goooboooobgon
11850 2001 0 28-35

28

A Generic Tool for Interactive Visualization

of Geometric Algorithms
(GeoWin)

Matthias Basken and Stefan Naher

Fachbereich IV — Informatik
Universitat Trier
54286 Trier, Germany
{baesken,naeher}@informatik.uni-trier.de

Abstract: In this paper we present GeoWin a generic tool for the interactive visualization
of geometric algorithms. GeoWin is implemented as a C++ class that uses templates and
object-oriented programming to be independent from the underlying geometric kernel. In
this way, it can handle arbitrary types of geometric objects, as long as they provide a small
set.of basic operations. Currently, GeoWin is used as visualization tool for both the CGAL

and LEDA projects.

Keywords: computational geometry, visualization, animation.

‘1 Introduction

The visualization of algorithms and data struc-
tures is very important in the design and imple-
mentation of algorithms, especially in the area
of compuational geometry. It is useful for the
presentation of results, teaching, debugging and
testing, the design of worst-case or degenerate in-
puts, and it often helps to discover problems and
find new solutions. There are many visualization
tools and systems available, e.g., GeomView([1],
OpenGL[11] or GeoSheet[6]. Howewer these sys-
tems have two serious disatvantages: they are
very complex and it requires a lot of special
kowledge to use them in a non-trivial way and,
secondly; it is very difficult or even impossible
to use them interactively. On the other hand,
there have also been developed many interactive
programs and systems for the animation of ge-
ometric algorithms, see [4, 13, 12] for examples.
However, these systems have been designed and
implemented in a very special closed environment
and cannot be reused by other software systems.

In this paper we introduce GeoWin a generic
tool for the interactive visualization of geometric
algorithms.

By the use of templates and object-oriented

programming, GeoWin is a generic visualization
and animation tool that can be used for arbitrary
types of geometric objects, as long as they pro-
vide as small set of basic operations. This makes
GeoWin independent from any concrete geomet-
ric kernel. Currently, it is used as visualization
tool for both the CGAL (see [5]) and LEDA (see
[9]) projects.

The design and implementation of GeoWin was
influenced by the popular LEDA graph editor
GraphWin (see [9], chapter 12). Both editors fol-
low the idea to support certain styles of program-
ming that are often used in demo and animation
programs. Examples of such programming styles
are the edit & run approach and the use of result
scenes which both will be discussed in section 5
of this paper.

2 The GeoWin Data Type

A GeoWin gw is an editor that maintains a col-
lection of geometric scenes. Each geometric scene
in this collection has an associated container of
geometric objects whose members are displayed
according to a set of visual attributes (color, line
width, line style, etc.). A scene can be visible or
unvisible and one of the scenes in the collection



can be active. The active scene receives all edit-
ing input and thus can be manipulated through
the interactive interface of GeoWin (see section
3. |

Both the container type and the object type
have to provide a certain functionality. The con-
tainer type must implement the STL list interface
([10]), in particular, it has to provide STL-style
iterators, and for any object type T the following
functions and operators have to be defined before
it can be used in GeoWin.

e 1/0 operators for streams, LEDA windows,
and LEDA postscript files

ostream& operator<<(ostream&,const T&);

istream& operator>>(istreamk,T&);
window& operator<<(window&,const T&);
window& operator>>(window&,T&) ;

ps_file& operator<<(ps_file&,const T&);

e translate and rotate operations

Translate(T& o, double dx, double dy);

Rotate(T& o, double x, double y,
double phi);

e basic geometric queries

BoundingBox(const T& o,
double& x0, double& yO,
double& x1, double& yi);
IntersectsBox(const T& o,
double x0, double yO,
double x1, double y1);

Any combination of container and object type
that fulfill these requirements for containers and
objects, respectively, can be associated with Ge-
oWin scene in a gw.new_scene () operation. Cur-
rently, GeoWin is used to visualize geometric ob-
jects and algorithm from both the CGAL ([5])
and LEDA ([9]) libraries. In this context typical
examples for containers of a scene are

std::1ist<CGAL: :POINT_2<cart> >
or
leda_list<rat_circle> C;

The first one uses an STL list from the standard
C++ library and points from the cartesian geom-
etry kernel of CGALl, the second example uses a
LEDA list of circles from LEDA’s rational geom-
etry kernel.

29

3 The Interactive Interface

The interactive interface of a GeoWin gw is
started by calling gw.edit() or gw.edit(sc).
The first variant opens a GeoWin with an empty
set of scenes and allows the user to interactively
create and activate scenes from a menu. The sec-
ond variant makes the supplied scene sc the ac-
tive scene, i.e., sc is the edited scene.

At the top of the main window there is a de-
fault menu bar containing menus for em File and
Edit operations, Scenes and Window setup, and
other Options (Figure 1 shows a screenshot). This
default menu can be changed and extended by
user-defined menus and buttons.

In the same way, the following default actions
associated with mouse and keyboard events oc-
curing in the drawing area of the window can be
replaced or extended by user-defined actions. The
left mouse button creates a new object or scrolls
the scene when the button is held down while
dragging the mouse. The middle button selects
a single object or a group of objects, and the
right mouse button opens a context menu that
allows to delete objects or to change individual
attributes of objects.

Now we are ready to write our first GeoWin
program. It just creates a scenes of polygons,
changes the default filling color to grey and enters
the interactive mode. You can see a screenshot of
the program (after generating a hilbert polygon)
in Figure 1.

#include <LEDA/geowin.h>

int main() {
GeoWin gw;
list<polygon> L;
geo_scene sc = gw.new_scene(L);
gw.set_color(sc,black);
gw.set_fill_color(sc,greyl);
gw.edit(sc);
return O;

4 The Programming Interface

In this section we will discuss some of the most
important operations of the data type GeoWin.
For a complete list of operations see the CGAL
manual[5].



Creating and opening a GeoWin

For the creation of a GeoWin you can use one of
the following constructors

GeoWin gw(const char* label);
creates a GeoWin wiﬁh frame label label.
GeoWin gv;

creates a GeoWin with default label.

gvw.display(int x, int y);

opens:a GeoWin with the left upper corner ‘at
position (z,y). ~
gw.display();

opens a GeoWin at default position.

Starting the interactive mode
void gw.edit();

starts the interactive mode without specifying an
active scene.

bool gw.edit(geo_scene sc);

starts.the interactive mode for scene sc.

Creating Scenes

Scenes are created by the gw.new_scene () Oper-
ation

geo_scene gw.new_scene(container<obj>& C);

creates a new scene with the associated container
C

geo_scene gw.new_scene(function_t func,

geo_scene& sc_inp);

creates a so-called result scene whose contents is
computed by applying function func to the ob-
jects of the input scene sc.inp. Result scenes will
be discussed in more detail in section 5.

5 Animation with GeoWin

In this section we will describe three main ap-
proaches to interactive visualization.

30

5.1 Edit and Run

The edit & run style is very simple. It uses Ge-
oWin only for constructing a certain input for
the algorithm by entering the interactive mode
(gw.edit()). Then the algorithm is applied to
this input, the result is displayed, e.g., by chang-
ing the attributes of certain objects, or by simply
producing a text output, and finally the program
returns to the interactive mode. This loop can be
interupted by leaving gw.edit trough the Quit
button. The basic structure of an edit and run
program is given below.

#include <LEDA/geowin.h>
int main() {

list<object> L;
geo_scene sc = gw.new_scene(L);

while (gw.edit(sc))

{ ALGORITHM(L); _
"display or ouput result";

) v

return 0O;

Figure 2 gives a more concrete example that
displays the result of a closest pair algorithms
by changing the color of the closest pair to red.
Note that this program assumes that there is a
CLOSEST._PAIR function defined that takes a list of
points (of some general type point_t) and writes
a pair of points whose euclidean distance is min-
imal to the reference parameters a and b.

5.2 Result Scenes

A result scene is a scene whose contents (con-
tainer of objects) depends on one or more input
scenes (in this extended abstract we only deal
with the case of one input scene).

The dependance is defined by a function that
is applied to the objects of the input scenes. The
contents of the result scene is simply defined to
be the output of this function. Whenever the in-
put scene is modified, e.g., interactively (if the
input scene is active), the contents of the output
scene is recomputed. In this way, it is very easy
to write animation programs that show the re-
sult of an algorithm on-line while the user edits



the input to this algorithm, for example by mov-
ing points around, or by inserting or removing
objects. The general structure of a program fol-
lowing the result scene approach is given below.

void algo(const list<object1>& in,
list<object2>& out);

geo_scene sc_in = gw.new_scene(L);
geo_scene sc_out = gw.new_scene(algo,
sc_in);

gw.edit(sc_in);

Figure 3 shows a more concrete example pro-
gram for the result scene approach. It assumes
that there is function INTERSECT that imple-
ments an algorithm for computing the point of
intersection (of type point_t) for a given set of
straight line segments (of type segment_t). Then
we can create a the result scene that depends
on an input scene sc_input of points by call-
ing gw.new_scene (INTERSECT,sc_input). Most
of the demo programs in LEDA and CGAL are
written in this way. In particular, all algorithms
working on an input set of points (e.g. all kinds of
Voronoi and Delaunay diagrams) can be demon-
strated very elegant in a single program. Then
a particular algorithm or a combination of algo-
rithms can be selected by simply changing the
visibility of the scenes in the interactive interface

5.3 User-Defined Event Hahdling

This section presents a third way of writing visu-
alization programs supported by GeoWin. Every
edit operation of the interacive interface has an
associated event. For instance, inserting a new
object (by clicking the left mouse button) trig-
gers a new_object event, deleting an object cre-
ates a del_object event, and moving an object
around creates a move_object event. Application
programs can handle these events by specifying
corresponding call-back functions which are to be
called whenever a certain event occurs.

We give an example of a sweep line anima-
tion that uses this technique. The program
creates a special scene sc_sweep that contains
a single vertical line, the sweep line, and it
assoicates a call-back function sweep_handler
with move_object events of this scene (by calling

31

Now, during the interactive mode, the user can
grab and move the sweep line with the mouse,
and for each triggered motion event the sweep
bhandler function is called, with the relativ
distance vector of the motion. Note that the
call-back function associated with move object
events has a boolean return type. The result
of this function is evaluated by GeoWin and
controls whether the actual motion is really
executed. In the sweep example we use this fact
to prevent any backward motion of the sweep

- line.

bool sweep_handler(GeoWin& gw, const line& sl,
double dx,
double dy)
{ if (dx < 0) {
// do not move backward
return false;
}
"perform sweep by vector(dx,dy)"
return true;

}

int main()
{ :
GeoWin gw("Sweep Demo");

list<line> sweep_line; .
sweep_line.append(line(point(0,-100),
point (0,100)));

geo_scene sc_sweep = gw.new_scene(sl);
gw.set_color(sc_sweep,black) ; '
gw.set_visible(sc_sweep,true);

gw.set_move_handler(sc_sweep, sweep_handler);

gw.edit(sc_sweep);

return 0O;

The screenshot of Figure 4 shows a sweep line
animation that uses the above described tech-
nique for the animation of Fortune’s sweep algo-
rithm for computing the Voronoi Diagram of a set
of points in the plane. This animation allows to
drag the sweep line across the plane while watch-
ing several different structures: the contructed
Delaunay triangulation, the shore line bisector of
parabolic arcs, and the circle events contained in

gv.set move handler(sc_sweep,sweep_handler)). the event queue.



6

Current and Future Work

Support of three-dimensional geometry

We are currently working on the support
of three-dimensional objects and algorithms.
Figure 5 shows the output of prototype 3d-
viewer while animating a 3d convex hull al-
gorithm. We will incorporate this viewer into
GeoWin.

Improved support for incremental algorithms
Currently, incremental algorithms are not
very well supported. We plan to associate
incremental data structures directly with re-
sult scenes to make their visualization much
mor easy and elegant.

Algorithm Animation

We plan to build a small library of anima-
tion software supporting the teaching and
the presentation of geometric algorithms.

References

[1]

[2]

3]

[5]

A. Amenta, T. Munzner, S. Levy, and M.
Philips. Geomview: A System for Geomet-
ric Visualization. Proceedings of the 11th
Annual Symposium on Computational Ge-
ometry, C12-C13,1995

M.H. Brown. Zeus: A System for Algorithm
Animation and Multi-view Editing. DEC
Reserach Center, Technical Report, No. 75,
1992

T.H. Cormen and C.E. Leiserson and R.L.
Rivest. Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, 1990.

P. Epstein, J Kavanagh, A. Knight, J. May,
T. Nguyen, and J.R. Sack A Workbench
for Computational Geometry Algorithmica,
Vol. 11, No. 4, 404-428, 1994.

A. Fabri, G.J. Giezeman, L. Kettner, S.
Schirra, and S. Schnherr = The CGAL
Kernel: A Basis for Geometric Computa-
tion. Applied Computational Geometry: To-
wards Geometric Engineering Proceedings
(WACG’96), Philadelphia, 191-202, 1996.

[6]

[7]

(8]

[10]

[11]

(12]

[13]

32

D.T. Lee. GeoSheet: A Distributed Visual-
ization Tool for Geometric Algorithms, In-
ternational Journal on Computational Ge-
ometry and Applications, Vol. 8, 119-155,
1998.

K. Mehlhorn. Data Structures and Efficient
Algorithms. Springer Publishing Company,
1984.

K. Mehlhorn and S. Naher. LEDA: A Ii-
brary of efficient data types and algorithms.
CACM Vol. 38, No. 1, pp. 96-102, 1995.

K. Mehlhorn and S. Naher. LEDA: A Plat-
form of Combinatorial and Geometric Com-
puting. Cambrige University Press, ISBN 0-
521-56329-1, 1999.

D.R. Musser and A. Saini. STL Tutorial and
Reference Guide. Addison Wesley, 1996

J. Neider, T. Davis, and M. Woo OpenGL
Programming Guide Addison-Wesly, Read-
ing MA, 1993

P. de Rezende and W. Jacometti Anima-
tion of geometric algorithms using GeoLab
Proceedings of th 9th Annual Symposium on
Computational Geometry, San Diego, 401-
402, 1993.

P. Schorn. Implementing the XY7Z
GeoBench: A Programming Environment

for Geometric Algorithms. Lecture Notes on
ComputerScience, Vol. 153, 187-215, 1991.



Figure 1: GeoWin: Editing a scene of polygons.

33



double CLOSEST_PAIR(const list<point_t>%& L, point_t& a, point_t& b);

int main()

{

GeoWin gw;

list<point_t> L;
geo_scene sc = gw.new_scene(l);
gw.set_color(sc,black);

while (gﬁ.edit(sc))

{
if

(L.length() < 2) continue;

point_t a,b; :
double dist = CLOSEST_PAIR(L,a,b);

gw.
gv.
gw.
gw.
gv.

}

set_color(sc,black);
set_obj_color(sc,a,red);
set_obj_color(sc,b,red); :
message(string("distance: %f",dist));
redraw() ;

return 0;

}

Figure 2: Edit and Run: Computing a closest pair.

void INTERSECT(const list<segment_t>&, list<point_t>&);

int main()

{ GeoWin gw("Segment Intersection");
list<segment_t> L;
geo_scene sc_input = gw.new_scene(L);
geo_scene sc_ouput = gw.new_scene(INTERSECT,sc_input);
gw.set_color(sc_output,red );
gw.set_point_style(sc_output,circle_point);
gw.set_visible(sc_ouput,true );
gw.edit(sc_input);
return 0;

Figure 3: A result scene showing intersections of segments.

34



Figure 4: A sweep program

Figure 5: Visualization of a 3d convex hull algorithm.

35



