4.10) and (4.12) that

(4.13) /0 " w(0)8Vi(X)dt = /0 ) /Wv . Xdmydp.

On the other hand, since {|| DsM(Du") || Lao((0,7)x5) } 18 uniformly bounded with respect
to h, we obtain that {D;(p%|M(D@")|)} is uniformly bounded in L%((0,T) x Q') with
respect to h. Thus, it follows from (4.8) and (4.11) that there exists a constant Cy, y, such
that for each 1) € L%(0,T)

T .
(4.14) | [ #08ViX)dt] < Ch 14l 57y 5P 1X1.

Note that m,(W) = sup{/wv - Xdmy; X € CO(W; R™Y), |X| < 1}. Since m; is a

probability measure,
(4.15) sup{/W'U  Xdmi; X € CYW; RY), |X] <1} =1
Combining (4.13), (4.14), and (4.15), we have

[} $(0d000)] < Chaw 1901,

T
Thus the functional ¥ / P(t)dp(t) is bounded in L%(0,T). Then there exists a
0

T T .
function § € L%(0,T) such that /0 b()dp(t) = /0 S(O)p(t)dt for any ¥ € L%(0,T).

Putting m; = p(t)my, we have by (4.13) that

/OTw(t)M(X)dt :/OT¢(t) /W'U'Xdﬁztdt.

Thus for L'-ae. t € (0,T) ,
Vi(X) :/ v Xdimy.
w

Since T is arbitrary, we have the conclusion. Q.E.D.

Proof of Lemma 4.3. Let us fix a point 2 in U and a positive number p and let {¢;}
be a sequence of functions in CJ(U) such that ¢; > 0, ¢; = 1 on B,(20), where B,(20)
denotes the open ball with center at zy and radius p, and spt ¢; C B(;41,(20). Then

J
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(4.16) (H™LGlue)(Bo(20)) < / $;(2)d(H"LGuugs.)-
Note that
(4.17) /U &3()AH Cui) = [ &5(w,ult, 2)|M(Du(t, 2))|da
= supf A¢j(x,u<t,m>>|a|%_nfaﬂ<> 2(Dult,)))dz; (fos) € C),

where C is as in Lemma 4.1. Let T be any positive number. Suppose that % € L%(0,T)
is nonnegative. Then, since | ¥4 1=n fas(€)E%P(S)| < 1 for (fap)ia+isi=n € C, We have
by Lemma 4.1

T T
(4.18) L@ [ gi(2)dLGuadt < [ i /U 9(2)dpv; dt.
It follows from (4.16) and (4.18) that (H"LGu.)(B, / 6,(2)duy; for Ll-ace.
€ (0,00). By making j — oo we obtain
(4.19) (H"LGut,))(Bo(20)) < i (By(20))

for L-a.e. t € (0,00).

Note that the null set {t € (0, 00); (4.19) does not hold at ¢} depends on zy and p. Let
Z and @) be countable dense subsets in U and in (0, po) for some py > 0, respectively.
Then there exists a null set Ny C (0, 00) such that, for each t € (0,00) \ N7, (4.19) holds
whenever zy € Z and p € Q. Since Z and  are dense, we have

(4.20) (H"LGut,)(Bo(2)) < uwi(B,(2))

for each z € U, for each p € (0, p0), and for each t € (0,00) \ N;. By Proposition 1.1
5), Proposition 2.1 1), and Proposition 3.3, Gy,) is n-rectifiable for £!-a.e. t. Then
we may suppose that, for each t € (0,00) \ N1, Gy, is n-rectifiable. For such a ¢, for
H'LGy,y-ae. z€ U,

iy (LG (By(2)) _
p—0 WrP™
where wy, is the volume of the n-dimensional unit ball. Thus we have OF(uy;,2) > 1 for
H™ LGu(t ya.e z €U, for Llae te€ (0,00). Step 1 implies that this holds for uy,-a.e.
2z €U, for Ll-a.e. t. '
It follows from Lemma 40.5 of [12] that Lemma 4.2 implies the existence of the density

O"(uy,;, 2) at py,-a.e. z € U, for Ll-a.e. t. Thus the conclusion holds. Q.E.D.

Finally we show Step 3, the end of the proof of which is at the same time the end of
the proof of Theorem 1.2.

Proof of Step 3. By the definition of an n-rectifiable varifold we have, for L!-a.e.
€ (0, 00),

(4.21) /U XG(,b(z)&BO(‘S)th(z, 9) = /U $(2)E (T, G )0:(2)A(H L Crugs ).
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The right hand side of (4.21) coincides with /Q¢(a:,u(t,w))6t(x,u(t, z))dz by (2.3) and
(2.4). On the other hand we have by (4.3) that for £1-a.e. t € (0,00) the left hand side
of (4.21) coincides with /Q ¢(z, u(t, z))dz. Then the conclusion follows. Q.E.D.
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