goooboooobgon
11820 20010 73-79 73

Fenchel's problem and some examples of algebraic varieties

BEBER AR F 55— Ryoichi Ueno)

This talk is concerned with a topic in the theory of brached coverings, called "Fencel's
problem" in Namba [9] : the problem on the existence of finite Galois coverings of complex
manifolds with given branch divisors. This problem originates in Fenchel's conjecture on
compact Riemann surfaces, proved by Bundgaard-Nielsen [2], Fox [3] early in 1950's. 1
shall give some higher dimensional analogues of it, where compact Riemann surfaces are
replaced by the complex projective plane, products of compact Riemann surfaces, or complex
tori. I shall then mention some examples of projective manifolds with ample canonical bundles
obtained as an application of our results.

1. First we recall some basic definitions and facts about finite Galois coverings in the category
of complex-analytic spaces. Let M be a connected complex manifold. A finite Galois covering
of M is a finite, surjective, proper holomorphic mapping f: X—M from an irreducible, normal,
complex space X onto M, such that the covering transformation group of f acts transitively on
each fibre of £.  Here, the covering transformation group means the group of biholomorphic
mappings /t: X—X such that fox =f. When f: X—M is a finite Galois covering, we call it
frequently the Galois group of £. A finite Galois covering is called an abelian (resp. cyclic,
solvable) covering if its Galois group is abelian (resp. cyclic, solvable).

Let D be an irreducible hypersurface of a connected complex manifold M and f: X—M
a finite Galois covering. The ramification index of f along D is defined as follows. Take a
nonsingular point p of D. Then every point g€ f7(p) is nonsingular point of both X and (D).
Moreover, if W is a sufficiently small connected open neighbourhood of p with a coordinate
system (W, ..., W ) such that p=(0,..., 0) and DN W={ (w,...,w, ) € W | w,, =0}, then
there is a coordinate system (Zy,...,z, ) in the connected component U C £ (W) with g€ U
and a positive integer e such that g=(0,...,0) and

£:(z500520) EUR (W, W) =(24,0005 Zyys z2)e w.
We note that eis determined only by D, independently of the choice of pand U. We call e the
ramification index of f along D. If e=1, f is said to be unramified along D.

Now let Dy,..., Dy, be k distinct irreducible hypersurfaces on M.  For a positive divisor
D =¢(Dy + -+ e, D, with ¢j ;2é1§j =k), a finite Galois covering f: X—M is said to
branch at D, if foreach j (1=j=k), the ramification index of f along Dl-is ¢jand f
unramified along any irreducible hypersurface other than Dy ,..., Dy, .

Take a reference point * in M \(Dy U---UDn). We denote by 7; (1=j=k) alasso
round Dj: the homotopy class of a closed path in M \\(D; U --- U D, ) which starts from *,
moves to a point near the nonsingular locus of Dy, turns once round D, in the positive direction,
and return to * (Figure 1).
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The following is fundamental.
Theorem (cf. Namba [9]).  There is an one-to-one correspondence between the set of finte
Galois coverings f: X—M branching at D =¢y Dy + -+ + ¢, Dy, and the set of normal subgroups
N of the fundamental group 7ry(M \(DyU---U Dy ), * ) with finite indices such that the order
of the image of 7 in the quotient group © (M \(D;U--UDy, ), *)/N is ej (1 =j =k).

The quotient group 77y(M \(D;U---UDy, ), %)/ N is nothing but the Galois group of £.

2. We now start a discussion on Fenchel's problem. Let M be a compact Riemann surface
of genus g and py,..., p, distinct points on M. For integers ¢; =2 (1=j = k), we consider the
positive divisor D =¢ py -+ ¢,p,. Fenchel's conjecture, proved by Bundgaard-Nielsen [2],
Fox [3], asserts that  there is a finite Galois covering f : X—M branching at D if and only if one
of the following conditions is satistied:

Q) g=1,

(i) g=0 and k=3,

(iii) g=0, k=2 and ¢, =¢, .
(The case where g=1 is due to Bundgaar-Nielsen; The case where g=0 is due to Fox.)

As a generalization to higher dimension, we consider the following problem raised in the
book of Namba [9], called Fenchel's problem : Given a connected complex manifold M and
distinct irreducible hypersurfaces Dy,..., Dy on M, we consider the positive divisor D =e,;Dy +
e Dy (e‘- =2, 1=j =<k ). Then, give a condition on €fseeesCh for the existence of a finite
Galois covering f: X—M branching at D .

In group-theoretic terms, as we explained in section 1, the existence of such a covering is
equivalent to that of a finite quotient group of 7t4(M \(Dy U---U Dy ), *) such that each order
of the image of 7; is e; =2 (1=j=k). (*:areference point, 7; : lassos round D; .)

When M is a compact Riemann surface of genus g, 7ty(M \{ Py s+-+> P }> *) is isomorphic
to

(1) ( a’: B' EARAR] a3, 697 Tf’-"a Tk l [ala B’ ]"'[(13 H Bg ] TI ot Tk :1 > ’ lf g%l,

(ll) (T" 9eees Tk | Tf o Tk =1 > ’ if g:(—):
where [ , ] being the commutator.

Bunggaard-Nielsen, or Fox proved the assertion by finding out adroitly finite quotients of
T (M N\Aps,---, Pp}> ¥ ) satisfying the requirements. However, when M is of higher dimension,
T (M \(DyU--UDy ), *) is in general too complicated to handle.

(Remark 1) Bundgaard-Nilelsen's proof implies that, in the case g=1, f can be so chosen as to
be solvable.

(Remark 2) Their proof does not make it clear which finite groups occur as the quotients, or the
Galois groups. Recently Matsuno [7], improving their proof, gave a method to compute the Galois
groups effectively. _

(Remark 3) In some special cases, even if M is of higer dimension, the fundamental groups can
be dealt with. See Matsuno's report in this volume.

3. By a combination of Fox's result [3] and a technique on linear pencils,Kato [6], Namba [9],
evading the difficulty of the fundamental groups in higher dimension, give some solutions for
Fenchel's problem, for example, in the following cases:
« M the complex projective plane P3
Dy,..., D,: lines such that there is at least one point of multiplicity =3 on each line (Figure 2),

2
- M. P,
Dy, ..., D: conics such that for each D; there is another D touching at 2 distinct points
(Figure 3),
- M: P7:

Dy,..., Dy: 3 lines circumscribing a conic (Figure 4).
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In fact, the following theorems are proved. 2
Theorem ([6]). Let Dy,..., Dy be distinct lines on P~. We put
A={p €B=Dy{J---UDy | mp(B)=3 }, where mp (B) is the multiplicity of the curve B at p.

Suppose that D; N A\ # ¢, for 1<j <k. Then, for any integers e; =2 (1=<j <k), there is
a finite Galois covering f : X—P*branching at D =e; Dy +--- +ehék .

Theorem ([9], Theorem 1.5.8).  Let Dy,..., Dy, be distinct irreducible conics on P*.
Suppose that, for each Dj , there is another D, such that Dj and D } are tangent at two dintinct
poits. Then, for any integers ej =2 (1=<j <k), there is a finite Galois covering f : X —>P*
branching at D =e Dy +---+¢, D, .

F:}m‘*

. . . 2
Theorem ([9], Proposition 1.5.9 ).  Let D, Dy, D3 be 3 distinct lines on P
circumscribing an irreducible conic C. Then, for any integers a ,b =2, there is a finite Galois
covering f: X—P?branching at a (D) +Dy+D3 )+bC .

(For further discussions in this line, refer Namba [9].)

4. Let us now give some other results on Fenchel's problem. We treat the following cases:
« M: P
Dy,..., Dy: lines in a near-pencil arrangement, that is, lines passing through one point and
another line not passing the point (Figure 5),

2,
- M: P,
Dy, ..., Dy: n(=3) lines circumscribing a conic (Figure 6),

+ M aproduct of compact Riemann surfaces of genus =1,
Dy, ..., D, any hypersurfaces, »

+ M :acomplex torus,
Dy,..., Dk : any hypersurfaces.

Fl‘gkm 5 Fz‘? ure §
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In fact, by means of a topological method, we obtain the following:
Theorem 1 (cf. [10], Prositiotion 7.2, 7.3). Take a point p on P*. Suppose that n distinct
lines Dy,..., Dy, pass through p and that another line Do does not . Let ¢ ,..., €p, d be
integers=2. Then, there is a finite Galois covering f: X —P* branching at o
D =eyDy+ -+ + enDn +d De if and only if one of the following conditions is satiestied:
(1) n= 47 . ‘
(i) n =3 and &' +¢;' +¢;'=1, N
@) 'n =3, ¢'+¢! +¢'>1 and (e, €., €;, d) is one of the following:
’ (e,2,2,d);e=2andd divides Ze,
(€,¢€,€,d)=<(3,2,2, d);d divides 12,
" 4,3,2,d);d dvides 24,
(¢ ,3,2,d);d divides 60.

(Remark 4) When I gave my talk, on the necessary condition, I could prove only the first case-
in the quadruplet in (iii) above. After that, I have carried out the proof of all cases, stimulated
by Professor H. Tsuchihashi's comment on maximal coverings of P~.

Theorem 2 ([11]). LetDy, ..., D, be n (=3) distinct lines on P* circumscribing an
irreducible conic C. Lete,,..., en be integers =2 and d an integer =1. Then, there is a finite
Galois covering f: X—P branching at D =e Dy +-+e, Dy +2d C
if (e, ,..., ey, d) is one of the following :

(@) n=4,

(1) n =3 and ;' +e; +€} =1,

(i) n =3, d=1and e;'+e3!+¢;'>1.

(Remark 5) I do not know about the necessary conditions.

Theorem 3 ([11]). Let M; be compact Riemann surfaces of genus gy =1 (1=i =n) and
Dy,..., Dy, distinct irreducible hypersurfaces on M=Mj X - X Mn . Then, for any integers
¢ =2 (1=j =k), there is a solvable covering f: X—M branching at D =e Dy + -+ e} .

Theorem 4 . Let M be an n-dimensional complex torus and Dy,..., Dy distinct
irreducible hypersurfaces on M.  Then, for any integers e; =2 (1=j =k), there is a solvable
covering f: X—M branching at D =e(Dy + -+ exDy .

5. Theorem 3 or 4 is deduced from the following propositions respevtively.

Proposition 5.1 ([11]).  Suppose that M and Dy,..., Dk are the same as is stated in
Theorem 3. Then, for any integers € =2, there is a finite Galois covering f : X—M branching at
D =e (Dy + -+ Dy ) whose Galois group is isomorphic to a meta-abelian group G equipped
with the following exact sequence:

2(9]"‘""" 311)
1—>2ZeZ — G — (ZfZ) —1.

(Here, Z denotes the ring of integers)

Proposition 5.2 . Suppose that M and Dy,..., Dy are the same as is stated in Theorem 4.
Then, for any integers e =2, there is a finite Galois covering f: X—M branching at

D =e (Dy + -+ Dy, ) whose Galois group is isomorphic to a meta-abelian group G equipped
with the following exact sequence: : ,

1 >ZkZ—G—ZkZ) —1.

We give a brief outline of the proof of Proposition 5.1. (For details, see [11].)
Let ¢;: M{—->M, (1=i=n) be the unramified coverings corresponding to the kernels of
Z/eZ -Hurewicz homomerphism : 7ty(M;) » Hi(M;, Z/eZ). Put
b=y XX p: M =M XX My—M.
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We denote by [D] the line bundle on Massociated to D=DyU ---U Dx . Let ¢*[D] be the pull-
back of [D] by ¢ gd)*[ its first Chern class and ¢((Q¥[D]) its image under natural
homomorphism H4 M Z ) — HY(M; Z/eZ). By Kunneth formula and projection formula,
we see that ¢, (PF[D]) ‘N =0 for any 2-dimensional cycle 0 EHa(M’, Z/kZ), where n
means the cap product From thrs it follows that ¢, ($¥[D])=0, which implies that there is a
line bundle L on M’such that I®¢ = d)* [D]as C®-line bundles. As a consequence, we can
construct Z/eZ- covering (1 : X — M’ branching at e (¢*D). Moreover, we see that each
covering transformation of ¢ lifts to a biholomorphism of X up to covering transformations
of x. Thus, the composite f = ¢op : X — M is a finite Galois covering having the properties
in the statement of Proposition 5.1.

Proposition 5.2 is proved in a similar way.

6. We now give some examples of projective manifolds with ample canonical bundles and
calculate their Chern numbers. 'We denote by KM the canonical divisor of a compact complex
manifold Mand by c,(M) (resp. ca(M) ) the first (resp. second) Chern class of the tangent
bundle of M.

For n-dimensional projective manifolds M with Kp ample, the inequality

CD"CIML () 2D e, (M)

holds, where the equality holds if and only if the universal cover of M is the unit ball (see Yau
[12], also Miyaoka [8] for surfaces of general type).

Example 1. Let C be a compact Riemann surface of genus g=2 and A\ the dlagonal of CXC.
By Proposition 5.1, we have a meta-abelian covering £: X— CXC of degree ctit! branching
at e/\. Since A is a nonsingular curve on CX C, X is nonsingular surface. By Hurwitz
formula (e.g., [1]), we have Kx = f* K, where

K =Kexe+$2 A
——(2g 2 pomts) X C +CX(2g—2 points) -l— et
Then,
e"‘?“(Kc c+2 —Q—ch A+ ez A )
=cH"{g~1) 8erg—2(e+1)*).

Note that Ky > 0. .

For every irreducible curve Don X, we have Kx - D=K - f;D>0. Nakai's criterion
(e.g., [1]) implies that Ky is ample.

The second Chern class ¢y , which is equal to the Euler number e(X) in two-dimensional
cases, can be calculated by the "cardinality principle" (see, Hirzebruch [4], [5]).
Indeed,

ca=¢(X)
= (de% (e(CX C)~— e(A))
*(( % (2—2g))
43 ' 1) (4e g—2e(e+1) ).
Thus we get

o 43-U i)
C. 29 -(1+1/e)

(Remark 6) The composite X £, cx C ™ c gives a Kodaira fibration in the sense of [1].

Example 2. Let C be the compact Riemann surface defined by the equation y =x(x—1),
with genus two. The meromorphic function (x, y)€C+> x € p! gives 5-fold cyclic
covering ramified completely at the three point p,, p;, po €C over 0,1,and oo (Figure 7).
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Let 0 be a generator of the Galois group ( &Z/5Z). For 0=i=4, we put
Ap={(p, 0¢(p))ECXC | p€C}. (Apisnothing but diagonal A, see Figure 8).

By Proposition 5.1, we have a mata-abelian covering f: X— CXC of degree 5% branching at
5(Dot 2N+ Dot Azt Ag).

We have singularities on the fibres of £ over three points (ps, pp), (P1, p; ) and (P, Pe ),
which can be resolved as follows. Let M — CXC be the blow up of CXC at the 3 points.
We denote by E; (i=0,1, 00) the exceptional curves associated to the 3 points, and by 2\; the
proper transforms of A (0=i=4) (Figure9).

A4 A, ANZZi Ao
7~
A4 A¢
Az A
R 4
' / Eo
. / l‘ (/q»-, 5% .
e By
7 i (E,
s/ - :
Fﬂam & Ft‘?mre q

Let f': X'= M be the pull-back of f: X — CXC and Y the normalization of X" . Thus
we get a meta-abelian covering 77 : Y —=_M of degree 57 . As we see from the construction
in Proposition 5.1, 7t branches at 5 (Rp+ R+ DXyt B3+ Ry), unramified along E;
(i=0,1, 00). Therefore Y is a nonsingular surface.

Wehave Ky=_7* K,where __ __ __ __ .

K =Kpm + 4/5 (Dot L4+ Dt DNt D).
It is easy to check that there is no curve isomorphic to the projective line on Y. As a result, Ky is
ample. We obtain by a calculation similar to that in Example 1,

¢, =Ky =57+ 45, c,=e(Y)=5"-15.

We have c?/cz=3, which implies the universal cover of Yis the unit ball. (Compare
Hirzebruch [4].)

Example 3. Let M be an n-dimensional complex abelian variety and D a nonsingular hyper-
surface on M. By Proposition 5.2, for any integer e =2, we have a meta-abelian covering

f: X — M of degree e*"*' branching at e D.  Since the tangent bundle of M is trivial, we have
szge:" f*D. Therefore, if D is ample, Kx is also ample divisor.
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We have n n
cr =(~ Kx ) e-t
- (55 ) (deg £) D"
_( l)n. ( e— ) em-i
In order to calculate ¢, , we need the followmg
Lemma 6.1. Let M be an n-dimensional projective manifold and D a nonsingular hypcrsurface

on M. Suppose that f: X — M isa finite Galois covermg branching ate D. Then we have

2 (X) =% (coyM) — —ci M) - D+£71D?).
This lemma can be proved by 1nduct10n on 1.
By Lemma 6.1, we see that cl(X)Z £:LD*. Hence we have
n—z _( 1) (C 1)!1.— n.+2Dn
Thus, we get ]
i 1 _e-1
C‘YL—Z, C.Z., e

(Remark 7) Hirzebruch [5] constructed a surface with ample canonical bundle with the universal
cover the unit ball as a branched covering of a blow-up of certain abelian surface with complex
multiplication. Can we construct a projective manifold of dimension =3 with the same properity
as a branched covering of a blow-up of some abelian variety?
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