
Expected Length of Longest Common Subsequences of
Two Biased Random Strings and Its Application

Hironobu AOKI1, Ryuhei UEHARA2 and Koichi YAMAZAKI1
1 Department of Computer Science, 2 Natural Science Faculty,

Gunma $\mathrm{U}\overline{\mathrm{n}}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\dot{\mathrm{i}}\iota \mathrm{y}$ Komazawa University
1-5-1 Tenjin-cho, Kiryu 1-23-1 Komazawa, Setagaya-ku,

Gumma 376-8515, Japan Tokyo 154-8525, Japan
$\{\mathrm{a}\mathrm{o}\mathrm{k}\mathrm{i},\mathrm{k}\mathrm{o}\mathrm{i}_{\mathrm{C}}\mathrm{h}\mathrm{i}\}\copyright \mathrm{c}\circ \mathrm{m}\mathrm{p}.\mathrm{C}\mathrm{S}.\mathrm{g}\mathrm{m}\mathrm{m}\mathrm{a}-\mathrm{u}.\mathrm{a}\mathrm{C}.\mathrm{j}_{\mathrm{P}}$ uehara@komazawa-u.ac.jp

Abstract: The longest common subsequence (LCS) of two strings is one of the main prob-
lems in combinatorial pattern matching. A famous open problem for the LCS is its expected
length of two random strings over a uniformly distributed alphabet. In this paper, we con-
sider the expected length of the LCS for two biased random strings, and show the upper and
lower bounds depending on the bias. We next consider some approximation algorithms for
decomposability problem of shuffled strings. We propose two deterministic algorithms and
two randomized algorithms. Using the results for the LCS of two biased random strings, we
show good approximation ratios for the randomized algorithms.

Keywords: approximation algorithm, longest common subsequence, decomposability of
shuffled strings.

1 Introduction

The longest common subsequence (LCS) of two
strings is one of the main problems in combinato-
rial pattern matching. We say that s is a subse-
quence of u if we can obtain s by deleting zero or
more letters of u . The LCS of two strings u and v

is defined as the longest subsequence s common to
u and v . The LCS is related to DNA or protein
alignments, file comparison, speech recognition,
etc. A famous open problem for the LCS is its
expected length of two random strings of length
n over a uniformly distributed alphabet of size k .
It is known that the expected length is propor-
tional to the length of the given sequences, but
the exact value of this proportion, denoted by γ_{k} ,
is not known even for $k=2$. For $k=2$, the best
known upper and lower bounds are 0.77391 \leq

$\gamma_{2}\leq$ 0.83763, and an experimental interval is
$0.8120\leq\gamma_{2}\leq$ 0.8125 [Dan94, DP95, PD94]. For
general $k,$ $1\leq\gamma_{k}\sqrt{k}\leq e$ is known [CS75, Dek79]
(see [BYGNS99] for a comprehensive reference).

From the practical point of view, the expected
length of the LCS can be used for the inference of
randomness. That is, if an alignment of common
subsequence of two given sequence is relatively

larger than γ_{k} , we may infer that it is more than
a coincidence, and that the similarity should be
studied. For example, two long random DNA se-
quences will have on average an alignment com-
prising 65% of its length, and that amount of sim-
ilarity might be counterintuitive.

However, if two given sequences are biased, we
cannot use the value γ_{k} to infer the random-
ness. In this paper, we first consider the expected
length of two biased random strings of $1\mathrm{e}\mathrm{n}_{\mathrm{t}\supset}\circ \mathrm{t}\mathrm{h}$

n . More precisely, the random strings are gener-
ated over the alphabet $\{0,1, \cdots, k-1\}$ such that
each alphabet i occurs with positive $\mathrm{P}^{\Gamma \mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}}\mathrm{t}_{J}\mathrm{y}$

p_{i} with $\sum_{i=}^{k-1}0p_{i}=1$. We first show that the ex-
pected length of two biased random strings takes
minimum value when the alphabet is uniformly
distributed. That is, γ_{k} is the minimum propor-
tion to the length of the given biased random
sequences. We also show the upper and lower
bounds of the expected length for two biased ran-
dom strings.

Iwama
stated formal treatment of asynchronous time-
multiplexed communication, and discussed sev-
eral decomposability of shuffled strings [Iwa83].

数理解析研究所講究録
1185巻 2001年 1-10 1

As an application of the expected length of two
biased random strings, we consider a problem for
shuffled strings. The shuffle of y and z is de-
fined by $yz=\{y_{1}z_{1}y2^{Z_{2y|}}\ldots nz_{n}y1y_{2}\cdots y_{n}=$

y and $z_{1}z_{2n}\ldots Z=z$}. A string x is said to be
decomposed into strings y and z if x is in yz .
We consider the equally decomposable problem
(EDP) that determines whether given string x

is decomposable into two same strings, that is,
x is in yy for some string y . Interestingly,
the EDP is $\mathrm{N}\mathrm{P}$ -complete even on binary alphabet
[Iwa82, IwaOO, UehOO]. In this paper, we consider
the approximation algorithms for the EDP. To
consider the approximation ratio, we modify the
EDP that finds two strings y and z with $x\in yz$.
The measure is the length of the longest common
substrings of y and z .

We first show two deterministic approximation
algorithms. The first one works for the EDP on
alphabet of size k , and achieves the approxima-
tion $\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{0\frac{2}{k+1}}$. The second one works for the EDP
on binary alphabet, and achieves the approxima-
tion ratio 0.833. But the second one needs alarge
amount of memory $(\sim 2^{36})$ to store a table, and
it takes several weeks to obtain the table.

We next show two online randomized approxi-
mation algorithms. Their approximation ratio is
at least $\max\{\gamma_{k}, \frac{1}{4}\}$. Thus, the ratio is better than
the deterministic algorithm for $k>2$. Moreover,
even if $k=2$, the ratio is at least 0.77391, and
0.8120 experimentally.

2 Preliminaries

2.1 Expected Length of Longest Com-
mon Subsequences

We say that s is a subsequence of u if we can ob-
tain s by deleting zero or more letters of u . The
longest common subsequence (LCS) of two strings
u and v is defined the longest subsequence s com-
mon to u and v . Let $lcs(u, v)$ denote the length of
the LCS for two strings u and v . A famous open
problem for the LCS is its expected length for
two random strings of length n over a uniformly
distributed alphabet Σ . More precisely, given al-
$\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{b}\mathrm{e}\mathrm{t}^{1}\Sigma=\{0,1, \cdots, k-1\}$, it is open the exact

value of γ_{k} that is defined below:

$\gamma_{k}=\lim_{\infty narrow}\frac{1}{k^{2n}}|u|=|v\sum_{1=n}\frac{lcs(u,v)}{n}$.

(Intuitively, γ_{k} is the expected value of $\frac{l_{CS}(u,v)}{n}$ of
which u and v are two random strings of length n

over $\Sigma.$) Several results have been obtained (see
[BYGNS99] for a comprehensive reference), and
the following results will be used in this paper.

Fact 1 (1) For $k=2$, the best known upper and
lower bounds are 0.77391 $\leq\gamma_{2}\leq 0.83763$, and an
experimental interval is 0.8120 $\leq\gamma_{2}\leq$ 0.8125,
given by Dan\v{c}\’ik and Paterson [Dan94, DP95,
PD94].

(2) In general cases, 1 $\leq\gamma_{k}\sqrt{k}\leq e$ [CS75,
Dek79].

2.2 Shuffled Strings

Let x and y be strings over an alphabet Σ .
Then the shuffle of x and y , denoted by $x\subset_{\vee}$) y ,
is defined by $xy=\{x_{1}y1x2y2\ldots x_{n}yn|n\geq$

$1,$ x_{i} and y_{i} in $\Sigma^{*},$ $x_{1}x_{2n}\ldots X$ $=$

x and $y_{1}y_{2}\cdots y_{n}=y$ }. For example, 01 $101=$
{01101, 01011, 10101, 10011}. Let $x,$ y and z be
strings over an alphabet Σ . We say z is decom-
posable into x and y if $z\in xy$. We now define
equally decomposable problem as follows:

$\mathrm{I}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}:\Sigma$

.
A string z of length $2n$ over an alphabet

Question: Determine whether z is decompos-
able into two same strings, i.e., $z\in xx$
for some string x .

We denote by $EDP(k)$ the equally decomposable
problem on an alphabet $\Sigma=\{0,1, \cdots, h-1\}$.
Then the following fact is known.

Fact 2 $EDP(k)$ is $\mathrm{N}\mathrm{P}$ -complete [Iwa82, Theo-
rem 3], even if $k=2$ [IwaOO, UehOO].

(See also [Iwa83] for other general problems
and applications for decomposability of shuffled
strings.)

In this paper, we will consider approximation
algorithms for the $EDP(k)$. Thus we slightly
modify the problem to evaluate the approxima-
tion ratio. The modified $EDP(k)$ is defined as
follows:

2

Input: A string z of length $2n$ over an alphabet
$\Sigma=\{0,1, \cdots, k-1\}$.

Output: Two strings x and y of length n .

Measure: $lcS(X, y)$.

Remark that we only consider the output strings
of length n . The following lemma guarantees that
it is sufficient to consider the strings of length n .

Lemma 3 Let z be a string of length $2n$, and x

and y be two strings such that $|x|<n<|y|$
and $z\in xy$. Then there are two strings \hat{x}

and \hat{y} such that $|\hat{x}|=|\hat{y}|=n,$ $z\in\hat{x}\hat{y}$, and
$lcs(_{\hat{X}},\hat{y})\geq l_{C}S(x, y)$.

Proof. Since $|y|>|x|\geq lcS(X, y),$ y contains
at least one letter, say ℓ , that does not used in
the longest common subsequence of x and y . We
then delete the letter ℓ from y , and insert into x .
That is, when we decompose z into x and y , we
output p as a part of x instead of y . Then, we
obtain the new strings $x’$ and $y’$. It is easy to see
that $lcS(x’, y’)\geq lcS(X, y),$ $|y’|=|y|-1$, and
$|x’|=|x|+1$. We can repeat this process

$\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{i}1\bullet$

we obtain two strings of the same length.

3 Longest Common
Subsequences of Two Biased
Random Strings

We consider the expected length of the longest
common subsequences of two biased random
strings. That is, given alphabet $\Sigma=\{0,1,$ $\cdots,$ $k-$

$1\}$, we assume that each letter \dot{i} occurs with fixed
positive probability p_{i} with $\sum_{i=}^{k-1}0p_{i}=1$. We now
denote by $\gamma_{k}(p0,p_{1,\cdots,p1}k-)$ the expected value
of $\lim_{narrow\infty}\frac{lcs(u,v)}{n}$ of which u and v are two ran-
dom strings of length n on the probability space
defined by those $p_{i}\mathrm{s}$.

Theorem 4 For any k , the expected value of
$\gamma_{k}(p_{0},p_{1,\cdots,p1}k-)$ takes the minimum value
when $p_{0}=p_{1}= \cdots=p_{k-1}=\frac{1}{k}$. That is, γ_{k}

is the minimum value of $\gamma_{k}(p0,p1, \cdots , p_{k-1})$.

Proof. We first assume that $k=2$. Let $x=$

$x_{0}x_{1n-1}\ldots X$ and $y=y0y_{1}\cdots yn-1$ be any strings
of length n over $\{0,1\}$. We let $x=x’x_{n-}1$ and
$y=y’y_{n-}1$ for short.

Adding one letter to the end of one string,
the longest common subsequence grows at most
one. Thus we have $\mathrm{E}[l_{C}s(xy’)’,]\leq \mathrm{E}[l_{C}s(x’, y)]\leq$

$\mathrm{E}[l_{C}s(xy’)’,]+1$ for any distribution.
In [Dan94, Section 2.2], Dan\v{c}\’ik have showed

that

$lcs(_{X}, y)=\{$

$lcs(x’, y’)+1$ if $x_{n-1}=y_{n-1}$

$lcS(X, y)= \max\{lcs(xy)’,, lcS(x,y)’\}$

if $x_{n-1}\neq y_{n-1}$.

When we choose x and y randomly, the
event x_{n-1} $=$ y_{n-1} occurs with probabil-
ity $p_{0}^{2}+p_{1}^{2}$, and $\mathrm{E}[l_{C}s(x’, y)]$ $=$ $\mathrm{E}[lcs(x,y)’]$

from their symmetrically. Thus we have
$\mathrm{E}[l_{C}s(X, y)]$ $=$ $(p_{0}^{2}+p_{1}^{2})(\mathrm{E}[lcs(xy’)’,]+1)+$

$2p_{0}p_{1} \max\{\mathrm{E}[lCS(x^{J},y)], \mathrm{E}[lCs(x, y’)]\}$ $=$ $(p_{0}^{2}+$

$p_{1}^{2})(\mathrm{E}[l_{C}S(x’, y)J]+1)+2p_{0}p_{1}\mathrm{E}[l_{C}s(x’, y)]$.
Since $\mathrm{E}[l_{C}s(X^{J}, y)]\leq \mathrm{E}[lcS(x’,y’)]+1$, to min-

imize the formula $(p_{0}^{2}+p_{1}^{2})(\mathrm{E}[l_{C}s(xy’)’,]+1)+$

$2p_{0}p_{1}\mathrm{E}[lcs(x’, y)]$, we shall minimize the proba-
bility $p_{0}^{2}+p_{1}^{2}=2(p_{0}- \frac{1}{2})^{2}+\frac{1}{2}$ with $0<p_{0}<1$.
Thus $\mathrm{E}[l_{C}s(X, y)]$ takes the minimum value when
$p_{0=}p_{1}= \frac{1}{2}$.

When k $>$ 2, using the same argument,
we have $\mathrm{E}[l_{C}s(X^{J}, y)]$ \leq $\mathrm{E}[l_{C}s(x’, y)’]+1$, and
$\mathrm{E}[l_{C}s(x, y)]=(p_{0}^{2}+p^{2}1+\cdots+pk-1)2(\mathrm{E}[lcS(x’, y’)]+$

$1)+2 \sum_{i}\neq jp_{i}p_{j}\mathrm{E}[lCS(x’, y)]$. Since $p_{0}^{2}+p_{1}^{2}+\cdots+$

p_{k-1}^{2} takes the minimum value when $p0=p_{1}=$
$...=p_{k-1}= \frac{1}{k}$, we have the theorem. I

We next turn to obtain the values of $\gamma_{2}(p, 1-p)$.
Figure 1 depicts the values of $\gamma_{2}(p, 1-p)$. The
solid line depicts the lower bound, and the plus
marks are the upper bounds, which are the re-
sults in the rest of this section. The x marks
are the experimental values obtainded as fol-
lows: The experimental value of $\gamma_{2}(0.5,0.5)$ is
obtained by Dan\v{c}\’ik. Clearly, $\gamma_{2}(0,1)=1$, and
$\gamma_{2}(p, 1-p)=\gamma_{2}(1-p,p)$. The experimen-
tal values for $p=0.1,0.2,0.3,0.4$ are obtained
from the average values of 1000 random strings
of length 100000. For example, $\gamma_{2}(0.3,0.7)$ is at
least 0.7988 and at most 0.8909 from the theoret-
ical results, and is approximately equal to 0.8397
from the experimental results.

3.1 Upper bound

We here show upper bound of $\gamma_{2}(p, 1-p)$.
Theorem 5 Let $H(x)$ be the binary entropy
$\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-x\log_{X}-(1-X)\log(1-x)$, and $w(x)=$

3

Figure 1: Bounds of $\gamma_{2}(p, 1-p)$

$\frac{1}{2}(2-x-\sqrt{5x^{2}-8X+4})$. Then $\gamma_{2}(p,$ 1 -

$p)$ satisfies $\gamma_{2}(p, 1-p)H(\frac{w\langle\gamma_{2}(p,1-p))}{\gamma 2(p,1-p)})+(1$ -

$\gamma_{2}(p, 1-p))H(\frac{w(\gamma_{2}(p,1-p))}{1-\gamma 2(p,1-p)})+(1-w(\gamma_{2}(p,$$1-$

$p)))H(\frac{\gamma 2(p,1-p)-w\mathrm{t}\gamma 2(p,1-p))}{1-\gamma 2(p,1-p)})$ \geq $(2-\gamma_{2}(p,$ $1-$

$p))H(p)$.
We note that the values of the plus marks in

Figure 1 are obtained from numerical analysis of
the inequation in the theorem using Mathematica
system.
Proof. We prove the theorem expanding the re-
sults in [BYGNS99]. Using the standard Kol-
mogorov complexity arguments, they first obtain
the following results for general $k:(\log In,\gamma_{k})/n+$

$2(1-\gamma_{k})\log(k-1)\geq(2-\gamma_{k})\log k$, where $I_{n,\gamma_{k}}$

is the number of position sets that correspond to
LCSs of two strings. (Remind that γ_{k} is the ab-
breviation of $\gamma_{k}(\frac{1}{k}, \frac{1}{k}, \cdots, \frac{1}{k}).)$

In their analysis, they use uniformity of the dis-
tribution to obtain the terms $\log k$ and $\log(k-1)$.
The first term $\log k$ means that $\log k$ bits are re-
quired to represent each letter in an alphabet
of size k on the uniform distribution. Thus we
need replace the term $\log k\mathrm{b}\mathrm{y}-\sum^{k}i=0pi\mathrm{l}\mathrm{o}-1\mathrm{g}p_{i}$ in
our case by the basic fact of information theory.
We next turn to the term $\log(k-1)$. The term

$\log(k-1)$ represents the information of the se-
quence of letters of two given strings that do not
belong to the LCS of the strings. Thus, as noted
in [BYGNS99], this information is empty for $k=$

2 . Thus, for $k=2$, we have $(\log I_{n,\gamma_{2(p)}}1p,-)/n\geq$

$-(2-\gamma_{2}(p, 1-p))(p\log p+(1-p)\log(1-p))=$

$(2-\gamma \mathrm{z}(p, 1-p))H(p)$.
Here, clearly, $I_{n,\gamma_{k()}}p0,p1,\cdots,p_{k-}1$ $=$ $I_{n,\gamma_{k}}$ for

any 0 $<$ $p_{0},p_{1},$ $\cdots,p_{k-}1$ $<$ 1. Thus, we
can use the same upper bounds of $I_{n,\gamma_{k}}$ given
in [BYGNS99], that is, $(\log I1-p)n,\gamma 2(p,)/n$ \leq

$\gamma_{2}(p, 1 - p)H(\frac{w(\gamma_{2}(p,1-p))}{\gamma_{2}(p,1-p)})$ $+$ (1 $-$

$\gamma_{2}(p, 1-p))H(\frac{w(\gamma 2(\mathrm{p},1-p))}{1-\gamma 2(p,1-p)})+(1-w(\gamma_{2}(p,$ $1-$

$p)))H(\frac{\gamma 2(p,1-p)-w\mathrm{t}\gamma_{2}(p,1-p))}{1-w(\gamma_{2}(p,1-p))})$, which completes
the proof. 1

3.2 Lower bound

We next show a lower bound of $\gamma_{2}(p, 1-p)$.

Theorem 6 For any p with $0<p<1,$ $\gamma_{2}(p,$ $1-$

$\frac{p)\mathrm{i}2p-33p\mathrm{S}\mathrm{a}\mathrm{t}2+p+1}{p-3p+2p+1}1\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{t}$

.
$\max\{f(p), f(1-p)\}$, where $f(p)=$

Proof. We present a finite automaton that models
an algorithm which finds a common subsequence

4

Figure 2: Finite automaton A finding a common subsequence of two biased strings

on two finite (biased) strings. By analyzing the
associated Markov chain, a lower bound on the
expected length of the extended LCS is obtained.
The idea is based on the work by Deken [Dek79]
and Dan\v{c}\’ik and Paterson [Dan94, PD94]. Since
their strings are not biased, their automaton (e.g.,
[Dan94, Figure 3.2] $)$ are simplified using the fact
that $p=0.5$. Hence we extend the automaton
and \‘Obtain new one, say A , in Figure 2. The
number of states is 5; initial state is S_{0} , and each
state stores the previous inputs (the symbol λ

describes empty). Each dot represents the string
which is read at the next step. Each letter associ-
ated with an edge describes the next letter of the
input string. For example, A at state S_{0} moves
to S_{1} if the next input letter is 1, and it moves to
S_{2} if the next input letter is 0 . Consequently, A

at state S_{0} moves to S_{1} with probability $1-p$ and
it moves to S_{2} with probability p . The plus mark
means that, through the transition, A produces
the letter as a common substring (and the letters
stored in the state are thrown away). For exam-
ple, when A stays at the state $S_{3},$ A reads the
letter 0 (with probability p), and then it moves
to S_{0} with producing 0 as a common substring
(and throws away all letters stored at the state
$S_{3})$.

We define the transition matrix of A by a ma-
trix $\mathrm{T}_{A}=\{t_{i,j}\}$ such that $t_{i,j}$ is the probability
that the state i changes the state j in next step.

That is, we have

$\mathrm{T}_{A}=$ ($1-ppp00$ $1-p1-000p$ $p0000$ $1-pp000$ $1-pp000$).
When $0<p<1$, every element in T_{A}^{4} is posi-
tive. Thus T_{A} is regular. That is, there exists
a unique vector $\mathrm{d}=(do, d_{1}, d2,d3, d_{4})$ such that

$\mathrm{w}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{t}d\mathrm{d}\mathrm{T}_{A}=\mathrm{d}\mathrm{a}0=\mathrm{n}\mathrm{d}.,\mathrm{s}\mathrm{o}\frac{\sum_{p^{\overline{\overline{2}}}}^{4}i\underline{0}-p+d_{i}-11}{2(p^{3}-3_{\mathrm{P}^{2}}+2p+1)}d1=\frac{\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}p^{3}-2p^{2}\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}+1}{2(p^{3}-3^{2}p+2p+1)}1_{\mathrm{V}\mathrm{i}}\mathrm{n}\mathrm{g},$

’

d_{2} $=$ $\frac{p(p^{2}-p+1)}{2(p^{3}-3p^{\mathrm{z}}+2p+1)},$ d_{3} $=$ $\frac{p\{1-\mathrm{p})}{p^{3}-3p^{2}+2p+1}$, and
$d_{4}= \frac{p\mathrm{t}1-p)}{p^{3}-3p^{2}+2p+1}$. We say that a state S_{i} pro-
duces a common subsequence if it outputs a com-
mon letter when the state changes. Modifying
[Dan94, Theorem 3.2] to fit our notations, we
immediately have the following fact: For suffi-
ciently large n , the expected length of the com-
mon subsequence produced by A is given by
2 $\sum_{i=^{0^{d}i}}^{4}\mathrm{p}\mathrm{r}$ [s_{i} produces a common subsequence].
Thus, we have the expected length equals to
$2((1-p)d_{1}+pd2+pd_{3}+(1-p)d_{4})= \frac{2p^{3}-3_{\mathcal{D}^{2}}+\mathrm{p}+1}{p^{3}-3\mathrm{p}^{2}+2p+1}(=$

$f(p))$. That is a lower bound of $\gamma_{2}(p, 1-p)$.
Using the fact that $\gamma_{2}(p, 1-p)=\gamma_{2}(1-p,p)$,
we also have another lower bound $f($ 1 – $p)$.
Hence $\max\{f(p), f(1-p)\}$ is the lower bound of
$\gamma_{2}(p, 1-p)$. 1

Remark that $f(p)\neq f(1-p)$ since the automaton
A is not symmetric for the letters 0 and 1.

5

4 Approximation algorithms

In this section, we consider the approximation al-
gorithms for the equally decomposable problem.
Throughout this section, we assume that $\Sigma=$

$\{0,1, \cdots, k-1\}$. We also let $s=s0s1\ldots s2n-1$

be the input string, and $x=x_{0}X_{1-1}\ldots x_{n}$ and
$y=yoyl$ $\ldots yn-1$ be the two output strings pro-
duced by the algorithm. We consider two deter-
ministic approximation algorithms and two ran-
domized online approximation algorithms.

data by our $\mathrm{P}\mathrm{C}\mathrm{s}.$) Using Table 1, we construct
the extended Pigeon Hole Algorithm working for
$EDP(2)$; it first reads 36 letters, and computes all
possible decompositions to maximize the length
of the longest common subsequence. We call this
algorithm Brute Force Algorithm. By Table 1, we
immediately have the following theorem.

Theorem 8 For $EDP(2)$, Brute Force Algo-
rithm achieves the approximation ratio 15/18 $=$

0.833 for sufficiently large n .

4.1 Deterministic Approximation Al-
gorithms

Our first deterministic algorithm first reads $k+1$

input letters. Then, by the pigeon hole principle,
at least two of them are the same. Thus the al-
gorithm outputs the same letters into x and y ,
respectively. The remainder letters are output
appropriately. The algorithm repeats the process
until the input string ends up. (Remark that it
is easy to make the algorithm to output x and
y with $|x|=|y|=n.$) We call this algorithm
Pigeon Hole Algorithm.

Theorem 7 For $EDP(k)$, Pigeon Hole Algo-
rithm achieves the approximation ratio $\frac{2}{k+1}$.

Proof. At least two letters of $k+1$ letters are
used as a part of common subsequence. More-
over, the longest common subsequence has at
most length n . Thus the approximation ratio is
at

$\mathrm{w}_{\mathrm{e}\mathrm{n}}^{\mathrm{e}\mathrm{a}}\mathrm{o}\mathrm{W}1\mathrm{S}\mathrm{t}\frac{1}{2}2\mathrm{f}\mathrm{o}n\frac{2}{k+1,\mathrm{c}\mathrm{u}\mathrm{s}}\frac{1}{n}\mathrm{o}\mathrm{n}=\frac{2}{k+1,\mathrm{e}}\mathrm{t}\mathrm{h}EDP(2)$

. In the case,
$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{I}$

$\mathrm{P}\mathrm{i}\dot{\mathrm{g}}\mathrm{e}\mathrm{o}\mathrm{n}$ Hole Algorithm reads only 3 letters on
each process. We modify the algorithm to read
m\={O}re letters. To evaluate its $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$ ra-
tio, we define min-max $LCS(k, n)$ as follows: We
can decompose any string s of length $2n$ into two
strings x and y with $|x|=|y|=n$ such that
$lcS(X, y)$ is at least min-max $LCS(k, n)$. More
precisely, min-max $LCS(k, n)$ is equal to

$\min_{s\in\Sigma 2n}$

$s\in uv\mathrm{m}\mathrm{a}\mathrm{x}$

,
$lcs(u, v)$.

$|u|\mathrm{I}|v|=n$

We can com-
pute the exact values of min-max $LCS(k, n)$ for
small k and n . Letting $k=2$, we obtain the data
in Table 1. (It takes several weeks to obtain the

4.2 Randomized Approximation Algo-
rithms

In this section, we first construct an online ran-
domized algorithm. Let l_{x} and l_{y} be the length of
the strings that are already produced by the algo-
rithm as x and y , respectively. The algorithm, say
R_{1} , is easy to describe; R_{1} outputs given input s_{i}

as $x_{l_{x}}$ with probability $\frac{1}{2}$, and as $y_{l_{y}}$ with prob-
ability $\frac{1}{2}$. (We remark that R_{1} does not output
two strings of the same length in general. We will
show another randomized algorithm R_{2} that out-
puts two strings of the same length, and achieves
the same approximation ratio as $R_{1}.$) The R_{1} has
the following property.

Lemma 9 (1) Each possible decomposition oc-
curs with the same probability.

(2) $\mathrm{P}\mathrm{r}[x_{i}=j]=\mathrm{P}\mathrm{r}[y_{i}=j]$ for every $0\leq i\leq$

$2n-1$ and $0\leq j\leq k-1$.
(3) For each $0\leq i\leq 2n-1$ and $0\leq j\leq$

$2n-i,$ R_{1} outputs s_{i+j} as x_{i} with probability
$\frac{1}{2^{t+J}}(^{i+j-1}i-1)$.

Proof. The number of possible decomposition
is equal to 2^{2n} , and each decomposition occurs
with probability $\overline{2}^{2\overline{n}}1$. Thus (1) holds. Symme-
try of the algorithm immediately implies (2). $\mathrm{I}\mathrm{t}_{J}$

is not difficult to see that s_{i+j} can become.r,i

when $0\leq j\leq 2n-i$. Here s_{i+j} becomes x_{i} if
and only if j letters of $s_{0},$ $S_{1},$ $\cdots,$ $s_{i}+j-1$ become
a part of $y,$ $i-1$ letters of $S_{0},$ $S_{1},$ \cdots,S_{i+j-1} be-
come a part of x , and s_{i+j} becomes x_{i} . Thus, we

have $\mathrm{P}\mathrm{r}$ [$S_{i+}j$ becomes x_{i}] $=(^{i+j-1}i-1)(\frac{1}{2})^{i+i^{-}1}\frac{1}{2}=$

$(^{i+j-1}i-1)(\frac{1}{2})^{i+j}$ 1

Next we analyze and state two approximation
ratios of R_{1} .

6

Table 1: min-max $LCS(2, n)$

Theorem 10 (1) R_{1} achieves the approximation
ratio $\frac{1}{4}$ [CheOO].

(2) R_{1} achieves the approximation ratio γ_{k} .

Thus, using Fact 1, we immediately have the fol-
lowing corollary.

Corollary 11 For sufficiently large n , the ap-
proximation ratio of R_{1} is

(1) for $EDP(2)$, at least 0.77391, and 0.8120
experimentally,

(2) for $EDP(k)$ with $2<k\leq 16$, at least $\frac{1}{\sqrt{k}}$,
and

(3) for $EDP(k)$ with $16<k$, at least $\frac{1}{4}$.

We first show the proof of Theorem 10(1).
Proof. Given input s , let $x^{*}=x_{011}^{**}X\cdots X_{n-}^{*}$ and
$y^{*}=y_{0}^{*}y_{1}^{*}\cdots y^{*}n-1$ be an optimal solution of the
$EDP(k)$. We also let $c^{*}=c_{0}c_{1n-1}\ldots C$’ be one of
the longest common substrings of x^{*} and y^{*} . Each
c_{i} corresponds to some $x_{\phi()}^{*}i$ and $y_{\psi(i)}^{*}$, where $\phi,$ ψ

are some functions with $0\leq\phi(0)<\phi(1)<\cdots<$

$\phi(n’-1)\leq n-1$ and $0\leq\psi(0)<\psi(1)<\cdots<$

$\emptyset(n’-1)\leq n-1$. Let x and y be the output of
R_{1} . Then, one of the following four cases occurs
for each i with $0\leq i\leq n’-1$:

(1) Both $x_{\phi()}^{*}i$ and $y_{\psi(i)}^{*}$ are output in x .
(2) Both $x_{\phi(\rangle}^{*}i$ and $y_{\psi(i)}^{*}$ are output in y .
(3) $x_{\phi()}^{*}i$ is output in x , and $y_{\psi(i)}^{*}$ is output in

y .
(4) $x_{\phi(i\rangle}^{*}$ is output in y , and $y_{\psi(i)}^{*}$ is output in

x .
Each case occurs with the same $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\frac{1}{4}$.

Thus the expected size of the set of the letters in
each case is $\frac{n’}{4}$. The letters in the case (3) produce
a common substring. Thus the expected length
of $lcS(X, y)$ is at least $\frac{1}{4}l_{CS}(x^{*}, y^{*})$. (Remark that
the letters in the case (4) also produce a common
substring, but we cannot use the letters in (3) and
(4) at the same time.) 1

To prove Theorem 10(2), we need a technical
lemma.

Lemma 12 We fix some letter in Σ , say $k’$. Then
for any positive real c with $0<c<1$ and pos-
itive real $\epsilon,$ $|\mathrm{P}\mathrm{r}[X_{C}n=k’]-\mathrm{P}\mathrm{r}[Xcn+1=k’]|<\epsilon$

for sufficient large n . .

Proof. For each \dot{i} and j with $0\leq i\leq 2n-1$ and
$0\leq j\leq k-1$, we define a function σ_{j} on input
letter s_{i} such that

$\sigma_{j}(s_{i})=\{$
1 if $s_{i}=j$

0 if $s_{i}\neq j$.

Then, by Lemma 9(3), we have $\mathrm{P}\mathrm{r}[x_{i}=k’]=$

$\sum_{j=}^{2n-i}0\frac{1}{2^{\iota+J}}(^{i+j-}i-11)\sigma_{k}’(s_{i+}j)$. Thus, letting $=$
0 for any positive integer $\dot{?}$, we have

$|\mathrm{P}\mathrm{r}[xi=k’]-\mathrm{P}\mathrm{r}[x_{i}+1=k’]|$

$=$ $|_{j=}^{2n-i} \sum\frac{1}{2^{i+j}}0\sigma_{k}’(_{S_{i})}+j$

$- \sum_{j=0}^{2n-i}-1\frac{1}{2^{i+j+1}}\sigma_{k^{J()}}Si+j+1|$

$=$ $|^{2n-} \sum_{i=0}^{i}\frac{1}{2^{i+j}}\sigma_{k}’(s_{i+j})$

$- \sum_{j=1}^{2n-i}\frac{1}{2^{i+j}}\sigma_{k^{l()1}}s_{ij}+$

$=$ $|_{j}^{2n-i} \sum_{=0}\frac{1}{2^{i}}\sigma k’(S_{i+i})(\frac{1}{2^{j}}$

$- \frac{1}{2}\frac{1}{2^{j-1}})|$.

7

Using the equation $\sum_{k=0}^{\infty}z^{k}=\frac{1}{(1-z)^{n_{\mathrm{T}}^{}1}}$ (see
[GKP89, (5.56)] $)$, we have

$, \lim_{narrow\infty j=}\sum_{0}^{n’}\frac{1}{2^{j}}=2^{i}$, and

$, \lim_{narrow\infty}\sum_{j=0}^{n’}\frac{1}{2^{j-1}}=2^{i+1}$.

Hence, for any posi-
tive real $\epsilon’$, we get $|\mathrm{P}\mathrm{r}[xi=k’]-\mathrm{P}\mathrm{r}[xi+1=k’]|<$

$| \sum_{j=\overline{0}}^{2n}i_{\frac{1}{2^{l}}k}’\sigma(S_{i}+j)\epsilon|$

; for sufficiently large n and
$\dot{i}=cn$. Since $0\leq\sigma_{k’}(s_{i+}j)\leq 1$, we finally have
$|\mathrm{P}\mathrm{r}[xi=k’]-\mathrm{P}\mathrm{r}[xi+1=k’]|<\epsilon$ for

$\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{l}\mathrm{y}\iota$

large n and $i=cn$.
We here show the proof of Theorem 10(2).
Proof. Repeating Lemma 12, we can show
that for any positive integer c and i , each
letter in Σ occurs with some fixed prob-
ability in any substrings $x_{i}X_{i+}1\ldots Xi+C$ and
$y_{i}yi+1\ldots y_{ic}+\cdot$ More precisely, for any posi-
tive integer c and positive real d with 0 $<$

d $<$ 1 and positive real ϵ , $\max\{\mathrm{P}\mathrm{r}[x_{dn}$ $=$

$k’],\mathrm{p}_{\mathrm{r}}[x_{d}n+1 = k’],$ $\cdots,$ $\mathrm{p}_{\mathrm{r}}[x_{dn}+c = k’]\}$ -

$\min\{\mathrm{P}\Gamma[x_{dn}=k’],$ $\mathrm{P}\mathrm{r}[X_{d+1}n=k’],$ $\cdots,$ $\mathrm{P}\mathrm{r}[xdn+c=$

$k’]\}<\epsilon$ for each $k’$ in Σ and sufficiently large n ,
and so is $y_{i}y_{i}+1\ldots y_{i+C}$. Thus we can regard that,
on the substrings, each letter i in Σ occurs with
fixed probability $p(\dot{i})$ with $0\leq i\leq k-1$. Thus,
using Lemma 9(2), we have the approximation ra-
tio $\gamma_{k}(p(0),p(1),$ $\cdots,p(k-1))$ on the substrings.
By Theorem 4, it takes the minimum value γ_{k}

when $p(0)=p(1)=\cdot,$. $=p(k-1)= \frac{1}{k}$. Thus R_{1}

achieves the approximation ratio at least γ_{k} . I

Remark. When the input string is biased, we
can obtain better approximation ratio. We let
$k=2$. Then, for each $0\leq i\leq n-1,$ $\mathrm{P}\mathrm{r}[x_{i}=$

$1](= \mathrm{P}\mathrm{r}[y_{i}=1\iota)=\sum_{j0}^{2n-i}=\frac{1}{2+J}.(^{i+i-1}i-1)\sigma 1(s_{i}+j)$ by
Lemma 9(3). For example, if $\max\{\mathrm{P}\mathrm{r}[Xi=1]\}<$

0.2 for $0\leq i\leq n-1,$ R_{1} achieves the approx-
imation ratio at least $\gamma_{2}(0.2,0.8)\geq$ 0.850932 by
Theorem 6.

In general, the randomized algorithm R_{1} does
not produce two strings of the same length. This
point can be less useful than Pigeon Hole Algo-
rithm and Brute Force Algorithm. Hereafter, we
state another online randomized algorithm R_{2} .
It always outputs two strings of the same length,
and converges to the same behavior of R_{1} asymp-

totically. Thus, in practical, we can use R_{2} in-
stead of R_{1} .

Let l_{x} and l_{y} be the length of the strings that
are already produced by R_{2} as x and y , respec-
tively. The algorithm R_{2} , step by step, outputs
given input s_{i} as $x_{l_{x}}$ with probability $\frac{n-l}{2n-l_{x}-\iota_{y}}$,

and as $y_{l_{y}}$ with probability $\sim_{x^{-}}^{n-l}2n-l\iota y$. The algo-
rithm R_{2} has the following property.

Lemma 13 (1) $|x|=|y|=n$.
(2) Each possible decomposition occurs with

the same probability.
(3) $\mathrm{P}\mathrm{r}[x_{i}=j]=\mathrm{P}\mathrm{r}[y_{i}=j]$ for every $0\leq i\leq$

$n-1$ and $0\leq j\leq k-1$.
(4) For each 0 \leq i \leq n – 1 and 0 $\leq’$

$j\leq n,$ R_{2} outputs s_{i+j} as x_{i} with probability
$(^{2n-\mathrm{t}}n-i)i+j)(^{i+}i-j-11)/$.

Proof. (1) When the length of x becomes n , the
probability $\frac{n-l}{2n-l_{x}-\iota_{y}}$ becomes zero. This immedi-
ately shows (1).
(2) We assume that the algorithm already pro-
duced
$x_{0}\cdots x_{l_{x^{-1}}}$ and $y_{0}\cdots y_{l}y^{-1}$. Then the algorithm
will decompose $s_{l_{x}+2}l_{y}\ldots Sn-1$ into $x_{l_{\mathrm{a}}}\cdots x_{n}$ and
$y_{l_{y}}\cdots y_{n}$. The number of the decomposition
is $(^{2n-\mathrm{t}}n-l_{x}lx+l)y)$. Among the decomposition, the
number of the decomposition with $s_{l_{x}+}l_{y}=x_{l_{x}}$

is $(^{2n-\mathrm{t}}n-l_{x,l^{+\iota_{y}}}x^{-1})-1)$, and the number of the de-
composition with $s_{l_{x}+l_{y}}=y_{l_{y}}$ is $(^{2n-(+}nl_{x-l_{x}}l_{y})-1)$.
Now, $(^{2n-\mathrm{t}^{l_{x}+}y}n-l_{x}-1)l)-1/(^{2n}- \mathrm{t}l_{x}))n-\iota^{+\iota_{y}}x=\frac{n-l}{2n-l_{x^{-l_{y}}}}$, and
$(^{2n-\mathrm{t}^{l_{x}+}y}n-lxl)-1)/(^{2n-(l_{x}}n-l^{+}x)l_{y})=\sim_{y}2n-lx-n-ll$

’ that con-
cludes the proof of (2).
(3) Symmetry of the algorithm implies.
(4) It is clear that s_{i} is the first letter being able
to become x_{i} . Reversing the strings, we also have
that $s_{2n-1\mathrm{t}^{n-i}-1)}-=s_{n+i}$ is the last letter being
able to become x_{i} . Thus, the value of x_{i} depends
on s_{i+j} with $0\leq j\leq n$. Thus it is sufficient

$\mathrm{t}\mathrm{o}\mathrm{s}s_{i+ji}\mathrm{h}\mathrm{o}=\mathrm{w}_{X\mathrm{i}(^{2}}\mathrm{t}\mathrm{h}\mathrm{e}_{\mathrm{S}}\mathrm{f}\mathrm{o}11_{0-}\mathrm{w}_{i+_{\mathrm{J}}}nn\langle-i\mathrm{i}\mathrm{n}_{\ovalbox{\tt\small REJECT}}\mathrm{C}1\mathrm{a})(i+j-\cdot 1)j/\mathrm{i}\mathrm{m},\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{W}\mathrm{i}\mathrm{t}j\leq \mathrm{i}\mathrm{o}\mathrm{b}\mathrm{a}_{\mathrm{h}0\leq}\mathrm{b}1\mathrm{i}\mathrm{t}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$

n .
To become the input s_{i+j} the output x_{i} ,

among $s_{0},$ $\cdots,$ $s_{i}+i^{-}1,$ $(^{i+j-1}j)$ letters of them be-
come a part of the string y , and $(^{i+j-1}i-1)$ let-
ters of them become a part of the string x .
The number of such decomposition is $(^{i+i^{-}\mathrm{l}}j)$.
Moreover, by (2), each possible decomposi-
tion occurs with the same probability equal to

8

$\frac{n(n-1.)\cdots(n-i+1)\cdot n(n-1).\cdot\cdot\langle n-j+1)}{2n(2n-1)\cdot\cdot(2n-i+1)\cdot(2n-i)\cdot\cdot(2n-(i+j-1))}$. Thus we
have the probability equal
to $(_{i-1}^{i+}j-1) \frac{n\langle n-1.)\cdots(n-i+1)\cdot n\mathrm{t}n-1).\cdot\cdot\{n-j\dagger 1)}{2n(2n-1)\cdot\cdot(2n-i+1)\cdot(2n-i)\cdot\cdot(2n-(i+j-1))}.=$

$(^{i+j-1}i-1) \frac{(2n-(i+j!)n!n!}{(2n)!(n-i)\mathrm{t}n-j)!}!=\frac{(^{i+j-1}i-1)(^{2}n-(i+J))nn-i}{(_{n})}$. I

Intuitively, two algorithms R_{1} and R_{2} converge
the same behavior asymptotically because the ex-
pected probability that R_{2} outputs s_{i} as a part of
x is $\frac{1}{2}$. However, the probability depends on the
previous output string. Thus we need to show
lnore precise result.

Lemma 14 Fix any letter, say $k’$, in Σ . For any
positive real ϵ and c with $0<c<1$, we have

$|\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}$ [$R1$ outputs $k’$ as x_{cn}] $-\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}[R_{2}$ outputs $k’$

as x_{cn}] $|<\epsilon$ for sufficiently large n .

Proof. By Lemmas 9 and 13, we have $|\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}[R1$

outputs $k’$ as x_{cn}] $-\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}$ [R_{2} outputs $k’$ as x_{cn}]

$|= \sum_{j=0}^{2n-i}(i+ji-1-1)\sigma k’(s_{i+}j)|\frac{1}{2^{\iota+J}}-\frac{(^{2n-(\cdot+}n-iJ))}{(\begin{array}{l}2nn\end{array})}|$. We

now estimate the value of $(^{2n-\mathrm{t}^{i+j})}n-i)/$. Here-

after, we denote by $f(n)\sim g(n)$ if $\lim_{narrow\infty}\frac{f(n)}{g(n)}=$

1. Now we let i $=$ cn and j $=$ dn

with 0 $<$ c $<$ 1 and 0 $<$ d $<$ 1.
Then, using Stirling’s approximation formula
$n! \sim\sqrt{2\pi n}(\frac{n}{e})^{n}$ and an asymptotic expansion
\sim $\frac{4^{n}}{\sqrt{7\Gamma n}}$ (see [GKP89, Exercise 9.60]), we

have $(^{2n-(}n-i\mathrm{I}i+j)/$ \sim $\frac{(\{2-c-d)n)!}{(\mathrm{t}^{1-}C)n)!_{\mathrm{t}}(1-d)n)!}\frac{\sqrt{\pi n}}{4^{n}}$ \sim

$\mapsto\frac{2-c-d}{2\langle 1-C)(1-d)}(\frac{(2-c-d)2-\mathrm{c}-d}{(1-C)^{1-\mathrm{c}}(1-d)^{1-d}})^{n}$ It is not diffi-
cult to check that for any $0<c,$ $d<1,0\leq$
$\frac{1}{2^{c+d}}-\frac{(2-c-d)2-\mathrm{c}-d}{(1-C)^{1c}-(1-d)^{1-d}}\leq\frac{1}{4}$. On the other hand,

$\sqrt{\frac{2-c-d}{2(1-c)(1-d)}}$ is a positive constant. Thus, since

$\frac{1}{2^{t+J}}=(\frac{1}{2^{c+d}})^{n}$, we have $0 \leq\frac{1}{2^{l+J}}-(^{2n-(}-i\mathrm{I}i+_{J})\leq$

$\frac{1}{2^{\iota+J}}$ for sufficiently large n . Thus we finally get
$|\mathrm{P}\mathrm{r}$ [R_{1} outputs $k’$ as x_{cn}] $-\mathrm{p}\mathrm{r}[R_{2}$ outputs $k’$ as x_{C}

ϵ for sufficiently large n and $i=cn$ using the
equation $\sum_{l_{C=}0}^{\infty}z^{k}=\frac{1}{(1-z)^{n}+1}$ again. 1

Using Theorem 10 and Lemma 14, we have the
following theorem.

Theorem 15 The randomized online algorithm
R_{2} achieves the approximation ratio $1 \mathrm{n}\mathrm{a}\mathrm{x}\{\frac{1}{4}, \gamma_{k}\}$

for sufficiently large n .

It is worth remarking that the idea of the
R_{2} can be applied to the following general case;
We want to decompose a input string s of
length n into several strings $x^{0},x^{1},$

$\cdots,$
$X^{k-}1$ of

length $n_{0},$ $n_{1},$ $\cdots,$ n_{k-1} with $\sum_{i=0}^{k1}-n_{i}=n$. Let
$l_{0},$ $l_{1},$ \cdots , l_{k-1} be the length of the strings that
are already produced by the extended R_{2} as
$x^{01..k-1},$$x,\cdot,$ X , respectively. Then the extended
R_{2} outputs given input s_{i} as x^{j} with probability
$\frac{n_{\gamma}-l_{r}}{n-(l_{1}+l_{2}+\cdots+l_{k})}$ for each j with $0\leq j\leq k-1$.
Using the same strategy of the proof of Lemma
13 with multinomial coefficient, we can show
that the extended R_{2} has the following prop-
erty; $|x^{j}|$ $=n_{j}$, and each possible decomposi-
tion occurs with the same probability equal to$1/$ (see, e.g., [GKP89] for the notion
of multinomial coefficient).

5 Concluding Remarks

There are two interesting further works related
with each other. First one is evaluating the exact
value of min-max $LCS(k, n)/n$. It is not diffi-
cult to see that $\gamma_{k}\leq\min-\max LCs(k, n)/n\leq 1$

for sufficiently large n . It seems to increase for
n , but we do not know if it has an upper bound
less than 1. Second one is determining if $EDP(k)$

has a polynomial time approximation scheme (see
[Hoc95] for the notion of the polynomial time ap-
proximation scheme). Two problems have the
following relation: If min-max $LCS(k, n)/n$ con-
verges to 1, $EDP(k)$ has a polynomial time ap-
proximation scheme. More precisely, for any
given ϵ $>$ 0 , there exists positive constant
n_{0} with $\min-\max LcS(k,n\mathrm{o})/n_{0}$ \geq 1 – ϵ if
min-max $LCS(k, n)/n$ converges to 1. Thus we
can construct the algorithm based on the same
idea of Brute Force Algorithm, which first reads

$n]1_{\mathrm{i}_{0}\mathrm{n}}^{\mathrm{t}1\mathrm{t}}0_{<}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{S}.\mathrm{c}^{\mathrm{r}_{1}\mathrm{S}}\mathrm{e}\mathrm{a}\mathrm{r}1\mathrm{y}\mathrm{h}\mathrm{P}^{\mathrm{u}_{\mathrm{O}}}\mathrm{c}_{\mathrm{i}}\mathrm{o}_{\mathrm{S}\mathrm{a}1\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{h}\mathrm{i}\mathrm{e}\mathrm{V}}\mathrm{m}\mathrm{t}\mathrm{e}\mathrm{S}\mathrm{a}11\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{s}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{C}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{X}- \mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\Gamma}}\mathrm{p}\mathrm{o}\mathrm{S}\mathrm{i}-$

imation ratio $1-\epsilon$.

Acknowledgments

The authors thank to Professor Zhi-Zhong Chen
who pointed that the algorithm R_{1} achieves the
approximation ratio $\frac{1}{4}$ stated in Theorem 10(1).
The authors also wish to thank Professor Kazuo
Iwama for his helpful advice for this work.

9

References

[BYGNS99] R.A. Baeza-Yates, R. Gavald\‘a,
G. Navarro, and R. Scheihing.
Bounding the Expected Length of
Longest Common Subsequences and
Forests. Theory of Computing Sys-
tems, $32(4):435^{-452}$, 1999.

[CheOO] Z.-Z. Chen. Personal communica-
tion. 2000.

[CS75] V. Chv\’atal and D. Sankoff. Longest
Common Subsequences of Two Ran-
dom Sequences. J. Appl. Prob.,
12:306-315, 1975.

[Dan94] V. Dan\v{c}\’ik. Ex-
pected Length of Longest Common
Subsequences. PhD thesis, Univer-
sity of Warwick, 1994. available at
http: $//\mathrm{w}\mathrm{w}\mathrm{w}.$ dCS. warwick. $\mathrm{a}\mathrm{c}.\mathrm{u}\mathrm{k}/$

$\mathrm{p}\mathrm{u}\mathrm{b}/\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{s}/\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{s}/\mathrm{d}\mathrm{a}\mathrm{n}94$. html.

[Dek79] J.G. Deken. Some Limit Re-
sults fo Longest Common Subse-
quences. Discrete $fi\mathrm{r}_{at}hemati_{C}s$,
26:17-31, 1979.

[DP95] V. Dan\v{c}\’ik and M. Paterson. Up-
per Bounds for the Expected Length
of a Longest Common Subsequence
of Two Binary Sequences. Ran-
dom Structures and Algorithms,
$6(4):449-458$, 1995.

[GKP89] R.L. Graham, D.E. Knuth, and
O. Patashnik. Concrete Mathe-
matics. Addison-Wesley Publishing
Company, 1989.

[Hoc95] D. Hochbaum (eds.). Approxima-
tion Algorithms for NP-hard Prob-
lems. PWS Publishing Company,
1995.

[Iwa82] K. Iwama. On Equations Includ-
ing String Variables. In Proc. 23th
Symp. on Foundations of Computer
Science, pages 226-235. IEEE, 1982.

[Iwa83] K. Iwama. Unique Decomposabil-
ity of Shuffled Strings: A Formal

Treatment of Asynchronous $\mathrm{T}\mathrm{i}_{1}\mathrm{n}\mathrm{e}-$

Multiplexed Communication. Ill
Proc. 15th ACM Symp. on the The-
ory of Computing, pages 374-381.
ACM, 1983.

[IwaOO] K. Iwama. Personal communication.
2000.

[PD94] M. Paterson and V. Dan\v{c}\’ik. Longest
Common Subsequences. In Proc.
19th MFCS, pages 127-142. Lecture
Notes in Computer Science Vol. 841,
Springer-Verlag, 1994.

[UehOO] R. Uehara. NP-completeness
of Equally Decomposable Problem.
manuscript, 2000.

10

