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Hyperfunction Solutions of Invariant Linear Differential
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Abstract

How to determine invariant hyperfunction solutions of invariant linear differential equations with
polynomial coeflicients on the vector space of n X n real symmetric matrices is discussed in this
work. The real special linear group of degree n naturally acts on the vector space of n x n real
symmetric matrices. We can observe that every invariant hyperfunction solution is expressed as a
linear combination of Laurent expansion coeflicients of the complex power of the determinant function
with respect to the parameter of the power. Then the problem can be reduced to the determination
of Laurent expansion coefficients which is needed to express. We can give an algorithm to determine

them by applying the author’s result in [12]. Our method is applicable to other prehomogeneous
vector spaces.

1 Introduction.

Let V := Sym,,(R) be the space of n x n symmetric matrices over the real field R and let SL,(R) be the

special linear group over R of degree n. Then the group G := SL,(R) acts on the vector space V by the
representation

plg) iz—rg-z-'g, (1)

with £ € V and ¢ € G. Let D(V) be the algebra of linear differential operators on V with polyno-
mial coefficients and let B(V') be the space of hyperfunctions on V. We denote by D(V)¢ and B(V)€¢
the subspaces of G-invariant linear differential operators and of G-invariant hyperfunctions on V', re-
spectively. For a given invariant differential operator P(z,8) € D(V)€ and an invariant hyperfunction
v(z) € B(V)E, we consider the linear differential equation

P(z,0)u(z) = v(z) (2)

where the unknown function u(z) is in B(V)%.

Our problem is the following. Let P(z,8) € D(V)€ be a given G-invariant homogeneous differential
operator.

1. Construct a basis of G-invariant hyperfunction solutions u(z) € B(V)€ to the differential equation
P(z,0)u(x) = 0.
2. Construct a G-invariant hyperfunction solution u(z) € B(V)€ to the differential equation
P(z,)u(z) = v(z),

for a given quasi-homogeneous hyperfunction v(z) € B(V)€. In particular, when v(z) = d(z), it is
a problem to find a G-invariant fundamental solution.



2 Invariant Differential Operators.

We denote
' 5,
T = (Tij)n>j>i>1, 0= (0;) = O
Tij /n2jix1
o= ] g, 0f= ] o
n>j>i>1 n2j2izl
with

a=(aj) €28y, lal= Y ay
n2j2ix1

B=(8;) €23, 18l= D> By

n>j%ix1
and m = n(n+ 1)/2. Then P(z,d) € D(V) is expressed as

P(z,0):= Y Y aapz=d”.

k€Lyo o,BELT,
181=k

We call the order of P(z,d) the highest number k in the sum (3). On the other hand, for

P(z,0) := Z Z aaﬁxo‘aﬁ
k€L a,BELT,
la|-18[=k

(4)

We call the homogeneous part of P(x,0) of degree k 5 o, BELT, aaﬂxo‘(?p in (4). Differential operators

lo|—-16]=k
with only one homogeneous part is called homogeneous differential operators.

Example 2.1. 1. We define 3* by

. . 0 1 t1=73
r=0y= (6”%>’ and 6y = {1/2 i

2. Let h and n be positive integers with 1 < h < n. A sequence of increasing integers p = (p, ...

(5)

,Ph) €

7" is called an increasing sequence in [1,n] of length h if it satisfies 1 < p; < --- < pp < n. We

denote by IncSeq(h,n) the set of increasing sequences in [1,n] of length h.

3. For two sequences p = (p1,... ,pr) and ¢ = (g1, ... ,qx) € IncSeq(h,n) and for an n x n symmetric

matrix £ = (x;;) € Sym,, (R), we define an h x h matrix T(pq) bY

T(p.q) = (Tpi,g;)1<i<i<h-

In the same way, for an n x n symmetric matrix 8 = (8;;) of differential operators, we define an

h x h matrix J(, 4y of differential operators by
62‘17#1) = (6;iyqj)1sisj§h'

4. For an integer h with 1 < h < n, we define

Phy(z,0) = Z det(z (p,q)) det(afp,q))~

p,g€IncSeq(h,n)



5. In particular, P,(xz,0) = det(z) det(8*) and Euler’s differential operator is given by
9 .
Pi(z,0) = Z xij‘gx?j‘—:tf(“"a ). (7)
n2j2i2l

These are all homogeneous differential operators of degree 0 and invariant under the action of
GL(V), and hence it is also invariant under the action of G; := SL,(R) C GL(V).

6. det(z) and det(0*) are homogeneous differential operators of degree n and —n, respectively. They
are invariant under the action of G := SL, (R), and relatively invariant differential operators under
the action of GL, (R), with characters x(g) := det(g)? and x~1(g) := det(g)~2, respectively.

Proposition 2.1.

1. Every GL, (R)-invariant differential operator on V' can be ezpressed as a polynomial in Pi(z,0)(i=
1,...,n) defined in (6).

2. Every SL,(R)-invariant differential operator on V' can be expressed as a polynomial in P;(z,d)
(i=1,...,n—1), det(z) and det(d*).

For the proof see H. Maass [5] “ Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in
Mathematics, vol. 216, Springer-Verlag, 19717,

3 Some definitions and Propositions.

We denote P(z) := det(z) and we set S := {z € V|det(z) = 0}. The subset V — § decomposes into
n + 1 connected components,

Vi:={z € Sym,(R) | sgn(z) = (i,n — i)} (®)

withi=0,1,...,n. Here, sgn(x) for x € Sym,, (R) is the signature of the quadratic form ¢,(?) :='v-z -7
on ¥ € R*. We define the complex power function of P(z) by

Pl ={ PO L rey 9)

for a complex number s € C.
We consider a linear combination of the hyperfunctions |P(z)|}

n

PlEl(z) := 3 " a; - |P(z)|; (10)
=0
with s € C and @ = (ag,ay,...,a,) € C*t'. Then Pl%?l(z) is a hyperfunction with a meromorphic

parameter s € C, and depends on & € C**! linearly.

Proposition 3.1. Pl@¢(z) is holomorphic with respect to s € C except for the poles at s = —(k +1)/2
with k = 1,2,.... The possible highest order of the pole of P¥*l(z) at s = —(k+1)/2 is

[BL] (k=1,2....,n-1),

%] (k=n,n+1...., and k + n is odd), (11)
[%’—” (k=n,n+1...., and k + n is even).

Definition 3.1. Let A € C be a fixed complex number.



1. We denote by PHO()) the possible highest order of Pl3l(z) at s = A\. Namely we define

|5 A=-51 (k=12....,n-1),
Prow =18 3T i ke,
0 otherwise.
2. Let ¢ € Z. We define a vector subspace A(}, q) of C**! by
A(X, q) := {d@ € C**! | Pl34)(z) has a pole of order < ¢ st s = A}. (13)
Then we have A(A, ¢ — 1) C A(}, ¢) by definition. We define Z—()\,—q) by
A g) = AN 9)/A(N g - 1) (14)
3. We define o(d@, A) € Z by
o(@, \) := the order of pole of Pl%*l(z) at s = . (15)

We have p = o(d@, A) if and only if @ € A(A, p) and [@] € A(A, p) is not zero.

4. Let @ € C™*! and let p = 0(@,\) € Z>o. This means that Pl3:5](z) has a pole of order p at s = X.
Then we have the Laurent expansion of Pl34](z) at s = ),

[o0]
PElg) = 37 PEN() (s - V)" (16)
w=—p
We often denote by
Laurentii),\(P[a"](w)) = PEN(z) (17)

the w-th Laurent expansion coefficient of Plasl(g) at s = X in (16).
Proposition 3.2. Let @b € C*t! and let p= PHO()).

1. Let q be aﬁ integer in ¢ < p. We have
a—be A\ q)
if and only if
Laurentgi)/\(P[a’s](x)) = Laurentgi))‘(P[a’s](x))
forw=—p,—p+1,...,—q— 1. In particular,
Plasl(g) = PBsl(g)
ifa—be A\ q) for some q < 0.

2. Let r = o(d,)\) € Zyo, t.e., the order of pole of Ps)(z) at s = X\. Then the Laurent expansion
coefficients at s = A

{Laurentg;f\“) (plasl (@) }i=o,1,2,...

are linearly independent.



3. Let @y,...,d € C**! be the vectors satisfying that they are linearly independent in the quotient
space C"*1/A(X, q — 1) with a positive integer q. Then, for an integer w with w > —q, the hyper-
functions '

{Laurentg)}\(P[ﬁ’sl(z‘))}i=1,2,... &
are linearly independent. »

Definition 3.2. We say that v(z) € B(V) is quasi-homogeneous of degree A € C if and only if there
exists an positive integer g such that

Fk’)‘ o Fk,A o---0 Fk)(v) =0

-~

q

for all k € Ry o where
Fiea(v) = v(k - z) — K o(z).
Definition 3.3. We use the following notations.
1. QH(A) := {u(z) € B(V) | u(z) is quasi-homogeneous of degree A € C}
2. QH(N)® :== QH(A\) NB(V)C
3. QH =Py c QH(N)
4. QHS =@, QH(N)®
Proposition 3.3. Let p € Z be the order of the pole of P%*](z) at s = .
1. Then the Laurent expansion coefficient of P1®*)(z) at s = \ defined by (17)
Laurentgi))\(P[a's](a:)) = PE’A](x)

s a quasi-homogeneous hyperfunction of degree n - X of quasi-degree p + w. Conversely, let v(z) €
QH(n-\)%. Then v(z) is written as a linear combination of Laurent expansion coefficients of
|P(z)|} ats=A.

2. Let
LC(\,w) = {Laurent™, (P%*)(z)) | & € C**'},

the vector space of w-th Laurent expansion coefficients of P[a’s](az). Then we have the direct sum

decomposition

QHn- )%= P LCO\w) (18)
wzggzé(/\)

Namely let v(z) € QHS(n - A). Then v(z) is written as a linear combination of Laurent ezpansion
coefficients of |P(z)|} at s = A.

Proposition 3.4. Let P(z,9) € D(V)€ be a homogeneous differential operator.

1. The homogeneous degree of P(z,0) is in (n - Z). Namely the homogeneous degree is divisible by n.



2. If the homogeneous degree of P(z,8) is nk with k € Z, then we have
P(z,d)(det £)* = bp(s)(det z)*+* (19)
where bp(s) is a polynomial in s € C and z € Sym,, (IR) is positive definite. We have also

P(z,8)P1%)(z) = bp(s) det(z)* Pl**)(z)

20
= bp(s)sgn(det(z)) P+ z) ()

foralle e V- 8S.
3. Ifk <0, then b=5(s — 1)|bp(s) where b=E(s — 1) := b(s — 1)b(s — 2) - - - b(s — (—k)) with b(s) =
H?:l(s + t%l‘)'
Definition 3.4 (bp-function). Let P(z,0) € D(V)C be a homogeneous differential operator. We call
bp(s) in (19) the bp-function of P(z,d). Namely let P(x,0) be a G-invariant homogeneous differential

operator of homogeneous degree nk (k € Z). (Homogeneous degree of G-invariant differential operator
is divisible by n.) Then we have

P(z,8)(det(z))* = Fbp(s)(det(z))**

with s € C and z > 0 ,ie., positive definite. Here bp(s) is a polynomial in C. We call bp(s) the
bp-function of P(z,d).

Example 3.1. 1. For Py(z,0) = >
0) defined by (6)

det(:c(p’q)) det(a*

(.q)) (homogeneous degree kn =

p,q€IncSeq(h,n)

bp(s) = const.(s)(s + %) - (s+ h—;~l—)

2. For P(z,d) = det(0*) (homogeneous degree kn = —n),

bp(s) = const.(s)(s + %) s+ ng 1

).
3. For P(x,d) = det(z) (homogeneous degree kn = n),

bp(s) =1.

4 Main theorems.
We have the following theorems.

Theorem 4.1. Let P(z;0) € D(V)€ be a non-zero homogeneous differential operator with homogeneous
degree kn.

1. We suppose that
the degree of bp(s) = the order of P(z,0). (21)

The space of G-invariant hyperfunction solutions of the differential equation P(z,0)u(z) = 0 is
finite dimensional. The solutions u(z) are given as finite linear combinations of quasi-homogeneous
G-invariant hyperfunctions.



2. We suppose that

bp(s) £ 0. (22)

Let v(z) be a quasi-homogeneous G-invariant hyperfunction. Then there is a solution u(z) € B(V)C
of the differential equation P(x,0)u(x) = v(z). The solutions u(z) are given as finite linear combi-
nations of quasi-homogeneous G-invariant hyperfunctions.

8. Let P(z,8) € D(V)€ be a non-zero homogeneous differential operator satisfying the condition (21)
and let Q(z,8) € D(V)€ be a homogeneous differential operator satisfying the condition (21) with
the same homogeneous degree kn as P(x,0) and suppose that bp(s) = bg(s). Then the G-invariant
solution space of the differential equation P(z,d)u(z) = v(z) coincides with that of the differential
equation Q(x,0)u(z) = v(z).

4. We can give an algorithm to compute all the G-invariant hyperfunction solutions of the differential
equation P(z,d)u(z) = v(z) provided that we can calculate the total homogeneous degree of P(x,d)
and the explicit form of bp(s) in some way.

5 Algorithms for constructing solutions.
We define a standard basis of C"*1.
Definition 5.1 (Standard basis). Let
SB = {Go,dy,... ,dn} (23)

be a basis of C**!. We say that SB is a standard basis of C**! at s = X if the following property holds:
there exists an increasing integer sequence

0<k(0)<k(l)<---<k(PHO)=n (24)
such that
SBy :={do,d1,... ,dxq)}
is a basis of A(A,¢) for each ¢ in 0 < ¢ < PHO(M).

When X ¢ 17, any basis is a standard basis since all Pl%](z) is holomorphic at s = \. When A is in
%Z, we can easily choose one standard basis for a given A. However, it is sufficient only to consider the
three kinds of standard basis, SB*®f S§Beve® and SB°%.

Algorithm 5.1 (The case of homogeneous degree zero). For a given non-zero SL, (R)-invariant
differential operator P(z,0) € D(V)§ of homogeneous degree 0 satisfying the condition

the degree of bp(s) = the order of P(z,0), (25)

one algorithm to compute a basis of the SLy,(IR)-invariant differential equation P(z,d)u(z) = 0 is given
in the following. )

Input A non-zero SLy (R)-invariant differential operator P(z,8) € D(V)§ satisfying the condition (25).
Output A basis of the SL, (R)-invariant hyperfunctions to the differential equation P(z, 3)u(:c) =0.

Procedure



1. Compute the bp-function for P(x,0). It is denoted by
bp(s) = (5= A" -+ (5 = A",
2. Foreach )\; (i=1,...,p), take one standard basis at s = A;
SBY = (@A), (M),
which is defined in Definition 5.1.
3. Compute the Laurent expansion coefficients
Laurentglc:))\i(P[aj(A‘)'S](a:))

for each @;(Xi) (i=1,...,pj=0,...,n) and k = —o0i5,—0i; + 1,... with 05 == o(@; (i), Ai)
until all the generators of (26) will be obtained.

Lij = {Laurentgkz))“ (P[af(’\")”] () }e==0i;,... ,—o0sj+ki=1 (26)

4. Then

forms a basis of the G-invariant hyperfunction solution space to P(z,0)u(z) = 0.

Algorithm 5.2 (The case of positive homogeneous degree). For a given non-zero SLy, (R)-invariant
differential operator P(z,0) € D(V)qG of positive homogeneous degree ¢ > 0 satisfying the condition

the degree of bp(s) = the order of P(z,0), (28)

one algorithm to compute a basis of the SLy(IR)-invariant differential equation P(z, Qu(x) =0 islgiven
in the following.

Input A non-zero SL,, (R)-invariant differential operator P(z,0) € D(V)qG with q > 0 satisfying the condi-
tion (28).
Output A basis of the SL, (R)-invariant hyperfunctions to the differential equation P(x, O)u(z) = 0.
Procedure
1. Consider the set R := R1 U Ry with
Ry :={\ ::—i—;1 | i:l,é,... ,n+2q—2},
Ry :={AeC|bp(N) =0}

Let p be the number of elements of the set Ry — Ry. We denote by
Ant2g—1,And2gs -+ > Ant2q+p—2

the elements of Ry — Ry. Then we can write the elements of R by
R={\,A2,... , Angagep—2}

2. We define the multiplicity k; of A; by

(29)

b e the multiplicity of s — X; in bp(s) ifbp(XA;) =0
v 0 ifbp(/\,') # 0



3. Foreach \; (i=1,...,n+2q+p— 2), take one standard basis
: SB)‘i = {C_l‘o(/\,), te yaﬂ(Ai)}

at s = \;, which is the standard basis SB"f SB®v¢" and SB°%. when )\; € %Z and the one
defined in Definition 5.1 otherwise.

4. For each X;, we associate an finite increasing integer sequence {lA(u)}uzoyl,z,m with the last term
n. If\ € %Z, then we define {I(u)}u=0,1,2, .. If \i ¢ %Z, then we define it by {I(0) = n}.
5. Compute the Laurent expansion coefficients

Laurentgkz))‘i (Pl ()8l 2y)

for each @;(X\i) (i=1,...,n+2¢+p—24=0,...,n) and k = —0;5,—0;; + 1,... with o;; :=
o(a@; (i), Ai) until all the generators of (30) and (31) are obtained. For X; in1 < i< n+2¢+p—2,
we put '

p1 = PHO(A;),
pe = PHO(X; + ¢).

If dj(\i) ¢ SBI)&;;)’ then we set

Lij = {Laurent.gi),\,v(P[aj()“i)"’](x))}—Oiijs—Pz+ke—l‘ (30)

Ifa;(\i) € SB{\(;,z), then we set

Lij := {Laurent®™), (PEHOM N2} o, cugmoythimt- (31)

6. Then

D Ly (32)
i=1,... n+2q94+p—-2
j=0,...,n
forms a basis of the solution space.

Algorithm 5.3 (The case of negative homogeneous degree). For a given non-zero SL, (R)-invariant
differential operator P(z,0) € D(V)E"q of negative homogeneous degree —q < 0 satisfying the condition

the degree of bp(s) = the order of P(z,0), (33)

one algorithm to compute a basis of the SL,(R)-invariant differential equation P(x,0)u(z) = 0 is given
in the following.

Input A non-zero SL,,(R)-invariant differential operator P(z,0) € D(V)_C_"q with —q < O satisfying the
condition (33).

Output A basis of the SL,, (R)-invariant hyperfunctions to the differential equation P(z,0)u(z) = 0.
Procedure
1. Let bp(s) be the bp-function of P(x,0). Then it is decomposed to
bp(s) = bi(s) - ba(s)

with

where b(s) = s(s+ 3) -+ - (s + 251).
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. Consider the set R := R, U Ry with

n

R1 = {)\, = -
Ry :={A € C | by(X) = 0}.

2_1 |i=1,2,... ,n+ 22},

Let p be the number of elements of the set Ry — Ry. We denote by

/\n+2q—lw ’\n+2qa e a)‘n+2q+p—2
the elements of Ry — R;. Then we can write the elements of R by
R={A1,X2,.., Any2g4p—2}-
. We define the multiplicity k; of A; by

ke the multiplicity of s — A; in by(s) ifba(Ai) =0
R ) ifba(Ni) # 0

. Foreach \; (i=1,... ,n+2q+p— 2), take one standard basis
SB* = {d(X), -+ ,@a(N)}
at s = \;, which is the standard basis defined SB"®f SBe¢v*" and SB°%. when \; € %Z and

the one defined in Definition 5.1 otherwise.

. For each );, we associate an finite increasing integer sequence {l(u)}u=012,  with the last term
n. If \; € %Z, then we define {l(u)}u=01,2,... If \i & %Z, then we define it by {l(0) = n}.

. Compute the Laurent expansion coefficients

Laurent(,f__)xl (P[aj()")'s](:c))

8

for each d@;(\;) (i = 1,... ,n+2¢+p—24 =0,...,n) and k = —o0;;,—0ij + 1,... with
0ij = o(d@;(Ai), Ai) until all the generators of (35), (36) and (37) are obtained. For \; in1 < i<
n+2q+p— 2, we put

p1 = PHO(X\)

pz = PHO(\ - g)

and let
aij = p2 — o(@; (M), Ai — q).

If @;(\i) & SBY,). then we set

Ly - {0}. (35)

If & (\) € SB):  — SB)\ |, then we set

Lij = {Laurentiuzj)/\ (P[aj(ki),S](x))}—OiijS—0ij+aij+ki—1' (36)

If a;(\i) € SB,)E;,I), then we set

Lij = {Laurentiuzj),\,(P[&j(/\i)y‘?](x))}—o,ijS—o,j-i-(pz—pl)+k,~—1- (37)
. Then
P Lij (38)
i=1,... n+2q+p—2
7j=0,...,n

forms a basis of the solution space.
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6 Examples.

Let us consider the case of P(z,0) = det(z). Then the total homogeneous degree of P(z,0) is n and
bp(s) = 1. We can prove by our algorithm that the G-invariant solution space of the differential equation
det(z)u(z) = 0 is generated by the G-invariant measures on all the singular orbits (i.e., G-orbits contained
in det(z) = 0), and hence, it is M;'ll—dimensional (= the number of singular orbits). Here the G-invariant
measure on each singular orbit is a relatively invariant hyperfunction.

Similar argument is possible for the case of P(z,d) = det(0). operators. In this case, the total
homogeneous degree of P(z,d) is (—n) and we see that bp(s) = [[i,(s + i5%). The solution space of
det(0)u(x) = 0 is just the Fourier transform of that of det(z)u(z) = 0, and hence it is ﬂ%l-dimensional
and generated by relatively invariant hyperfunctions. We can construct them from the complex power of
det(z)
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