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Abstract: A coterie under an underlying set $U$ is a family of subsets of $U$ such that every
pair of subsets has at least one element in common but neither is a subset of the other. A
coterie $C$ under $U$ is said to be non-dominated $(\mathrm{N}\mathrm{D})$ if there is no other coterie $D$ under $U$

such that, for $\forall Q\in C$ , there exists $Q’\in D$ satisfying $Q’\subseteq Q$ .
We introduce the operation $\sigma$ which transforms a ND coterie to another ND coterie. A
regular coterie is a natural generalization of a vote-assignable coterie. We show that any
regular ND coterie $C$ can be transformed to any other regular ND coterie $D$ by judiciously
applying the a operation to $C$ at most $|C|+|D|-2$ times.
As another application of the a operation, we present an incrementally polynomial-time
algorithm for generating all regular ND coteries. We then introduce the concept of g-regular
functional, as a generalization of availability. We show how to construct an optimum coterie
$C$ with respect to a $\mathrm{g}$-regular function in $O(n^{3}|C|)$ time, where $n=|U|$ . Finally, we discuss
the structures of optimum coteries with respect to a $\mathrm{g}$-regular functional.

Keywords: Coteries, Non-dominated coteries, Regular coteries, Availability, Mutual-
exclusion, Positive self-dual Boolean functions, Regular self-dual Boolean functions, g-regular
functionals.

1 Introduction

A coterie $C$ under an underlying set $U$ $=$

$\{1,2, \ldots, n\}$ is a family of subsets (called quo-
rums) of $U$ satisfying the intersection property
(i.e., for any pair $S,$ $R\in C,$ $S\cap R\neq\emptyset$ holds),
and minimality (i.e., no quorum in $C$ contains
any other quorum in $C$ ) $[8,11]$ . The concept of a
coterie has applications in $\mathrm{d}\mathrm{i}\mathrm{v}.\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ areas (see e.g.,
[6, 8, 11, 15] $)$ .

For example, to achieve mutual exclusion in a
distributed system, let the elements in $U$ repre-
sent the sites in the distributed system. A task
is allowed to enter a critical section only if it can
get permissions from all the members of a quo-
rum $Q\in C$ , where each site is allowed to issue at
most one permission at a time. By the intersec-
tion property, it is guaranteed that at most one
task can enter the critical section at any time.

A coterie $D$ is said to dominate another co-
terie $C$ if, for $\forall Q\in C$ , there exists a quorum
$Q’\in D$ satisfying $Q’\subseteq Q[8]$ . A coterie $C$ is non-
dominated $(\mathrm{N}\mathrm{D})$ if no other coterie dominates it.
ND coteries are important in practical applica-
tions, since they have maximal “efficiency” in
some sense $[3, 8]$ .

Given a family $C$ of subsets of $U$ , which is
not necessarily a coterie, we define a positive
(i.e., monotone) Boolean function $f_{C}$ such that
$f_{C}(x)=1$ if the Boolean vector $x\in\{0,1\}^{n}$ is
greater than or equal to the characteristic vec-
tor of some subset1 in $C$ , and $0$ otherwise. It
was shown in [10] that $C$ is a coterie (resp., ND
coterie) if and only if $f_{C}$ is dual-minor (resp.,
self-dual) [14]. Based on this characterization,
Bool.e.an algebra can be exploited to derive var-

1 The $i\mathrm{t}\mathrm{h}$ component of the characteristic vector is 1 (0)
if $i\in U$ is (not) contained in the subset.
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ious properties of $(\mathrm{N}\mathrm{D})$ coteries.
A coterie $C$ is said to be vote-assignable if

there exist a vote assignment $w$ : $U\vdash\Rightarrow \mathrm{R}^{+}$

and a threshold $t\in \mathrm{R}^{+}$ such that $w(S)\geq t$ if
and only if $S\supseteq Q$ for some $Q\in C[8,9,18]$ ,
where $\mathrm{R}^{+}$ is the set of nonnegative real num-
bers and $w(S)= \sum_{i\in S}w(\dot{i})$ . It is easy to see
that there is a one-to-one correspondence be-
tween vote-assignable coteries (resp., ND coter-
ies) $C$ and dual-minor (resp., self-dual) threshold
Boolean functions $f_{C}$ (see Section 2). The vote-
assignable coteries are important and have been
used in many practical applications, since they
can be handled efficiently (see e.g., [8, 9, 18, 19]).
We assume in this paper that a vote assignment $w$

satisfies $w(\dot{i})\geq w(j)$ for all $\dot{i}<j$ , since we are in-
terested in coteries which are non-equivalent un-
der permutation on $U$ . A coterie $C$ is equivalent
to a coterie $C’$ under permutation, if $C$ can be
transformed into $C’$ by permuting the elements
of $U$ . A coterie $C$ is said to be regular if, for ev-
ery $Q\in C$ and every pair $(\dot{i},j)\in U\cross U$ with
$\dot{i}<j,\dot{i}\not\in Q$ and $j\in Q$ , there exists quorum
$Q’\in C$ such that $Q’\subseteq(Q\backslash \{j\})\cup\{i\}^{2}$. By
definition, a vote-assignable coterie $C$ is always
regular, though the converse is not true in gen-
eral. It is known that most regular coteries are
vote-assignable [14], in particular, all regular ND
coteries for $n\leq 9$ are vote-assignable.

Among the important problems regarding co-
teries are:

(i) construct “optimal” ND coteries according
to a certain criterion, such as availability
and load (equivalently, construct an “opti-
mal” positive self-dual function), and

(ii) generate all ND coteries (equivalently, all
positive self-dual functions) systematically.

As for (i), let us consider the availability of a
coterie. Assume that element $i$ is operational with
probability $p_{i}$ , where the probabilities for differ-
ent components are independent. Given the oper-
ational probabilities $p_{i},\dot{i}\in U$ , where we assume
without loss of generality that $1\geq p_{1}\geq p_{2}\geq$

$...\geq p_{n}\geq 0$ , the availability of a coterie $C$ is the
probability that the set of operational elements
contains at least one quorum in $C$ . Availability

2 This definition was motivated by the definition of reg-
ular Boolean functions. See Section 2.3.

is clearly an important concept in practical appli-
cations, and it is desirable to construct a coterie
with the maximum availability.

The availability of coteries has been studied ex-
tensively. It is known $[1, 17]$ that the elements
$\dot{i}\in U$ with $p_{i}<1/2$ can be ignored, i.e., there
exists a maximum-availability coterie $C$ such that
no quorum in $C$ contains $\dot{i}$ . (In the case where
$p_{i}<1/2$ holds for all $i,$ $C=\{\{1\}\}$ has the max-
imum availability [1, 7, 16] $)$ . Thus, we shall as-
sume that

$p_{1}\geq p_{2}\geq$ ... $\geq p_{n}\geq 1/2$ .

It is also known that, if either $p_{1}=1$ or $p_{1}\leq 1/2$ ,
then $C=\{\{1\}\}$ has the maximum availability. If
$1\neq p_{1}>1/2$ , on the other hand, it is demon-
strated in $[17, 19]$ that the coterie $C_{\max}$ , given
below, maximizes availability. First define the
weight for $\dot{i}\in U$ by

$w^{*}(\dot{i})$ $=$ $\log_{2}(p_{i}/(1-p_{i}))$ ,

and introduce the notation $w^{*}(S)= \sum_{i\in^{s^{w^{*}}}}(\dot{i})$

for $S\subseteq U$ . Now, $Q\in C_{\max}$ if

(a) $w^{*}(Q)(=w^{*}(U\backslash Q))=w^{*}(U)/2$ and $1\in Q$

(1 is an element of $U$), or
(b) $Q$ is a minimal subset of $U$ with $w^{*}(Q)>$

$w^{*}(U)/2$ , and $Q$ does not contain any quo-
rum of type (a).

Since this coterie $C_{\max}$ is vote-assignable, [1,
17, 19] proposed algorithms to compute a vote
assignment $w$ from $w^{*}$ , called tie-breaking, in or-
der to remove case (a). An exponential algo-
rithm is proposed in [19] to find the “optimal” tie-
breaking rule, while $[1, 17]$ present polynomial-
time approximation algorithms for it. The main
problem with the above definition of $C_{\max}$ is
that there may exist a subset $S\subseteq U$ such that
$w^{*}(S)=w^{*}(U\backslash S)$ (case $(\mathrm{a})$ ), because of which
a simple vote assignment $w$ (showing that $C_{\max}$

is vote-assignable) is not easily obtainable, and
that the weight $w^{*}(\dot{i})$ is, in general, not a ratio-
nal number, hence we cannot compute $w^{*}(S)--$

$\sum_{i\in s^{w^{*}}}(\dot{i})$ in polynomial time. For the above
reasons, no polynomial algorithm for construct-
ing a maximum-availability coterie was known.
In this paper, we present a polynomial-time al-
gorithm for it. More precisely, we define a “g-
regular” functional as a generalization of avail-
ability (see Section 5), and then show that, given
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a $\mathrm{g}$-regular functional $\Phi$ , we can compute a co-
terie $C$ which maximizes $\Phi$ in $O(n^{3}|\mathit{0}|)$ time,
where $|C|$ is the number of quorums in $C$ .

Problem (ii) is known to be useful to solve (i)
$[5, 8]$ . To solve (i), one might first enumerate all
(or some) ND coteries efficiently, and select the
best one under a certain criterion, which may not
be easily computable. This procedure is useful
when $n$ is small, or when we have enough time to
compute it.

The generation of all ND coteries in a certain
subclass of vote-assignable ND coteries was dis-
cussed in [14], which is used to give a lower bound
on the number of all vote-assignable ND coteries.
However, the procedure is not polynomial and
computes a proper subclass of vote-assignable ND
coteries. H. Garcia-Molina and D. Barbara [8]
proposed an algorithm to generate all ND coter-
ies in a certain superclass of regular ND coteries.
However, it is also not polynomial. J. C. Bioch
and T. Ibaraki [5] later came up with a polyno-
mial time algorithm to generate all ND coteries,
and compiled a list containing all ND coteries un-
der up to 7 elements, which are non-equivalent
under permutation. We remark here that their
algorithm is not polynomial, if equivalent dupli-
$\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}.\mathrm{a}..\Gamma \mathrm{e}$ to be deleted $\mathrm{h}\mathrm{o}\mathrm{m}$ the output. In fact,
they compiled a list of all ND coteries under up
to 7 elements by first running their algorithm
and then selecting non-equivalent representatives
from among them. In this paper, we present a
polynomial algorithm to generate all regular ND
coteries. Since no regular ND coterie $C$ is equiv-
alent to any other regular ND coterie $C’(\neq C)$

under permutation, our algorithm does not out-
put ND coteries which are equivalent under per-
mutation. Although our algorithm outputs only
regular ND coteries, it is practically useful, be-
cause all ND coteries under up to $n=5$ elements
are all regular (if we consider their representa-
tives), and when $n$ is relatively is small, a large
fraction of ND coteries are regular [14]. More-
over, if the objective function of problem (i) is
$\mathrm{g}$-regular (e.g., the availability of a coterie), then
we can restrict our attention to regular coteries.

After defining necessary terminologies in Sec-
tion 2 we discuss in Section 3 two operations,
called $\rho$ and $\sigma$ , which transform a positive self-
dual function $f$ (representing a ND coterie) into
another positive self-dual function (representing

another ND coterie), by making a minimal change
in the set of minimal true vectors of $f$ .

Section 4 shows that any regular self-dual func-
tion $f$ (representing a regular ND coterie) can be
transformed into any other regular self-dual func-
tion $g$ (representing any other regular ND coterie)
by judiciously applying $\sigma$ operations to $f$ at most
$| \min T(f)|+|\min T(g)|-2$ times. In Sections 5
and 6, we consider the problems of computing
an optimal self-dual function with respect to a
$g$-regular functional $\Phi$ and generating all regular
self-dual functions, as applications of the above
transformation.

In addition to the theory of coteries, the con-
cepts of self-duality and regularity play important
roles in diverse areas such as learning theory, op-
erations research and set theory. The results of
this paper are relevant to all these areas.

Due to the space limitation, the proofs of some
results are omitted (see [12, 13]).

2 Preliminaries

A Boolean function (a function in short) is a map-
ping $f$ : $\{0,1\}^{n}\vdasharrow\{0,1\}$ , where $v\in\{0,1\}^{n}$

is called a Boolean vector (a vector in short).

If.$f(v)=1$ (resp., $0$ ), then $v$ is called a true
(resp., false) vector of $f$ . The set of all true vec-
tors (resp., false vectors) of $f$ is denoted by $T(f)$

(resp., $F(f)$ ). For any two functions $f$ and $g$ ,
we say that $f$ is covered by $g$ (written $f\leq g$ ) if
$T(f)\subseteq T(g)$ . For a vector $v=(v_{1}, v_{2}, \ldots , v_{n})$ ,
we define ON$(v)=\{j|v_{j}=1\}$ and OFF$(v)=$

$\{j|v_{j}=0\}$ .
The argument $x$ of function $f$ is represented

as a vector $x=(x_{1}, x_{2,\ldots,n}x)$ , where each $x_{i}$ is
a Boolean variable. A variable $x_{i}$ is said to be
relevant if there exist two vectors $v$ and $w$ such
that $f(v)\neq f(w),$ $v_{i}\neq w_{i}$ , and $v_{j}=w_{j}$ for all
$j\neq\dot{i}$ ; otherwise, it is said to be irrelevant. The
set of all relevant variables of a function $f$ is de-
noted by $V_{f}\subseteq V=\{x_{1}, x_{2}, \ldots , x_{n}\}$ . A literal
is either a variable $x_{i}$ or its complement $\overline{x}_{i}$ . A
term $t$ is a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\wedge i\in P(t)xi\wedge\bigwedge_{j\in N}(t)^{\overline{x}_{j}}$ of
literals such that $P(t),$ $N(t)\subseteq\{1,2, \ldots, n\}$ and
$P(t)\cap N(t)$

.
$=\emptyset$ ; E.g., $t_{1}=x_{1}x_{4^{\overline{X}}}5^{X_{6}}$ is a term,

while $t_{2}=x_{2}x_{4}\overline{X}_{2}$ is not. A disjunctive normal
form (DNF) is a disjunction of distinct terms. It
is easy to see that any function $f$ can be repre-
sented in DNF, whose variable set is $V_{f}$ .
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We sometimes do not distinguish a formula
(e.g., DNF) from the function it represents, if no
confusion arises.

2.1 Positive functions

For a pair of vectors $v,$ $w\in\{0,1\}^{n}$ , we write
$v\leq w$ if $v_{j}\leq w_{j}$ holds for all $j\in V$ , and
$v<w$ if $v\leq w$ and $v\neq w$ . For a set of vec-
tors $S\subseteq\{0,1\}^{n},$ $\min\geq S$ (resp., $\max\geq S$) denotes
the set of all minimal (resp., maximal) vectors in
$S$ with respect to $\geq$ ; For example, for a func-
tion $f,$ $\min T(\geq f)$ (resp., $\max\geq F(f)$ ) denotes
the set of all minimal true vectors (resp., max-
imal false vectors) of $f$ . We sometimes use $\min S$

(resp., $\max S$) instead of $\min S\geq$ (resp., $\max\geq S$),
if no confusion arises. A function $f$ is said to
be positive or monotone if $v\leq w$ always implies
$f(v)\leq f(w)$ . A prime implicant of a function $f$

is a term $t$ that implies $f$ but no proper subterm
of $t$ implies $f$ . There is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspon-
dence between $\min T(f)$ and the set of all prime
implicants of $f$ , such that a vector $v$ corresponds
to the term $t_{v}$ defined by $t_{v}=x_{i_{1}i_{2}i_{k}}x\cdots X$ if
$v_{i_{j}}=1,j=1,2,$ $\ldots,$

$k$ and $v_{i}=0$ otherwise.
For example, the vector $v=$ (1010) corresponds
to the term $t_{v}=x_{1}x_{3}$ . We also use the nota-
tion $t_{\overline{v}}$ to denote the term $x_{j_{1}}x_{j_{2}j_{l}}\ldots X$ , where
$\{j_{1}, j_{2}, \ldots,j_{l}\}$ $=$ $\{1, 2, \ldots, n\}\backslash \{\dot{i}_{1},\dot{i}_{2}, \ldots, i_{k}\}$ .
For the above $v=(1010)$ , we have $t_{\overline{v}}=x_{2}x_{4}$ .

It is known that a positive function $f$ has
the unique minimal $d_{\dot{i}Sj\dot{u}n}ctive$ normal form
(MDNF), consisting of all the $\dot{\mathrm{p}}$rime implicants of
$f$ , where $N(t)=\emptyset$ for each prime implicant $t$ . In
this paper, we sometimes represent the MDNF of
a positive function such as $f=x_{1}x_{2}+x_{23}X+X_{3}X_{1}$

by a simplified form $f=12+23+31$ , by using only
the subscripts of the literals. Coteries can be con-
veniently modeled by positive Boolean functions,
based on the fact that $\min T(f)$ can represent a
family of subsets, none ofwhich includes the other
[10].

2.2 Dual-comparable functions

The dual of a function $f$ , denoted $f^{d}$ , is defined
by

$f^{d}(x)=\overline{f}(\overline{X})$ ,

where $\overline{f}$ and $\overline{x}$ denote the complement of $f$ and
$x$ , respectively. As is well-known, $f^{d}$ is obtained

from $f$ by interchanging $+(\mathrm{O}\mathrm{R})$ and. (AND),
as well as the constants $0$ and 1. It is easy to
see that $(f+g)^{d}=f^{d}g^{d},$ $(fg)^{d}=f^{d}+g^{d}$ , and
so on. A function is called dual-minor if $f\leq f^{d}$ ,
dual-major if $f\geq f^{d}$ and self-dual if $f=f^{d}$ .
For example, $f=123$ is dual-minor since $f^{d}=$

$1+2+3$ satisfies $f\leq f^{d}$ .
If $f$ is positive, then $f^{d}$ is also positive. In this

case, an alternative definition of $f^{d}$ is given by
the condition that $v\in T(f^{d})$ if and only if $v$ is a
transversal of $\min T(f)$ ; i.e., it satisfies ON $(v)\cap$

ON $(w)\neq\emptyset$ for all $w \in\min T(f)$ .
Let $c_{SD}(n)$ (resp., $C_{DMA}(n)$ and $C_{DMI}(n)$ ) de-

note the class of all positive self-dual (resp., dual-
major and dual-minor) functions of $n$ variables.
Note that in these definitions functions may have
some irrelevant variables.

2.3 Regular, 2-monotonic and thresh-
old functions

A positive function $f$ is said to be regular if, for
every $v\in\{0,1\}^{n}$ and every pair $(\dot{i},j)$ with $\dot{i}<j$ ,
$v_{i}=0$ and $v_{j}=1$ , the following condition holds:

$f(v)$ $\leq$ $f(v+e^{()}-e^{(j)}i)$ , (1)

where $e^{(k)}$ denotes the unit vector which has a 1
in its k-th position and $\mathrm{O}’ \mathrm{s}$ in all other positions.

In order to define an important partial order on
$\{0,1\}^{n}$ , we first define the concept of the profile
of a vector $v\in\{0,1\}^{n}$ as follows:

profv
$(k)= \sum_{j\leq k}v_{j}$

,

where $k=1,2,$ $\ldots,$
$n$ . If $v,$ $w\in\{0,1\}^{n}$ , where

$v\neq w$ , satisfy profv $(k)\leq profw(k)$ for all $k$ , then
we write $v\prec w$ (or $w\succ v$ ), and we say that $v$

supports $w$ . If $v\prec w$ or $v=w$ , then we write
$v\preceq w$ (or $w\succeq v$ ).

It is clear from the above definition that $v\prec$

$w$ if and only if $\overline{v}\succ\overline{w}$, since $prof\overline{v}(k)=k-$

$profv(k)$ . Note that $v\leq w$ implies $v\preceq w$ but
the converse is not always true. A function $f$

is said to be profile-monotone if $v\prec w$ implies
$f(v)\leq f(w)$ . The following lemma is proved in
[14].

Lemma 1 ([14]) A function $f$ is regular if and
only $\dot{i}ff$ is profile-monotone.
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For a set of vectors $S\subseteq\{0,1\}^{n},$ $\min S\succeq$ (resp.,
$\max\succeq S)$ denotes the set of all minimal (resp.,
maximal) vectors in $S$ with respect to $\succeq$ . For
any set of vectors $S\subseteq\{0,1\}^{n}$ , we have $\min\succeq S\subseteq$

$\min S$ $(= \min\geq S)$ and $\max\succeq S$ $\subseteq$ $\max S(=$

$\max\geq S)$ , since $v\geq w$ implies $v\succeq w$ . It fol-
lows from Lemma 1 that a regular function $f$ is
uniquely determined by $\min\succeq T(f)$ .

A positive function $f$ is called 2-monotonic if
there exists a linear ordering on $V$ , for which
$f$ is regular. The 2-monotonicity was originally
introduced in conjunction with threshold func-
tions (e.g., [14]), where a positive function $f$ is
a threshold function if there exist $n$ nonnegative
real numbers (weights) $w_{1},$ $w_{2},$ $\ldots,$ $w_{n}$ and a non-
negative real number (threshold) $t$ such that:

$f(x)$ $=$ 1 if and only if $\sum w_{i}x_{i}\geq t$ . (2)

As this$\cdot$

$f$ satisfies (1) by permuting variables so
that $w_{i}>w_{j}$ implies $\dot{i}<j$ , a threshold function
is always 2-monotonic, although the converse is
not true [14].

3 The operators $\rho$ and $\sigma$

Let $f$ be a positive function of $n$ variables.
Throughout this paper, we assume that $f$ is non-
trivial in the sense that $f\not\equiv \mathrm{O},$ $1$ and $n\geq 1$ . Given
a vector $v \in\min T(f)$ , the operation $\rho_{v}$ applied
to $f$ removes $v$ from $T(f)$ and then adds $\overline{v}$ to $T(f)$

[5]. More precisely, while adding $\overline{v}$ , all the vectors
larger than $\overline{v}$ are also added to $T(f)$ . Therefore,

$T(\rho_{v}(f))$ $=$ $(T(f)\backslash \{v\})\cup\tau\geq(\overline{v})$ , (3)

where $\tau_{\geq}(\overline{v})=\{w\in\{0,1\}^{n}|w\geq\overline{v}\}$. An equiv-
alent definition is

$\rho_{v}(f)$ $=$ $f\backslash v+t_{\overline{v}}+t_{v}t_{\frac{d}{v}}$, (4)

where $f_{\backslash v}$ denotes the function defined by all the
prime implicants of $f$ except $t_{v}$ , and $t \frac{d}{v}$ denotes
the dual of $t_{\overline{v}}$. We note that, if $t_{v}=x_{i_{1}i_{2}i_{k}}X\cdots x$

and $t_{\overline{v}}=x_{j_{1}}xj_{2}\ldots Xj_{l}$ , then

$t_{v}t \frac{d}{v}=x_{i_{1}i_{2}i_{k}}x\cdots x(x_{j_{1}}+x_{j_{2}}+\cdots+x_{j_{l}})$

represents all the vectors larger than $v$ . The ex-
pression (4) is not necessarily in MDNF, even if
$f\backslash v$ is represented by its MDNF, because some of

the prime implicants in $t_{\overline{v}}+t_{v}t \frac{d}{v}$ may cover or may
be covered by some prime implicants of $f\backslash v$ .

Given a vector $v \in\min T(f)$ and a variable set
$I$ with $V_{f}\subseteq I\subseteq V$ , we define the operation $\sigma_{(v;I)}$

by

$\sigma_{(v;I)}(f)$ $=$ $f \backslash v+t_{\overline{v[]}}+t_{v}I[I]t\frac{d}{v[I]}$, (5)

where $v[I]$ denotes the projection of $v$ on $I$ ; e.g.,
if $v=(1100),$ $I_{1}=\{1,2,3\}$ and $I_{2}=\{2,3\}$ , then
$v[I_{1}]=(110)$ and $v[I_{2}]=(10)$ . By definition,
$\sigma_{(v;V)}=\rho_{v}$ holds. This operation $\sigma_{(v;I)}$ is implic-
itly used in [8].

Let $f$ be a function on the variable set $V=$
$\{1,2, \ldots , n\}$ . For a variable set $I\subseteq V$ , the pro-
jection of $f$ on $I$ , denoted by $Proj_{I}(f)$ , is the
function on $I$ obtained from $f$ by fixing $x_{i}=0$

for all $x_{i}\in V\backslash I$ .
For a variable set $J\supseteq V$ , the expansion of $f$

to $J$ , denoted by $Exp_{J}(f)$ , is the function on $J$

obtained from $f$ by adding irrelevant variables
$x_{i}\in J\backslash V$ . By definition, $f$ and its expansion can
be represented by the same MDNF. Since $I\supseteq V_{f}$ ,
we have

$\sigma_{(v;I)}(f)$ $=$ $Exp_{V}(\rho v[I](ProjI(f)))$ . (6)

Thus $\sigma$ has properties similar to those of $\rho$ .
Now, for a specified class $C(n)$ of positive func-

tions of $n$ variables, we say that $\rho$ (resp., $\sigma$ ) pre-
serves $C(n)$ if $\rho_{v}(f)\in C(n)$ holds for all $f\in C(n)$

and $v \in\min T(f)$ (resp., $\sigma_{(v;I)}(f)\in C(n)$ holds
for all $f\in C(n),$ $v \in\min T(f)$ and $I\subseteq V_{f}$ ).

Theorem 1 The operations $\rho$ and a defined
above preserve the classes $C_{SD}(n),$ $C_{DMA}(n)$ and
$C_{DMI}(n)$ .

Let us further note that, if $f$ is self-dual, then
$\rho_{v}(f),$ $v \in\min T(f)$ , is specified simply by

$T(\rho_{v}(f))$ $=$ $(T(f)\backslash \{v\})\cup\{\overline{v}\}$ , (7)

i.e., by interchanging $v$ with $\overline{v}$ in $T(f)[5]$ . To see
the effect of $\sigma_{(v;I)}$ on $T(f)$ , where $V_{f}\subseteq I\subseteq V$ ,
define

$v[I]\underline{*}=\{u\in\{0,1\}^{n}|u[I]=v[I]\}$ .

It is easy to see that

$T(\sigma_{(v;)}I(f))$ $=$ $(T(f)\backslash v[I]\underline{*})\cup\overline{v}[I]\underline{*}$ . (8)
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Now consider a sequence of transformations
from a positive self-dual function $f$ to another
positive self-dual function $g$ ,

$f_{0}(=f)$ $arrow$ $f_{1}$ $arrow$ ... $arrow$ $f_{m_{1}}(=g)$ ,
$g_{0}(=f)$ $arrow$ $g_{1}$ $arrow$ ... $arrow$ $g_{m_{2}}(=g)$ ,

where $f_{i+1}=\rho_{v^{(i)}}(f_{i}),$ $v^{(i)} \in\min T(f_{i}),$ $g_{i+1}=$

$\sigma_{()}w^{(i)};I_{i}(g_{i}),$ $w^{(i)} \in\min T(g_{i})$ , and $I_{i}\supseteq V_{\mathit{9}i}$ . We
can see that $m_{1},$ $m_{2} \geq|\min T(f)\backslash \min T(g)|$ and
$m_{1}\geq|T(f)\backslash T(g)|$ . The latter implies that $m_{1}$

might be exponential in $n$ and $\min T(f)$ , while $m_{2}$

might be small. In the next section, we consider
$\rho$ and a operations on regular self-dual functions,
and give a transformation algorithm between two
regular self-dual functions $f$ and $g$ , which satisfies

$m_{2}$ $\leq$ $| \min_{-}T(f)|+-|\min T(g)|-2$ .

4 Transformation of regular
self-dual functions

The goal of this section is to present an efficient
algorithm, TRANS-REG-SD, which transforms
a given regular self-dual function $f$ to the one-
variable regular self-dual function $g=x_{1}$ . It ap-
plies a sequence of a operations to $f$ , generating a
sequence of regular self-dual functions in the pro-
cess. As we will show, this algorithm can be used
to transform a given regular self-dual function of
$n$ variables to any other regular self-dual function
of $n$ variables, some of which may be irrelevant.
We need to prove a number of lemmas to achieve
this goal.

We start with the following lemma, which
shows that $\rho_{v}$ preserves regularity if $v$ satisfies a
certain condition. (We have already seen that $\rho_{v}$

preserves self-duality.) Recall that $\rho_{v}(f)$
. is spec-

ified by (7), and therefore, we concentrate on the
$\mathrm{v}\mathrm{e}.\mathrm{c}\mathrm{t}_{0}\mathrm{r}\mathrm{s}v$ and $\overline{v}$ .

Lemma 2 Let $f$ be a regular self-dual function,
and let $v \in\min T(f)$ . $\rho_{v}(f)$ is regular if and only
$\dot{i}fv\in\min\succeq T(f)$ and $\overline{v}\neq v$ .

The following lemma shows how to choose $v$

to be used in $\rho_{v}(f)$ to guarantee that $\rho_{v}(f)$ is
regular.

Lemma 3 Let $f$ be a regular self-dual function of
$n(\geq 2)$ variables. If $v \in\min\succeq T(f)$ and $v_{n}=1$ ,
then $\rho_{v}(f)$ is regular.

Interestingly, the existence of $v$ satisfying the
condition in Lemma 3 is equivalent the relevance
of $x_{n}$ to $f$ , as proved in the following Lemma 4.

Lemma 4 For a regular function $f,$ $x_{n}$ is rel-
evant to $f$ if and only if there exists a vector
$v \in\min\succeq T(f)$ such that $v_{n}=1$ .

Lemma 3 deals with the case where $x_{n}$ is rele-
vant to $f$ . To deal with the case where $x_{n}$ is ir-
relevant to $f$ , note that for any $i,j\in V$ such that
$\dot{i}<j$ , if $x_{j}$ is relevant to a regular function $f$ then
so is $x_{i}$ . This implies that $x_{i}$ is relevant to $f$ if
and only if $V_{f}\supseteq\{1,2, \ldots, i\}$ , in particular, $x_{n}$ is
relevant to $f$ if and only if $V_{f}=\{1,2, \ldots, n\}--V$ .
Corollary 1 below generalizes Lemma 3 to the
case where $x_{n}$ may be irrelevant to $f$ .

Corollary 1 Let $f$ be a regular self-dual function
such that $|V_{f}|=\dot{i}(\geq 2)$ . If $v \in\min\succeq T(f)$ and
$v_{i}=1$ , then $\sigma_{(v;V_{f}}$ ) $(f)$ is regular.

We now have the theoretical foundation for
TRANS-REG-SD. By Lemma 3 and Corollary 1,
if $x_{n}$ is relevant to a given $f$ , we can use trans-
formation $\rho_{v}(f)$ , with some $v$ , to generate a new
regular self-dual function, and repeat this proce-
dure as long as $x_{n}$ is relevant. Once $x_{n}$ becomes
irrelevant to the newly generated function, $f’$ , we
use $\sigma$ transformations with $\mathrm{r}\mathrm{e}.\mathrm{s}$pect to $V_{f’},’$ a.nd so
forth.

What remains is the discussion of data we need
to keep track of in implementing a $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\dot{\mathrm{e}}$ of
a transformations. To represent the sequence
of regular self-dual functions $\{f’\}$ that TRANS-
REG-SD generates, we represent each such func-
tion $f’$ in terms of $\min T(f’)$ and $\min\succeq T(f’)$ .
For a vector $v$ , let us introduce the notation,
$T_{\succ}(v)=\{w|w\succ v\}$ and $T_{\prec}(v)=\{w|w\prec v.\}$ .
Lemma 5 Let $f$ be a regular self-dual function
of $n(\geq 2)$ variables, and let $v \in\min\succeq T(f)$ with
$v_{n}=1$ . Then we have

$\min T(\rho_{v}(f))=\min T(f)\backslash (\{v\}\cup\{\overline{v}+e^{(j)}|\max$

OFF $(v)<j\leq n\})\cup\{\overline{v}\}$ (9)
$\min\succeq T(\rho_{v}(f))=\min\succeq T(f)\backslash (\{v\}\cup\min\succeq\tau\succ(\overline{v}))\cup$

‘

$\{\overline{v}\}\cup\{u\in\min\succeq T\succ(..v)|u\neq z$ for all $z\in$

$( \min\succeq T(f)\backslash \{v\})\cup\{\overline{v}\}\}$ . (10)

From the proof of Lemma 5 (case (9) $(\mathrm{i})$ ), we
can see that $\overline{v}+e(n)\in\min T(f)$ . Since $v_{n}=1$ im-
plies $n> \max OFF(v),$ $\{\overline{v}+e^{(j)}|\max OFF(v)<$

$j\leq n\}$ is non-empty, and (9) implies Lemma 6.
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Lemma 6 Let $f$ be a regular self-dual function
of $n(\geq 2)$ variables, and let $v \in\min\succeq T(f)$ with
$v_{n}=1$ . Then

$| \min T(\rho_{v}(f))|\leq|\min T(f)|-1(11)$

$\min T(\rho_{v}(f))n\cup\{v,\overline{v}+e^{(n)}\}=\min T(f)_{n}$, (12)

where $S_{n}$ denotes the set $\{v\in S|v_{n}=1\}$ .

We are now ready to describe the transforma-
tion algorithm. If we repeatedly apply $\rho_{v}$ oper-
ations (with different $v’ \mathrm{s}$ , of course) to a regu-
lar self-dual function $f$ , until there is no vector
$v \in\min\succeq T(f)$ with $v_{n}=1$ , then by Lemmas 3,
4 and 6, we have a regular self-dual function $f’$ ,
to which $x_{n}$ is irrelevant. Note that $f’$ may not
be unique, i.e., it in general $\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{s}$ on the se-
quence of vectors $v \in\min\succeq T(f)$ with $v_{n}=1$ that
are used in $\rho_{v}$ .

Now $V_{f’}=\{1,2, \ldots , j_{1}\}$ holds for some $j_{1}\leq$

$n-1$ . If $j_{1}=1$ , we have $f’=x_{1}$ and we are done.
If $j_{1}\neq 1$ , on the other hand, we apply $\sigma_{(v;V,)}f$

operations to $f’$ instead of $\sigma_{(v;V)}f(=\rho_{v})$ , until
there is no vector $v \in\min\succeq T(f’)$ with $v_{j_{1}}=1$ .
Since all the lemmas presented in this section are
still valid for $\sigma_{(v;V,)}f$ and $v_{j_{1}}=1$ in place of
$\sigma_{(v;V)}’(=\rho_{v})$ and $v_{n}=1$ , we obtain a regular
self-dual function $f”$ , whose relevant variable set
is $V_{f’’}=\{1,2, \ldots,j_{2}\}$ with $j_{2}<j_{1}$ . By repeat-
ing this argument, we reach the 1-variable regular
self-dual function $x_{1}$ . Formally, this sequence of
$\mathrm{t}.\mathrm{r}\mathrm{a}.\mathrm{n}\backslash ....1\mathrm{s}\mathrm{f}_{0\backslash }.\mathrm{r}.\mathrm{m}- \mathrm{a}=-..\cdot:.$

-

$\mathrm{t}$ions ca.n. be sta‘t–ed a$\mathrm{s}$follOw-.s. $\cdot$

Algorithm TRANS-REG-SD
Input: lnin $T(f)$ , where $f$ is a regular self-d.u$\mathrm{a}1$

function.
Output: Regular $\mathrm{s}\mathrm{e}\mathrm{l}\mathrm{f}_{-}\dot{\mathrm{d}}$ual functions $f‘ 0$

.
$(=f),$ $f_{1}$ ,

$f_{2},$
$\ldots,$

$f_{m}(=X_{1})$ .
..

Step $0$ : Let $\dot{i}=0$ and $f=f_{0}$ .
Step 1: Output $f_{i}$ . If $f_{i}=x_{1}$ , then halt.
Step 2: $f_{i+1}$ $=\sigma_{(vV_{f_{i}})}(\iota);(fi)$ , where $v^{(i)}$

$\in$

$\min T(\succeq f_{i})$ and $v_{\max Vj_{i}}^{(i)}=1.\dot{i}:=\dot{i}+1$ . Return
to Step 1. $\square$

By (11), the number $m$ in the output from
TRANS-REG-SD satisfies $m\leq$ $| \min T(f)|$ -

1. Since every self-dual function $f$ satisfies
$\Gamma v(\rho_{v}(f))=f$ (see (7)), we can transform $x_{1}$ into
any regular self-dual function $g$ by repeatedly ap-
plying $\sigma$ operations to $x_{1}$ at most $| \min T(g)|-1$

times. Thus we have the following theorem.

Theorem 2 Let $f$ and $g$ be any two regular self-
dual functions. Then $f$ can be transformed into $g$

by repeatedly applying a operations to $f$ at most
$| \min T(f)|+|\min T(g)|-2$ times.

In the subsequent sections, we study some ap-
plications of algorithm $\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{s}_{-}\mathrm{R}\mathrm{E}\mathrm{G}-\mathrm{S}\mathrm{D}$ .

5 Optimum self-dual function
for regular functional $\Phi$

Let $\varphi$ be a pseudo Boolean function, i.e., $\varphi$ is
a mapping from $\{0,1\}^{n}$ to the set of real num-
bers R. $\varphi$ is said to be $g$-regular if it is profile-
monotone, i.e., $\varphi(v)\geq\varphi(w)$ holds for all pairs of
vectors $v$ and $w$ with $v\succ w$ . Define a functional
$\Phi()$ of Boolean functions $f$ as follows:

$\Phi(f)$ $=$
$v \in T\sum_{(f)}\varphi(v)$

, (13)

where $\varphi$ is a pseudo Boolean function. $\Phi$ is also
said to be $\mathrm{g}$-regular if $\varphi$ is $\mathrm{g}$-regular. As an ex-
ample of a $\mathrm{g}$-regular pseudo Boolean functional of
interest, we cite the availability $A(f)$ of a Boolean
function $f$ . Assume that each element $\dot{i}\in V$ has
the operational probability $p_{i}(0\leq p_{i}\leq 1)$ , i.e.,
the $\dot{i}$-th element is operational with probability $p_{i}$ .
We also assume that the probabilities for different
elements are independent. Then the availability
of a Boolean function $f$ is defined by

$A(f)$ $=$ $\sum( \prod p_{i} \prod (1-p_{i})\mathrm{X}14)$

$v\in^{\tau}(f)i\in ON(v)$ $i\in OFF(v)$

If we interpret $T‘(f)$ as the set of states in which
the $n$-element system de.fined $\mathrm{b}.\mathrm{y}$ the. Boolean
function $f$ is working, then $A(f)$ represents the
probability that the system represented by $f$

is working. $\mathrm{A}\mathrm{v}\mathrm{a}\mathrm{i}\mathrm{l}\dot{\mathrm{a}}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ has been studied ex-
tensively, especially, in the case where $f$ repre-
sents a ND coterie (i.e., $f$ is positive self-dual)
[1, 4, 7, 16, 17, 19]. As commented in the Intro-
duction, we can assume without loss of generality
that

$p_{1}\geq p_{2}\geq$ ... $\geq p_{n}\geq 1/2$ .

Now, let $\varphi(v)=\prod_{i\in oN}(v)^{p\prod_{i\in}}iOFF(v)(1-p_{i})$ .
Then we have $\Phi(f)$ – $A(f)$ . It follows from
the assumption on the order of probabilities that
$A(f)$ is g-regular.

136



In this section, we consider the functions $f$ that
maximize $\mathrm{g}$-regular functional $\Phi$ among all self-
dual functions.

Lemma 7 Given a $\mathrm{g}$-regular function $\varphi$ , let $\Phi$ be
a $\mathrm{g}$-regular functional defined by (13). Then the
following statements regarding $f$ are equivalent.

(i) $\Phi(f)$ is maximum among all self-dual func-
tions.

(ii) All vectors $v\in T(f)$ satisfy $\varphi(v)\geq\varphi(\overline{v})$ .

(iii) All vectors $v \in\min\succeq T(f)$ satisfy $\varphi(v)\geq$

$\varphi(\overline{v})$ .

Theorem 3 Let $\Phi(f)$ be a $\mathrm{g}$ -regular functional
defined by (13). Then there exists $a$ regular self-
dual function $f$ which maximizes $\Phi(f)$ among all
self-dual functions.
Proof. Let $f$ be a regular self-dual function that
maximizes $\Phi$ among all regular self-dual func-
tions. We claim that $f$ in fact maximizes $\Phi$

among all self-dual functions. If not, by Lemma
7, there exists a vector $v \in\min\succeq T(f)$ such that
$\varphi(v)<\varphi(\overline{v})$ . Note that $v\not\geq\overline{v}$ holds, since, oth-
erwise (i.e., $v\succeq\overline{v}$), $\varphi(v)\geq\varphi(\overline{v})$ , a contradiction.
Thus, it follows from Lemma 2 that $\rho_{v}(f)$ is reg-
ular and self-dual. Moreover, by Eq. (7), we have
$\mathrm{t}\mathrm{i}_{0}\mathrm{n}\Phi(\rho_{v}.(.f ))$

$>.\Phi.(f)$ , which
$\mathrm{c}.0$.ntradicts the

$\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}-\coprod$

However, there may be non-regular functions $f$

that also maximize $\Phi(f)$ .
Based on Theorem 3, the following algorithm

computes an optimum regular self-dual function.

Algorithm OPT-REG-SD
Input: A membership oracle of $\mathrm{g}$-regular function
$\varphi$ .
Output: A regular self-dual function $f$ that max-
imizes $\Phi(f)$ among all self-dual functions.

Step $0$ : Let $\dot{i}:=1$ and $f:=x_{1}$ .
Step 1: While $\exists v\in\min_{\succ}T(f)$ such that $v_{i}=$

$0,$ $v[V_{i}]\not\geq\overline{v}[V_{i}]$ and $\varphi(v^{\overline{\prime}})<\varphi(\overline{v’})$ for $v’=$

$v+ \sum_{j=i+1}^{n}e(j)$ , do $f:=\sigma_{(vV_{i}}$ )$(;f)$ , where $V_{i}=$

$\{1,2, \ldots,\dot{i}\}$ . $-$.

Step 2: If $\dot{i}=n$ , output $f$ and halt.
$\mathrm{O}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\square$

’

let $\dot{i}:=\dot{i}+1$ and return to Step 1.

Note that the set $\min\succeq T(f)$ in the while state-
ment of Step 2 is updated as a result of applying

the a transformation to $f$ in Step 2.
Let $f_{i},\dot{i}=1,2,$

$\ldots,$
$n$ , be the function $f$ af-

ter the $\dot{i}$-th iteration of Step 1 of OPT-REG-SD
has been completed. Then clearly $V_{fi}\subseteq V_{i}(=$

$\{1,2, \ldots , \dot{i}\})$ holds. Moreover, we have the fol-
lowing lemma:

Lemma 8 Let $f_{i},\dot{i}=1,2,$
$\ldots,$

$n$ , be as defined
above. For each $\dot{i}=1,2,$

$\ldots,$
$n$ , all vectors $v\in$

$\min\succeq T(f_{i})$ with $v[V_{i}]\not\geq\overline{v}[V_{i}]$ satisfy

$\varphi(v’)$ $\underline{>}$ $\varphi(\overline{v’})$ , (15)

where $v’=v+ \sum_{j=i+1}^{n}e(j)$ .

Lemma 9 Let $f_{n}$ be as defined above. Then $f_{n}$

maximizes $\Phi$ among all self-dual functions.

Therefore, OPT-REG-SD computes an opti-
mum function $f(=f_{n})$ . Moreover, it requires
polynomial time in $n$ and the size of $f$ . (Due to
the space limitation, we omit the proof. See [12] $)$ .

Theorem 4 Algorithm OPT-REG-SD correctly
outputs a regular self-dual function $f$ that
maximizes $\Phi$ among all self-dual functions in
$O(n^{3}| \min T(f)|)$ time.

6 Generation of all regular ND
coteries

Let $C_{R- SD}(n)$ denote the class of all regular self-
dual functions of $n$ variables. We present in this
section an algorithm to generate all functions in
$C_{R- SD}(n)$ by applying the operator $\sigma$ . The al-
gorithm is incrementally polynomial in the sense
that the $\dot{i}$-th function $\phi_{i}\in C_{R- SD}(n)$ is output in
polynomial time in $n$ and

$\cdot$

$\sum_{j=0}^{i-1}|\min T(\phi_{j})|$ , for
$i=1,2,$ $\ldots,$

$|CR- SD|$ .
To visualize the algorithm, we first define an

undirected graph $G_{n}=$ $(C_{R- SD}(n), E)$ , where
$(g, f)\in E$ , if there exists a vector $v \in\min\succeq T(g)$

such that $\sigma_{(v;I)}(g)=f$ for some $I\supseteq V_{g}$ . Figure 1
shows the graph $G_{5}$ . (Ignore the arrows on some
edges).

Theorem 2 implies that $G_{n}$ is connected. More-
over, the condition $(g, f)\in E$ holds if and only
if $(f, g)\in E$ , i.e., $G_{n}$ is undirected. Let $f_{0}=x_{1}$

$.\mathrm{b}\mathrm{e}$ the designated function in $C_{R- SD}(n)$ , and con-
sider the problem of transforming an arbitrary
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OFF $(v)\cap I$ , i.e., $u[I]=v[I]$ and the remaining
components of $u$ , if any, are all set to $\mathrm{O}’ \mathrm{s}$ .

Figure 1: The graph $G_{5}$ .

function $g\in C_{R- SD}(n)$ to $f_{0}$ by repeatedly apply-
ing operation $\sigma$ in Algorithm TRANS-REG-SD.
Note that the transformation path from a given
$g$ to $f_{0}$ is not unique. Thus, to make the path
unique, we choose for each $\sigma$ operation the lexi-
cographically smallest vector $\tilde{v}\in\min\succeq T(g)$ such
that $\tilde{v}_{\max V_{g}}=1^{3}$. Let $\mu$ be such an operation,
i.e.,

$\mu(g)$ $=$ $\sigma_{(\overline{v};V)g}(g)$ . (16)

In this way, we define a directed spanning tree
of $G_{n},$ $RT=(C_{R- sD}(n), A_{RT})$ , such that $(g, f)$

is a directed arc in $A_{RT}$ if and only if $\mu(g)=f$ .
Clearly, this $RT$ is an in-tree rooted at $f_{0}=x_{1}$ .
In Figure 1, $A_{RT}$ is indicated by the thick arcs.

Our algorithm will traverse $RT$ from $f_{0}$ in a
depth-first manner, outputting each regular func-
tion $f$ when it first visits $f$ . This type of enumer-
ation is called reverse search in [2]. When $RT$

is traversed from $f_{0}$ , for each arc $(g, f)\in A_{RT}$ ,
the end node $f$ is visited first, i.e., before $g$ . Un-
fortunately, at $f$ we cannot distinguish between
the arcs in $A_{RT}$ and the edges in $E$ of $G_{n}$ . In
other words, knowing $f$ , we cannot find $g$ such
that $(g, f)\in A_{RT}$ . Note that (16) computes $f$

given $g$ , not the other way around. In Lemma
10 below, we find the “inverse” of (16) in the
sense that we find the conditions on the choice
of $w \in\min\succeq T(f)$ such that $g=\sigma_{(w;V_{g}}$ ) $(f)$ .

For a vector $v\in\{0,1\}^{n}$ and $I\subseteq V$ , let
$v[I]\underline{0}$ denote the vector $u$ defined by ON$(u)=$

3 For example, the lexicographic order of all vectors in
$\{0,1\}^{3}$ is (000), (001), (010), (011), (100), (101), (110),
(111).

Lemma 10 Let $f\in C_{R- SD}(n)$ and $g=\sigma_{(w;V)\mathit{9}}(f)$

for $w \in\min\succeq T(f)$ such that $\overline{w}[V_{g}]\neq w[V_{g}]$ and
$V_{g}\supseteq V_{j}$ . Then $f=\mu(g)(=\sigma_{(\overline{v};V_{g}})(g))$ if and
only if
(a) $w_{\max V_{g}}=0$ ,

(b) $w_{1}=1$ , and

(c) $\overline{w}[V_{g}]\underline{0}$ is lexicographically smaller than any
vector $u \in\min\succeq T(f)$ with $u_{\max V_{g}}=1$ .

Note that, if $V_{g}\neq V_{f}$ (i.e., $V_{g}\supset V_{f}$ ), Lemma 10
implies that $f=\mu(g)$ if and only if $w_{1}=1$ , since
$V_{g}\supset V_{f}$ and $w \in\min\succeq T(f)$ imply (a). Thus, for
an index set $I\supset V_{f}$ , every vector $w \in\min\succeq T(f)$

which satisfies $w_{1}=1$ and $\overline{w}[I]\neq w[I]$ always
produces $g=\sigma_{(w;I)}(f)$ such that $f=\mu(g)$ .

Let

$M_{\mathrm{s}\mathrm{u}\mathrm{m}}$ $=$ $\sum$ $| \min T(f)|$ ,
$f\in C_{RSD}-(n)$

$M_{\max}$ $=$ $\max$ $| \min T(f)|$ .
$f\in c_{R- sD}(n)$

Although the details are omitted due to the space
limitation, we have the following results [12].

Theorem 5 All functions in $C_{R- SD}(n)$ can be
generated in incrementally polynomial time. $It$

requires $O(n^{3}|CR,sD(n)|+nM_{sum})$ time and
$O(nM_{\max})$ space.

Corollary 2 All functions in $C_{R-SD}(n)$ can be
scanned in $O(n^{3}|c_{R}- SD(n)|)$ time.

We reiterate here that regular functions are all
representatives of a permutation class, i.e., no reg-
ular function $f$ is equivalent to another regular
function $g(\neq f)$ under permutation. Therefore,
our algorithm generates non-equivalent functions.
Let us remark that the algorithms in $[5, 8]$ are
not polynomial, if we try to output only non-
equivalent functions.

It is known that the positive self-dual functions
of up to $n=5$ variables are all threshold functions
(and hence regular, if we consider the representa-
tives), but there are many non-regular self-dual
functions for $n\geq 6$ , even if we consider the rep-
resentatives. Moreover, it is known [14] that all
regular self-dual functions for $n\leq 9$ are threshold
functions.
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7 Conclusion

We have introduced a new operator $\sigma$ , which
is similar to the $\rho$ operator used by Bioch and
Ibaraki [5]. It transforms a non-dominated $(\mathrm{N}\mathrm{D})$

coterie to another ND coterie. We showed that
any regular ND coterie can be transformed to
any other regular ND by a sequence of $\sigma$ op-
erations, and tried to find the shortest such se-
quence. As another application of the a opera-
tion, we presented an incrementally-polynomial-
time algorithm for generating all regular ND co-
teries, and showed that we can construct an op-
timum coterie $C$ with respect to a “g-regular”
function in polynomial time.

The challenging problem of deciding whether a
given coterie is ND is still open.
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