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Abstract: We introduce a class of discrete quasiconvex functions, called quasi M-convex
functions, by generalizing the concept of M-convexity due to Murota (1996). We investigate
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1 Introduction

The concept of convexity for sets and functions
plays a central role in continuous optimization
(or nonlinear programming with continuous vari-
able), and has various applications in the areas of
mathematical economics, engineering, operations
research, etc. [2, 12, 15]. The importance of con-
vexity relies on the fact that a local minimum of a
convex function is also a global minimum. Due to
this property, we can find a global minimum of a
convex function by iteratively moving in descent
directions, i.e., so-called descent algorithms work
for the convex function minimization. Therefore,
convexity for a function is a sufficient condition
for the success of descent methods. Most of de-
scent methods, however, work for a fairly larger
class of functions called quasiconvex functions.
Let f : R® — R U {4+o0} be defined over a
nonempty convex set, i.e., domf = {z € R" |
() < +00} is a nonempty convex set. A func-
tion f is said to be quasiconvex if it satisfies

flaz + (1 - a)y) < max{f(z), f(y)}

for all 2,y € domf and 0 < a < 1, and
semistrictly quasiconvex if it satisfies

flaz + (1 - a)y) < max{f(z), f(y)}

for all 2,y € domf with f(z) # f(y) and
0 < a < 1. It is easy to see that convexity

implies semistrict. quasiconvexity, and semistrict
quasiconvexity implies quasiconvexity under the
assumption of lower semicontinuity. Although
(semistrict) quasiconvexity is a weaker property
than convexity, it still has nice properties as fol-
lows:

e strict local minimality leads to global minimal-
ity for quasiconvex functions,

e local minimality leads to global minimality for
semistrictly quasiconvex functions,

o level sets of quasiconvex functions are convex
sets.

Due to these properties, quasiconvexity also plays
an important role in continuous optimization.
See [1] for more accounts on quasiconvexity.

In the area of discrete optimization, on the
other hand, discrete analogues of convexity, or
“discrete convexity” for short, have been consid-
ered, with a view to identifying the discrete struc-
ture that guarantees the success of descent meth-
ods, i.e., so-called “greedy algorithms.” Exam-
ples of discrete convexity are “discretely-convex
functions” by Miller [7], “integrally-convex func-
tions” by Favati-Tardella [3], and “M-convex/L-
convex functions” by Murota [8, 9, 10].

A function f : ZV — R U {40} is called M-
convex if dom f # 0 and f satisfies the following
property:

(M-EXC) Vz,y € dom f, Yu € suppt(z — y),



Jv € supp™ (z — y):

F@)+ W) > fle—xutx0) + FW+Xu — Xo)

where

dom f = {z € ZV | f(=) < +o0},
suppt(z — y) = {w € V| z(w) > y(w)},
supp™(z ~y) = {w € V | z(w) < y(w)},

and x,, € {0,1}V is the characteristic vector of
w € V. M-convex functions have various desir-
able properties as discrete convexity:

(i) local minimality leads to global minimality for
M-convex functions,

(ii) M-convex functions can be extended to ordi-
nary convex functions,

(iii) various duality theorems hold,

(iv) M-convex functions are conjugate to L-
convex functions.

In particular, the property (i) shows that greedy
algorithms work for the M-convex function mini-
mization. However, we see from results in contin-
uous optimization that strong properties such as
M-convexity are not required for the success of
greedy algorithms, and that some property like
“quasi M-convexity” will suffice.

The main aim of this paper is to introduce the
concept of quasi M-convex functions by general-
izing the concept of M-convexity. To define quasi
M-convexity, we use the following weaker proper-

ties than (M-EXC):

(QM) Vz,y € dom f, Yu € suppt(z — y), Jv €
supp~(z — y):
f(z — xu+x0) < f(=) or f(y+xu — x0) < f(Y)-

(SSQM) Vz,y € dom f, Vu € supp™ (z—y), Jv €

supp~ (z — y):
(1) f(z"Xu+Xv) > f(il:)
=  fly+xu—Xo) < fly), and

() fly+ xu— x0) > f(¥)
= f(z_Xu‘*‘X'u)Sf(w)‘

We define a quasi M-convex (resp. semistrictly
quasi M-convex) function as a function f : zV -
R U {+oo} with dom f # 0 satisfying (QM)
(resp. (SSQM)). We show that various nice prop-
erties hold for (semistrictly) quasi M-convex func-
tions, which justifies the definitions of qua51 M-
convexity above. :
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We first review some fundamental results on
M-convex functions in Section 2. Then, we show
some properties for level sets of quasi M-convex
functions, and prove that the class of quasi M-
convex functions is closed under various funda-
mental operations in Section 3. Finally, we show
that greedy algorithms work for the minimiza-
tion of (semistrictly) quasi M-convex functions in
Section 4. We also show a proximity theorem
on (semistrictly) quasi M-convex functions, which
guarantee that the so-called “scaling technique”
is applicable to the quasi M-convex function min-
imization.

2 Review of Fundamental Re-
sults on M-convex Functions

We denote by R the set of reals, and by Z the set
of integers. Also, we denote by R, the set of
positive reals. Throughout this paper, we assume
that V is a nonempty finite set of cardinality n (>
0). For w € V, we denote by x,, € {0,1}V the
characteristic vector of w.
Let z € RY. For S C V, we deﬁne a:(S)

> ves &(v). We also define

suppt(z) = {w € V | z(w) > 0},
supp~(z) = {w € V | z(w) < 0},

llelli =) lz(w)l.

weV

Let f: ZV — RU{+oo}. The effective domain
dom f of f is defined by

dom f = {z € ZV | f(2) < +0}.

We denote by arg min f the set of the minimizers
of f, i.e.,

argmin f = {z € 2V | (2) < f(y) (vy € Z¥)}.

For any a € RU {+o0}, the level set L(f,a) is
defined by

L(fa a) =

Note that argmin f = L(f,inf f) and dom f =
L(f,+00) are special cases of level sets. For any
z € dom f and u,v € V, we denote the directional
difference of f at # w.r.t. u and v by

— Xv) — f(2).

{e€2” | f(z) < a}.

Af(z;u,v) = f(2 + Xu



For a set § C ZV, the. function 65 : ZV —

{0,+00} given by '
_f0  (z€9),

%5(e) = { +oo (z ¢5)

is called the indicator function of S.
Let ¢ : Z — RU{+oo}. A function ¢ is called
quasiconvez if it satisfies

¢(B) < max{p(e1), p(c2)}
(VOLI,d@,ﬂ € Z with a1 < 8 < Olz).

Similarly, ¢ is called semistrictly quasiconvez if it
is a quasiconvex function and satisfies

¢(B) < max{p(a1), p(a2)} (Yo, 2,8 € Z
with- oy <8 < a2, ¢(a1) # p(az)).
(2.1)

Remark 2.1. For a function f : R® — R U
{+o0}, semistrict quasiconvexity implies quasi
convexity under the assumption of lower semicon-
tinuity [1, 2]. For a function ¢ : Z — R U {+o0},
on the other hand, the property (2.1) alone does
not imply the quasiconvexity in general. For con-
venience, we assume quasiconvexity in the defini-
tion of semistrict quasiconvexity for ¢. O

Theorem 2.2. Let ¢ : Z — RU {+o0}.

(i) ¢ is quasiconvez if and only if for all a;,as €
dom ¢ with a1 < o we have p(a; + 1) < (1)
or p(az — 1) < p(az).

(ii) ¢ is semistrictly quasiconvez if and only if for
all ay,as € dom p with a; < az we have both

p(on+1) > p(on) = p(a2 — 1) < p(az), and
(a2 — 1) 2 p(az) = p(en +1) < p(on).

A function ¢ : R & R U {+o0} is said to be
nondecreasing if p(a) < ¢(B) holds for all o, 8 €
R with a < B, and strictly increasing if for all
a, € R with.a < 8 we have either p(a) < ¢(B)
or ¢(@) = p(B) = +oo.

A function f : ZV — R U {400} is called M-
convez if dom f # 0 and f satisfies the following
property:

(M-EXC) Vz,y € domf, Yu € supp*(z — y),
Jveswpp(z-y)

f(z)‘*‘f(y) Zf(z—Xu;l‘Xv)‘l'f(y"‘Xu_Xv);
. , | (2.2)
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Note that the inequality (2.2) can be rewritten as
follows in terms of directional differences:

Af(z;v,u) + Af(y;u,v) <0. (2.3)

M-convex functions can be characterized by the
following (seemingly) weaker property:

(M-EXCy) Vz,y € dom f with ¢ # y, Ju €
supp* (z — y), Jv € supp™ (= — y) satisfying (2.2).

Theorem 2.3 ([9, Th. 3.1]). For f : ZV —
RU {+o0}, we have (M-EXC) < (M-EXC).

We also define the set version of M-convexity
as follows. A set B C ZV is called M-convez if
B # () and it satisfies

(B-EXC) Vz,y € B, Yu € supp™(z — y), Jv €
supp~(z — y):

Z—XutXxo €B and

y+X'u._X'veB.

Note that an M-convex set is nothing but (the
set of integral vectors in) an integral base poly-
hedron [4]. For z € B and u,v € V, the exchange
capacity associated with 2, v and u is defined as

é5(2,v,u) = max{a € R | 2+ a(xo - xu) € B

M-convex sets can be characterized also by the
following (seemingly) weaker property:

(B-EXCw) Ve,y € B with 2 # y, Ju €
supp™(z — y), Jv € supp™ (z — y): .
€—XutXo€B and y+xu— X € B.

Theorem 2.4 ([16]). For B C ZV, we have (B-
EXC) < (B-EXCy).

3 Quasi M-convex Functions

3.1‘ Definitions

To extend the concept of M-convexity to quasi M-
convexity, we relax the condition (2.3) while keep-
ing the possible sign patterns of values A f(z; v, u)
and Af(y;u,v) in mind. Table 1 shows the pos-
sible sign patterns of those values.

Let f:2Y — R U{+oo} be a function, Then,
we call f a.quasi M-convez function if dom f # @
and it satisfies the following property:

(QM) Vz,y € dom f, Vu € suppt(z —y), Jv €

supp~ (2 — y):

Af(z;v,u) <0 or  Af(y;u,v) <0.



Table 1: Possible sign patterns of a = A f(z;v, u)
and 8 = Af(y; u,v) in (M-EXC)

[sign(a) \ sign(B) [ - [ 0 [ + ]
- 01010
0 O10| x
+ O] x| x

(O--- possible, x --- impossible

Similarly, we call f a semistrictly quasi M-convez
function if dom f # 0 and it satisfies the following
property:
(SSQM) Vz,y € dom f, Vu € suppt(z—y), Jv €
supp (¢ — y):
(i) Af(z;v,u) >0 = Af(y;u,v) <0, and
(i) Af(y;u,v) > 0= Af(z;v,u) <0.
Note that (SSQM) can be rewritten as follows:

Ve,y € domf, Vu € suppt(z — y), Jv €
supp™ (¢ — y) satisfying at least one of the fol-
lowing:
(i) Af(zsv,u) <0, (i) Af(y;w,v) <0,
(iii) Af(2;v,u) = Af(y;u,v) = 0.

We also consider weaker properties than (QM)
and (SSQM): '
(QMy) Vz,y € domf with ¢ # y, Ju €
supp™ (2 — y), 3v € supp™(z — y):

Af(z;v,u) <0 or Af(y;u,v) <0.
(SSQMy,) Vz,y € dom f with 2 # y, Ju €

suppt(z — y), Jv € supp™(z — y):
(i) Af(z;v,u) > 0 = Af(y;u,v) <0, and
(ii) Af(y;u,v) > 0 = Af(z;v,u) <O0.

The set version of quasi M-convexity can be
obtained by translating the properties (QM) and
(QMy,) for the indicator function dp : zvV —
{0,4+0} of a set B C ZV in terms of B.
(Q-EXC) Vz,y € B, Yu € suppt(z —y), v €
supp™ (z — g):

z_Xu'*‘X‘vEB or y+Xu_X'v€B-
(Q-EXCyw) Vz,y € B with ¢ # y, Ju €
supp* (2 — y), v € supp™(z — y):

T—XutXv€B or y+xu—XxvE€B.
Note that the properties (Q-EXC) and (Q-EXCy)
are the same as (EXC) and (EXCy) discussed in
[14], respectively.
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Theorem 3.1. Let BC ZV.

(i) (Q-EXC) for B < (QM) for ép.

(ii) (Q-EXCy) for B <— (QMy,) for é5.

(i) (B-EXC) for B <= (SSQM) for ép <—
(SSQMy,) for ép.

We show some examples of quasi M-convex
functions below.

Example 3.2. Let ¢ : Z - R U {+o0}. We
define f: Z? — RU {+o0} by

f(:Bl,:Eg) = { :’b_f)z;l)

(21 +22=0),
(231 + o ;é 0).

By Theorem 2.2, f satisfies (QM) (or (QMy))
if and only if ¢ is quasiconvex, and f satis-
fies (SSQM) (or (SSQMy)) if and only if 9 is

semistrictly quasiconvex. - O

(3.1)

Examplé 3.3. Let f : ZV — RU {+o0} be an
M-convex function, and ¢ : R — R U {400} be

a nondecreasing function. We define a function
f:Z"V - RU{+0} by

| e(f(®)) (z€domf),
f(=) = { 400 (z & dom f).

Then, f satisfies (QM). Furthermore, if ¢ is
strictly increasing, then f satisfies (SSQM). O

(3.2)

Example 3.4. Let B C ZV be an M-convex set,
w € RY, and @ € R. Then, the set § = {z €
B | (p,z) < a} satisfies (Q-EXC). Moreover, the
function f : § — R defined by f(z) = (p,z)
(z € S) satisfies (SSQM). ' O

Remark 3.5. The concept of (semistrict) quasi
M-convexity can be naturally extended to func-
tions f: S — T with S C ZV and a totally or-
dered set T with total order <. For example, the
property (SSQM) is rewritten for such functions
as follows:

Vz,y € S, Vu € suppt (¢ — ), Jv € supp™ (2 —y):
(i) if either 2 — Xy + X0 € S, 0T 2 — Xy + X0 €S
and f(2 — xu+Xxv) = f(2), then y+ Xxu — X0 €S
and f(y + xu — X») 2 (), and -

(ii) if either y + xu — Xo € S, 0T Y+ Xu —Xv €S
and f(y+ Xu—Xv) = f(y), then 2 —xy +x» €S
and f(:l: - Xu+Xv) j f(ﬂ:),

where for p, ¢ € T the notation p < g meansp < ¢
or p = ¢. It is easy to see that the properties



of (semistrictly) quasi M-convex functions shown
in this paper still holds true. For simplicity and
convenience, we assume, in this paper, that the
codomain of a function is R U {4o0}. O

Example 3.6. Suppose that V = {1,2,---,n}
(n>1). Leta:V - ZU{-0c0},b:V —
ZU {40}, and a € Z satisfy a(v) < b(v) (v € V)
and Y,y a(i) < a < Yy b(i). Fori €V, let
f; : [a(%),b(3)] = R be a semistrictly quasiconvex
function. We define B C Z¥ and f: B —» RV by

B={zcZV|z(V)=a, a<z<b}
f(z) = (fi(z(})) | i€ V) (2 € B),

where the total order < on the codomain RY of f
is given by the lexicographic order, i.e., for each
p,g € RV, p < ¢ holds if there exists some k
(1<k<n)suchthatp;=¢ fori=1,--- k-1
and p; < ¢;. Then, f satisfies (SSQM) in the
extended sense (see Remark 3.5).

Proof. Let z,y € B be distinct vectors. Also, let
u € suppt(z — y), v € supp™(z — y) be any ele-
ments, and w.l.o.g. assume that « < v. Then, we
have £ — xu + X0 € B and y + xu — X» € B. If
Fula(@)-1) < fule(@)) or fuly(@)+D) < fuly(@)
holds, then we have f(z — xu + Xv) < f(2) or
f(y + Xu — Xo) < f(y). Otherwise, we have
fua(u) — 1) = fu(e(w) and fuly(w) + 1) =
fu(y(u)) by Theorem 2.2. If f,(z(v) +1) <
fo(z(v)) or fu(y(v)—1) < fu(y(v)) holds, then we
have f(z_Xu'i‘Xv) = f(:l:) or f(y+Xu"Xv) <
f(y). Otherwise, we have f,(z(v)+1) = fu(z(v))
and f,(y(v) — 1) = f,(y(v)), from which follows

f(z_Xu’lLXv) = f(w) and f(y’*‘Xu_X‘u) = f(y)
. O

The relationship among various properties for
sets and functions is summarized as follows. Note
that the claim (i) of Theorem 3.7 is already shown
in [14, Remark 11].

Theorem 3.7. (i) For S C Z", we have

(B-EXC) = (Q-EXC)
) Y
(B-EXC,) = (QEXC,).
(ii) For f:ZV — RU {400}, we have

(M-EXC) = (SSQM) = (QM)

(8 y ]
(M-EXC,) = (SSQM.) = (QM,).

154

3.2 Level Sets

We show various properties for level sets of quasi
M-convex functions.

The following two theorems claim that level
sets of quasi M-convex functions have quasi M-
convexity. Furthermore, the weaker version of
quasi M-convexity (QMy) for functions can be
characterized by quasi M-convexity (Q-EXCy) of
level sets.

Lemma 3.8 ([14]). Let BC ZV.

(i) If B satisfies (Q-EXCy), then z(V) = y(V)
for all z,y € dom f.

(i) (Q-EXCy) < (Q-EXCyy):

(Q-EXCy4) V2,9 € B, 2 # y, Ju € supp™(z —
¥), Jv € supp™ (¢ — ¥): € — Xu + Xv € B.

Theorem 3.9. A function f : Z¥ — R U {400}
satisfies (QMy,) if and only if the level set L(f, o)
satisfies (Q-EXCy,) for all @ € RU {+0}. In
particular, if f satisfies (QMy), then dom f and
arg min f satisfy (Q-EXCy).

Proof. [—=>] Let o € R U {+o0}, and z,y €
L(f,a) be vectors with ¢ # y. Applying
(QM,,) to z and y, we have Af(z;v,u) < 0
or Af(y;u,v) < 0 for some u € suppt(z — y)
and v € supp~(z — y). Therefore, we have
2 — Xu + Xo € L(f,@) o y + Xu — Xo € L(f, ).
[<=] Let z,y € dom f, and we may assume
that f(z) > f(y). By Lemma 3.8 (ii), the level
set L(f, f(z)) satisfies (Q-EXCy.), from which
follows = — xu + Xo € L(f, f(z)) for some u €
suppt(z — y) and v € supp~ (2 — y). This implies
that f(z — xu + X») < f(z), which yields (QMy)
for L(f, f(=))- O

Theorem 3.10. Let f : Z¥ — R U {+oo} be
a function satisfying (QM). Then, the level set
L(f, ) satisfies (Q-EXC) for all @ € RU {+oo}.
In particular, dom f and argmin f satisfy (Q-
EXC).

Proof. The proof is similar to that for the “only
if” part of Theorem 3.9. a

Theorem 3.11. Suppose f : Z¥ — R U {400}
satisfies (SSQMy). Then argmin f satisfies (B-
EXCQC), i.e., argmin f is an M-convez set if it is
nonempty.



An M-convex function can be characterized
also by quasi M-convexity for level sets of a func-
tion perturbed by linear functions. For any func-
tion f : ZV — RU{+oc0} and any vectorp € RV,
the function f[p]: Z¥ — R U {+o0} is given by

Fiple) = 1) + Y p(w)e(®) (= € 2¥).
veV
Theorem 3.12 ([14, Th. 1]). A function f :
ZV — R U {4+o0} satisfies (M-EXC) if and only
if L(f[p], @) satisfies (Q-EXCy) for all p € RV
and o € RU {4o00}.

Combining Theorems 3.9 and 3.12, we have the
following property.

Corollary 3.13. A function f : ZV — R U
{+o0} satisfies (M-EXC) if and only if f[p] sat-
isfies (QMy) for allp € RV .

3.3 Operations

The classes of (semistrictly) quasi M-convex func-
tions are closed under several fundamental oper-
ations.

Let f : ZV — R U {400}. For any subset
U C V, define fy : ZV — R U {400} by

fo) = fw,0np) (veZY),

where Oy\iy € RV\U denotes the vector with each
component equal to zero. For any functions a :
Vs ZU{-}and b:V — Z U {+oo}, define
f2:2V - RU{+o0} by

fe={ 1

Theorem 3.14. Let (*QM,) denote one of
(QM): (QMy), (SSQM), or (5SQMy,), and f :
ZV — R U {+oo} be a function with (*QM.,).

(i) For any a € ZV and v > 0, the functions
v-f(a—z) and v - f(a + z) satisfy (*QM,) as
functions in z.

(ii) For any U C V, the function fy : y A
RU {400} satisfies (*QM.,).

(iii) Foranya : V — ZU {-occ} and b : V —
Z U {+o0} with a < b, the function f : ZV —
R U {+o0} satisfies (*QM.,).

(iv) Let f; : Z% — Ryi U {400} (¢ = 1,2)
be functions with (*QM,). Then, the function
f:ZV1 x ZV2 - Ry U {400} defined by

f(e1,22) = fi(z1) fa(z2) ((z1,22) € BV x Z%2)

(a <z <b),
(otherwise).
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satisfies (*QM.,).

Proof. We prove (iv) only. We consider the case
when (*QM,) = (SSQM). Let 2 = (z1,22),y =
(y1,y2) € dom f; xdom f,, and let u € supp™(z—
y), where u € supp* (21 —y1) w.l.o.g. Then, there
exists v € supp~ (21 — y1) such that

Afi(z13v,u) > 0 = Afi(y1;4,v) <0, and
Afi(yi;u,v) > 0 = Afi(z1;v,u) <0.

This implies that

Af(a:;v, u) >20= Af(y;us ’U) <0, and
Af(y;u,v) > 0 = Af(z;v,u) <O0.

Hence, (SSQM) holds for f. O

Remark 3.15. The class of (semistrictly) quasi
M-convex functions is not closed under addition;
in particular, it is not closed under addition of a
linear function. O

Theorem 3.16. For f : Z¥ — R U {+oo} and
¢ : R — RU{+0}, define f: 2V — RU {400}
by (3.2).

(i) If f satisfies (QM) (resp. (QMy)) and
¢ is mnondecreasing, then f satisfies (QM)
(resp. (QM,)).

(i) If f satisfies (SSQM) (resp. (SSQMW) ) and
@ 1s strictly increasing, then f satisfies (SSQM)
(resp. (SSQMy)).

Remark 3.17. A quasi M-convex function f:
ZV - RU {40} is not necessarily given as the
form (3.2). As an example, let f:2% 5> RU
{+o0} be a function given by

dom f = {(0,0,0), (1,0, -1),(2,0,-2),
(2; 17 _3)7 (2, 2a "4)}1 '
f(zl, z3,23) = —21 + 22 (¢ € dom f)

Although f satisfies (SSQM), it cannot be repre-
sented in the form (3.2) with an M-convex func-
tion f : Z® - R U {+o0o} and a nondecreasing
function ¢ : R & RU {+o00}. ... O

Theorem 3.18. Let f : Z¥ — R U {+oco} and
g : ZV — RU{—o0} be functions such that g(z) >
0 for all ¢ € dom f. Suppose that the function
f(-)—ag(-) satisfies (QMy,) for all a € RU{+o0}.

~ Then, the function r : ZV - RU {+o0} given by

(2 € dom f),

oy [ F@)5@)
@={ 2" (= ¢ dom ),

400
satisfies (QMy).



Proof. Clear from Theorem 3.9. |

Remark 3.19. The statement of Theorem 3.18
cannot be strengthened by replacing (QM, ) with
(QM), even if f and g are linear functions. O
3.4 Characterization by Local Ex-
change Properties

An M-convex function is characterized by a local-
ized version of the property (M-EXC):

(M-EXC-loc) Vz,y € dom f with ||z —y||; = 4,
Ju € supp™(z — y), Jv € supp™ (¢ — y) satisfying
(2.2).

Theorem 3.20 ([9, Th. 3.1], [14, Th. 2]).
Let f : ZV — R U {400} be a function such that
dom f is a nonempty set with (Q-EXCy). Then,
(M-EXC) <= (M-EXC-loc).

We show that (semistrict) quasi M-convexity
can be characterized also by the localized version

of (SSQM) and (QM).

(SSQM-loc) Vz,y € dom f with ||z — yl|1 = 4,
Vu € suppt(z — y), Iv € supp~ (= — y): '
(@) Af(zsv,u) > 0 ="Af(y;u,v) <0, and
(i) Af(y;u,v) > 0= Af(z;v,u) <0.

(SSQMy-loc) Vz,y € dom f with ||z — ylli =4,
Ju e supp*(z — y), 3v € supp™(z — y):
() Af(z;v,u) > 0 = Af(y;u,v) <0, and
(i) Af(y;u,v) > 0= Af(z;v,u) <0.

Theorem 3.21. Let f : ZV — R U {+oo} be
a function such that dom f satisfies (Q-EXCy).
Then, o

(1) (SSQM) — (SSQM-loc).

(i) (SSQMW) = (SSQM -loc).

Proof See 1 1] ‘ , O

Remark 3.22. The‘ localized version of (QM)
does not characterize (QM) in general. Let f :
yARS 18] {+oo} be a function such that

domf = {00,0), (1,-1),(2,-2), (3, -3)},
F(0,0).= £(3,. -3) =0, f(1,-1)=

Then, dom f satisfies (Q-EXC), and (QM) holds
for any 2,y € dom f with ||z — y||; = 4. How-
ever, (QM) does not hold for z = (0,0) and

= (3,-3). O

f(2,-2) =1.
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4 Minimization of Quasi M-

convex Functions

4.1 Theorems

Global minimality of quasi M-convex functions is
characterized by local minimality.

Theorem 4.1. Let f : Z¥ = R U {40} and
z € dom f.

(i) Assume (QMy) for f. Then, Af(z;v,u) > 0
Vu,v € V, u £v) < f(z) < f(y) (Vy €
7V \ {2}).

(ii) Assume (SSQMy,) for f. Then, Af(z;v,u) >
0 (Vu,v € V) = f(z) < f(3) (Vy € ZV).

Proof. We show the sufficiency of (ii) only. As-
sume, to the contrary, that there exists some
y € dom f such that f(y) < f(z). We further as-
sume that y minimizes the value ||y — z||; among
all such vectors. By (SSQMy,), there exist some
u' € supp* (z—y) and v’ € supp™ (z—y) such that
if Af(z;v',u') > 0 then Af(y;v/,v') < 0. Since
Af(z;v',u') > 0 holds true, we have f(y + xu —
xv) < f(y) < f(z) and [|(y + xu — Xor) — 2[l1 <
|ly — 2||1, a contradiction to the choice of y. O

If f satisfies (SSQM), then any vector in dom f
can be easily separated from some minimizer of

£ (cf. [13, Th. 2.2, Cor. 2.3]).

Theorem 4.2. Let f : ZV — R U {400} be a
function with (SSQM). Assume argmin f # 0.
(i) Forz e dom f andv € V, let u € V satisfy

f(ii "Xu'*‘Xv) = I‘;I’él‘l}lf(z — Xs +X'u)
Then, there ezists z, € argmin f with 2,(u) <
z(u) — 1+ xo(u).

(ii) Forz € dom f andu € V, let v € V satisfy

f(@ = Xut Xo) = min f(z = Xu + x1)-

Then, there erists z, € argmin f wzth z,(v) >
z(v) — xu(v) + 1. |

.Proof. We prove (i) only. Put 2’ = 2 — x4y + Xo-

Assume, to the contrary, that there is no z# €
arg min f with z(u) < 2'(u). Let 2, € argmin f
with minimum z,(u). Then, we have z.(u) >
z'(u). By applying (SSQM) to z., ', and u,
we have some w € supp~(z, — 2’) such that if



Af(zy;w,u) > 0 then Af(z';u,w) < 0. Due
to the choice of z., we have Af(zs;w,u) > 0.
Hence, it holds that

f(‘cl) > f(wl+Xu—Xw) = f(‘c _Xw+Xv),
a contradiction to the definition of u € V. O

Corollary 4.3. Let f : ZV — R U {+oo} be
a function with (SSQM). Also, let ¢ € dom f \
argmin f, and u,v € V satisfy

f@ = xut Xo) = min flz — xs + x¢)-

Then, there ezists z, € argmin f with z,(u) <
z(u) — 1 and z.(v) > 2(v) + 1.

Remark 4.4. The statements in Theorem 4.2 do
not hold even if f satisfies the property (SSQMy)
(and not (SSQM)). ]

The following theorem shows that a global min-
imizer of a semistrictly quasi M-convex function
exists in the neighborhood of a A-local minimum.
This generalizes [6, Th. 4.1].

Theorem 4.5. Let f : Z¥ = R U {+oo} be
a function with (SSQM), and A be any posi-
tive integer. Suppose that zao € dom f satisfies

f(za) < flza + Alxo — Xxu)) for all u,v € V.
Then, there exists some z, € argmin f such that

lza(v) — z.(v)| < (= 1)(A-1) (e V).
(4.1)

Proof. 1t suffices to show that for all £ > 0 there
exists some z, € dom f satisfying f(z,) < inf f+
¢ and (4.1). S

Let z, € dom f satisfy f(z«) < inf f +¢, and
suppose that z, minimizes the value ||z, — zall1
among all such vectors. In the following, we fix
v € V and prove za(v) — z.(v) < (n —1)(A - 1).
The inequality z,(v) — za(v) < (n — 1)(A - 1)
can be shown similarly.

We may assume za(v) > z.(v). We first prove
the following two claims.

Claim 1 There exist wi,ws,- -, wy ev\ {v}
and yo(.—; L’:A)aylv"' y Yk € domf with £ =
zA (v) — z.(v) such that o

Yi = Yim1 — Xo + Xwp» :
f(yi) < f(yi—l) (i: 1,--- ,k)'
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[Proof of Claim 1] We show the claim by induc-
tion on 7. If i —1 < k, then v € supp™ (yi—1 — ).
By (SSQM) applied to y;_1, 24, and v, we have
some w; € supp™ (¥i—1 — @) C supp™ (za — 24) C
V \ {v} such that if Af(z,;v,w;) > 0 then
Af(yi—1;w;,v) < 0. By the choice of z,, we have
Af(zy;v,w;) > 0since |[(2++ X0 — Xw;) — 2all1 <
Ilw* - mAHl- Therefore, f(yz) = f(yi—l - Xo +
Xw;) < f(yi-1)-

[End of Proof for Claim 1]

Claim 2 For any w € V \ {v} with y(w) >
za(w) and a € [0, yr(w) — za(w) — 1], we have

flza — (a+ 1) — Xw)) < flza — a(xo — Xw))-
(4.2)

[Proof of Claim 2] We prove (4.2) by induc-
tion on a. Put 2’ = zp — a(xy — Xw) for a €
[0, yx(w) — za (w) — 1], and suppose 2’ € dom f.
Let 7. (1 < j. < k) be the largest index such
that w;, = w. Then, y;,(w) = yw(w) > z'(w)
and supp~ (y;, — 2') = {v}. (SSQM) implies that
if Af(yj,;v,w) > 0 then Af(z';w,v) < 0. By
Claim 1, we have A f(y;,;v, w) > 0. Hence, (4.2)
follows.

[End of Proof for Claim 2]

The A-local minimality of za implies f(za —
A(Xy — Xw)) > f(za), which, combined with
Claim 2, implies yi(w) — za(w) < A — 1. Thus,

za (v) — 9x(v)

> {ye(w) — za(w)}
weV\{v} .
(n—1)(A-1),

za(v) - 2.(v) =

IN

where the second equality is by Lemma 3.8 (i). O

4.2 Algorithms
Let f:ZV — R U {+oo} be a function such that
dom f is a nonempty bounded set, and put
L= max{||:c - y”co | z,y € dOl’Ilf}-
Assume (SSQMy) for f. Then, Theorem 4.1
immediately leads to the following algorithm. -

Algorithm DESCENT
Step 0: Let z be any vector in dom f.
Step 1: If f(z) = IItléI‘l, f(z —xs + x:) then stop.

[z is a minimizer of f.]



Step 2: Find u,v € V with f(z—xu+x0) < f(2).
Step 3: Set 2 := & — Xu + X»v. Goto Step1l. O

Algorithm DESCENT terminates in at most
|dom f| < (L + 1)"~! iterations since it generates
distinct = in each iteration.

To the end of this section we assume (SSQM)
for f. Based on Theorem 4.5, we apply the scal-
ing technique to Algorithm DESCENT to obtain a
faster algorithm.

Algorithm SCALING_DESCENT
Step 0: Let z be any vector in dom f. Put A :=
[L/4n], B := dom f.
Step 1: [A-scaling phase]
Step 1-1: If

f(z) = min{f(z — A(xs — xt)) |
s,t €V, ¢ — A(x. — xt) € B}

then go to Step 2.

Step 1-2: Find u,v € V with 2 — A(xu — Xv) €
B satisfying f(z — A(xu — x0)) < f()-

Step 1-3: Set z := 2 — A(Xu — Xv).- Go to Step
1-1. |
Step 2: If A = 1 then stop. [z is a minimizer of
f]
Step 3: Put

B:=Bn{ycZz"|
ly(v) —2(v)| < (n-1)(A-1) (veV)}

and A := [A/2]. Go to Step 1. O

The number of scaling phases is [log L], and each
scaling phase terminates in (4n)"~! iterations.
Therefore, Algorithm SCALING_DESCENT runs in
(4n)"~[log L] iterations.

We then propose another elaboration of Algo-
rithm DESCENT by exploiting Corollary 4.3

Algorithm STEEPEST_DESCENT

Step 0: Let 2 be any vector in dom f.: Set B :=
dom f. v

Step 1: If f(z) = sntlél‘l/ f(z — xs + xt) then stop.
[z is a minimizer of f.]

Step 2:t Find w,v € V with ¢ — xy, + xo € B
satisfying

f(z_Xu‘*'Xv):min{f(z;Xs+Xt) i

S,tEV, m"‘Xs"i’XtEB}- (43)
Step 3: Set @ := 2 — x, + Xov and

y(v) 2 2(v) + 1}.
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Go to Step 1. ad

By Corollary 4.3, the set B always contains
a minimizer of f. Hence, Algorithm STEEP-
EST_DESCENT finds a minimizer of f. To analyze
the number of iterations, we consider the value

g{gleagy(w) min y(w)}-
This value is bounded by nL and decreases at
least by two in each iteration. Therefore, STEEP-
EST-DESCENT terminates in O(nL) iterations. In
particular, if dom f C {0,1}V then the number of
iterations is O(n?).

It is shown in [13] that the minimization of
an M-convex function can be done in polyno-
mial time by the domain reduction method ex-
plained below. We show that the domain reduc-
tion method also works for the minimization of a
function with (SSQM) if its effective domain is a
bounded M-convex set.

Given a bounded M-convex set B, we define
the set Ng C B as follows. For w € V, define

Ip(w) = miny(w), up(w)=maxy(w),

ly () ='[(1 - 2) taw) + Tuaw)]

dpw) = [21aw) + (1- 1) ua(w)].
Then, Np is defined as

Np={ye€ B|lp <y<up}

Theorem 4.6 ([13, Th. 2.4]). Np 18 a
(nonempty) M-convex set.

The next algorithm maintains a set B (C
dom f) which is an M-convex set containing a
minimizer of f. It reduces B iteratively by ex-
ploiting Corollary 4.3 and finally finds a mini-
mizer.

Algorithm DOMAIN_REDUCTION

Step 0: Set B := dom f.

Step 1: Find a vector z € Np.

Step 2: If f(z) = sntlér‘li F(z — xs + xt) then stop.

[z is a minimizer of f.]

Step 3: Find u,v € V with 2 — x, + xo € B
satisfying (4.3).

Step 4: Set B by (4.4). Go to Step 1. m]



We analyze the number of iterations of Do-
MAIN.REDUCTION. Denote by B; the set B in
the i-th iteration, and let [;(w) = Ip;(w), u;(w) =
up;(w) (w € V). It is clear that u;(w) — l;(w) is
nonincreasing w.r.t. . Furthermore, we have the
following property:

Lemma 4.7 ([13, Lemma 3.1]).

uip1(w) — Lipr(w) < (L= 1/n){u(w) — Li(w)}
for w € {u,v}, where u,v € V are the elements
found wn Step 3.

This lemma implies that Algorithm Do-
MAIN_REDUCTION terminates in O(nZlogL) it-
~erations.

We then consider the time complexity of each
step. Steps 2, 3, and 4 can be done in O(n?)
time. In Step 1, we use the exchange capacity to
compute the values [g(w) and up(w) and to find
a vector in Ng. For any w € V, the values lg(w)
and up(w) can be computed by evaluating the
exchange capacity at most n times, provided that
avector in B is given [4, Th. 3.27]. A vectorin Np
can be found by evaluating the exchange capacity
at most n? times, provided that a vector in B is
given [13, Th. 2.5]. The exchange capacity can
be computed in O(log L) time by binary search.
Hence, Step 1 requires O(n?log L) time.

Theorem 4.8. Suppose that f : Z¥V — R U
{+o0} satisfies (SSQM) and that dom f is a
bounded M-convex set. If a vector in dom f is
given, Algorithm DOMAIN_REDUCTION finds a
minimizer of f in O(n*(log L)?) time.
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