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Verification of logic circuits using Mizar and its application to

an adder circuit on a radix-2*SD number.
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1. Introduction

To answer the request of higher performance from electric equipment,
logic circuit is becoming more complicated and more large-scaled. This
makes it more difficult to verify correctness of a designed circuit..

Heretofore, to verify a logical circuit, output for every possible state
and input should be confirmed by simulation. However, when the scale of
a circuit increases, states of circuit increases exponentially, accordingly
(Example, when a circuit has 100 return wires, it has 2°° states.). So it is
impossible or very difficult to complete such a simulation for large-scaled
circuits.

As a new way to. verify correctness of logical circuit, we express
logical circuit with mathematical description (called mathematical

"model). The correetness of the circuits is assured when correctness of the



circuit's mathematical model is verified by a proof checker system.

A proof checker system has been used to verify correctness of proof in
mathematics. It can be applied to"-vérifyin'g correctness of a designed
circuit with the method we suggest.

In this paper, after in‘troducihg‘ the proofchecker system Mizar which
isiused to verify correctness of proof"(S'ection 2), we give some definitions
as a preparation for mathematics descriptions of a logical circuit (Section
3). Then, we explain how a logical circuit is described by these definitions,
and how its correctness is verified by the system (Section 4). At last, as
an example, we apply the method in designing the adder circuit on a

radix-2¥SD number.

2. Proof checker system Mizar

As an attempt to reconstruct mathematical vernacular, the Mizar
project started in 1973. (!

And, it has become the most important activity in the project to
develop the database of mathematics since 1989.. Now, more than 2,000
definitions and 20,000 theorems are included in the increasing database.

As a characteristic of Mizar, useful verified proof is accepted by
Mizar's library. Using Mizar, besides mathematical proof, a mathematical
model can be verified too.

Just as a. large-scale circuit can be designed:as a combination of
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smaller circuits which function has been verified, the correctness of a
model can be showed when the model is a combination of smaller models

which has been accepted by the library.

3. Preparation for mathematical description of a logical circuit
We give a relation between basic concepts of logical circuits and

mathematics as follows:

(1) We think input and output signals as sets. The logic of a signal line
has 2 states, 0 and 1. 0 is defined as the empty set ¢, and 1 is defined as
a non-empty set.

It is described as follows at Mizar:

definition let a be set;
redefine attr a is empty;
antonym $a; '

end;

(2) We consider the expfession of every possible states formed by input

and output signals. It is described like this:

$s0 iff SAND2 (NOT1 q2,NOT1 q1)

‘(3) We define a circuit as a Boolean function of sets defined above.

For example, NOT circuit writes follows:

func NOT1 a -> set equals
¢ if $a
otherwise {¢ : not contradiction};

end;
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4. A new method of logic circuit's verification using Mizar system
Here, we introduce how the new method works with a simple
example.
Consider a 3bit up counter circuit. The correctness of the circuit can
be guaranteed with Mizar at the following steps.
(1) Describing the input and output as sets.
(2_) Defining every possible state of input and output as following with

the set of stepl. (Fig.1)

$s0=SAND3(NOT1 q3, NOT1 q2, NOT1 q1);
$s1=SAND3(NOT1 q3, NOT1 q2, ql);
$s52,$s3,9$54,$55,%$56,8s7 is similar to $s0,8s1.

(8) Expressing the behavior of 3bit-up counter circuit with Boolean

expressions as follows: (Fig.2)

$nql1=SAND2(NOT1 q1,R)
$nq2=SAND2(XOR2(ql,q2),R))
$nq3=$AND2(OR2(AND2(q3,NOT1 q1),AND2(q1, XOR2(q2,43))),R)

Here, $q1,$q92,%q3,R are circuit inputs and $nql,$nq2,$nq3 are
outputs.
(4) Verifying the correctness of circuit by confirming its Boolean

expressions' tautology using Mizar system.

(Sns1 iff SAND2(sO0,R)) & ($ns2 iff SAND2(s1,R)) & (Sns3 iff SAND2(s2,R))&
(Snsd4 iff SAND2(s3,R)) & ($ns5 iff SAND2(s4,R)) & (Sns6 iff SAND2(s5,R))&
(Sns7 iff SAND2(s6,R)) & ($ns0 iff SOR2(s7,NOT1 R));

Here, $s0,:,$s7 means current states and $ns0,*:, $ns7 means next

states of current states.



($nsl iff SAND2(s0,R)) means the next state will be $nsl, if and only if

the current state is $s0 and R is "1".

Behavior of a 3bit up counter circuit
Have 4 inputs(R,q3,92,q1) and 3outputs(ng3,ng2,nql)
States change as follows: _
000—001—010—011—100—101—110—111—000—
return to the initial state(000) by the reset input

Signal definitions

ql ——» —> na2f ™

a3 —»
sy92 X apit [ oS
counter

—» nql

Input signal definitions
0 00— $s0=$AND3(NOT1 g3, NOT1 q2,NOT1 q1)
Output signal definitions
00 1— $ns1=$AND3(NOT1 nq3, NOT1 nq2, nql)

Fig.1 Definitions of 3bit up counter.

Definitions and proof to correctness of
a 3bit up counter

Needs to proof these definitions

q3 ($ns1 iff $AND2(sO,.R))&
s{q2 nad ($ns2 ifF $ANDZ(s1 R))&
($ns3 iff $AND2(s2.R))&

al 1 O— "“2}"3 ($nsd iff $AND2 (s3.R))&

R [ )— nal ($ns5 ifF $ANDZ (s4.R))&
($ns6 iff $AND2 (s5,R)) &

Definitions of a 3bit up counter ($ns? iff $AND2(s6.R))&

($nsO iff $OR2(s7, NOT1 R)) :
($ngl iff $AND2(NOT1 gl.R))&
($ng2 iff $AND2 (XOR2(gl. g2).R))&
($ng3 iff $AND2 (OR2 (AND2 (43, NOT1 qgl),
AND2 (g1, XOR2(a2,a3))).R))

Fig. 2 Definitions (cont.) and proof of correctness of 3bit up counter.
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5. An application to a radix-2“SD number coded adder circuit

Here, we apply the new method to designing an adder circuit on a
radix-2¥SD number.

In a radix-2¥SD (signed-digit) coded adder circuit, calculations can
be finished in a constant time no matter whether there is a ripple carry.

Here, we will verify the correctness of such a circuit of case k=2.

A designed radix-4SD number circuit

and signal layouts
value x2 x1 x0
ncl
-2 110
' X2 ——» -1 1 11
Xqgxl —» ¢ ¢ 00
X0 —» ‘ LN L » s 1 ¢ 01
PART 1 |1l pART 2 |—> stps 2 0 10
y {y1 —P (y.s are similar)
yo ™ | g ncl nc@
cl value ¢l c0
cQ — -1 1 1
0 c 0
1 o 1

Fig.3 Signal layout of radix-4SD number coded adder circuit
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Outputs of PART1 which used radix-4SD number

other

Value w2 wl w0 ncl ncO exXpression
6| -4+ -2 110 11

5| -4+ -1 111 11 Several kinds numerical
4| -4+ 0 000 1 1 value expression is
314+ 1 c01 11 0 + -3 possible so that figure
2! 0+ -2 110 00 -4 + 92 increasing number can
11 0+ -1 111 00 -4 + 1 take out a mark in SD
0| 0+ 0| 000 00O number

11 0+ 1 001 00 4 + -3 In this study, we

9! 0+ 2 010 00 4 + -2 represent numerical

3 4+ -1 111 01 0+ 3 Vvalue by expression

4| 4+ 0 000 0 1 surrounded by a square.
5| 4+ 1 001 01

6| 4+ 2 010 01

Fig.4 Definitions of radix-4SD number coded adder circuit
The correctness of a 4-SD number adder circuit is verified with the 4
steps described in former section.

First, input and output status can be defined as follows:

INPUT STATE:

(Sxm3 iff SAND3( x2,NOT1 x1, x0))&
(Sxm2 iff SAND3( x2, x1,NOT1 x0))&
($xm1 iff SAND3( x2, x1, x0))&
(Sxz iff SAND3(NOT1 x2,NOT1 x1,NOT1 x0))&
(Sxp1 iff SAND3(NOT1 x2,NOT1 x1, x0))&
($xp2 iff SAND3(NOT1 x2, x1,NOT1 x0))&
($xp3 iff SAND3(NOT1 x2, x1, x0))

Here, $x0,$x1,$x2 express the three inputs of PART1 (Fig.3),
$xm3,$xm2,$xm1,$xz,$xp1,$xp2,$xp3 are all possible input states. The
expression $xm3 iff $AND3(x2,NOT1 x1,x0) means that an input state is

called $xm3 if and only if inputs x2="1", x1="0", x0="1",
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$ym3,;$ym2,8ym1,5yz,8yp1,8yp2,8yp3 can be defined similarly.

OUTPUT STATE:

Output states can be defined in same way as follows.

($Snz iff SAND5(NOT1 nc1,NOT1 nc0,NOT1 nw2,NOT1 nw1,NOT1 nw0))&

($npl-iff SANDS(NOT1 nc1l,NOT1 nc0,NOT1 nw2,NOT1 nwl, nw0))&
($np2viff $‘A.ND5’(NO’I“1 ncl,NOT1 nc0,NOT1 nw2, nwl,NOT1 nw())&
($Snp3 iff $AND5(NOT1»nc1, nco, nw2, nwl, nwi))&

($np4 iff SANDS(NOT1 necl, nc0,NOT1 nw2,NOT1 nw1,NOT1 nwo0))&
($np5 iff $AND5(NOT1 ncl, nc0O,NOT1 nw2,NOT1 nwl, nw0))&
($np6 iff SANDS(NOTI ncl, ncO,NOT1 nw2, nwl,NOT1 nw0))&

Next, the behavior of PART1 can be described as a Boolean function

as follows.

(SncO iff SORS(AND4(NOT1 x2,x1,NOT1 y2,y1),
AND3(NOT1 x2,NOT1 y2,0R2(AND2(x1,x0),AND2(y1,y0))),
AND3(NOT1 x2,NOT1 y2,0R2(AND2(x1,y0),AND2(x0,y1))),
AND3(NOT1 x1,NOT1 y1,0R2(AND4(x2,x0,NOT1 y2,NOT1 y0),
AND4(NOT1 x2,NOT1 x0,y2,y0))),
ANDS5(x2,x1,y2,y1,NAND2(x0,y0)),AND5(x2,x1,y2,NOT1 y1,y0),
AND5(x2,NOT1 x1,x0,y2,y1),AND6(x2,NOT1 x1,x0,y2,NOT1 y1,y0)))

$ncl,$nw2,$nw1,$nw0 can be described in same way.

Then, the relation between input status and output status is built.
The following expression is showed tautology by Mizar system. So the

correctness of PART1 circuit is verified. (Fig.5)

($nm6 iff SAND2(xm3,ym3)) &

($nm5 iff SOR2(AND2(xm3,ym2),AND2(xm2,ym3))) &

($nm4 iff SOR3(AND2(xm3,ym1),AND2(xm2,ym2),AND2(xm1,ym3))) &

($nm3 iff SOR4(AND2(xm3,yz),AND2(xm2,ym1),AND2(xm1l,ym2),
AND2(xz,ym3))) &

($nm2 iff SORS(AND2(xm3,yp1),AND2(xm2,yz),AND2(xm1,ym1),
AND2(xz,ym2),AND2(xpl,ym3))) &

($nm1 iff SOR6(AND2(xm3,yp2),AND2(xm2,yp1),AND2(xml,yz),
AND2(xz,ym1),AND2(xpl,ym2),AND2(xp2,ym3))) &
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($nz iff SOR7(AND2(xm3,yp3),AND2(xm2,yp2),AND2(xml,ypl), o
AND2(xz,yz),AND2(xpl,ym1),AND2(xp2,ym2),AND2(xp3,ym3))) &

($npl iff SOR6(AND2(xm2,yp3);,AND2(xm1,yp2),AND2(xz,ypl),
AND2(xpl,yz),AND2(xp2,yml1),AND2(xp3,ym2))) &

($np2 iff SORS(AND2(xm1,yp3),AND2(xz,yp2),AND2(xpl,ypl),
AND2(xp2,yz),AND2(xp3,yml))) &

($np3 iff SOR4(AND2(xz,yp3),AND2(xpl,yp2),AND2(xp2,ypl),
AND2(xp3,yz))) &

($np4 iff SOR3(AND2(xpl,yp3),AND2(xp2,yp2),AND2(xp3,ypl))) &

($np5 iff SOR2(AND2(xp2,yp3),AND2(xp3,yp2))) &

(Snp6 iff SAND2(xp3,yp3))

Here, for e);ample, the expression ($nmS5 iff $OR2(AND2(xm3,ym2'),
AND2(xm2,ym3))) means a state is c‘allre'd $nm5(-5) if andAonIy if the
input state ($xm3(x=-3) and ‘$ym2(y=-2)) or ($xm2(x=-2) and $Sym3(y=-3)).
Other expressions ‘are similar. | |

The correctness of PART2 can be verified in same'way. (Fig.6) »
Thus, the behavior of the whole circuit can be expressed by the

following expressions.

($xm2 iff SAND3( x2, x1,NOT1 x0))&
($xm1 iff SAND3( x2, x1, x0))&
($xz iff SAND3(NOT1 x2,NOT1 x1,NOT1 x0))&
($xpl iff SAND3(NOT1 x2,NOT1 x1, x0))&
($xp2 iff SAND3(NOT1 x2, x1,NOT1 x0))&
($cm iff SAND2( cl, c0))&

($cz iff SAND2(NOT1 ¢1,NOT1 ¢0))&

($cp iff SAND2(NOT1 cl, c0))&

($nm3 iff SAND3( ns2,NOT1 nsl, ns0))&
($nm2 iff SAND3( ns2, ns1,NOT1 ns0))&
($nm1 iff SAND3( ns2, nsl, ns0))&

($nz iff SAND3(NOT1 ns2,NOT1 ns1,NOT1 ns0))&
($npl iff SAND3(NOT1 ns2,NOT1 nsl, ns0))&
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($np2 iff SAND3(NOT1 ns2, ns1,NOT1 ns0))&

(Sup3 iff SAND3(NOTI1 ns2, nsl, ns0))&

($ns0 iff SOR4(AND4(NOT1 x2,NOT1 x1,NOT1 x0,c0), AND3(x1,NOT1 x0,c0),
AND5(NOT1 x2,NOT1 x1,x0,NOT1 ¢1,NOT1 c0),
AND5(x2,x1,x0,NOT1 ¢1,NOT1 ¢0)))& °

($nsl iff SOR5(AND5(NOT1 x2,NOT1 x1,NOT1 x0,c1,c0),
AND5(NOT1 x2,NOT1 x1,x0,NOT1 ¢1,c0),AND3(x1,NOT1 x0,NOT1 c1),
AND5(x2,x1,x0,NOT1 ¢1,NOT1 ¢0),AND5(x2,x1,x0,¢1,c0)))&

($ns2 iff SOR7(AND2(c1,NOT1 ¢0),AND4(NOT1 x2,NOT1 x1,NOT1 x0,cl),
AND3(NOT1 x2,x1,x0),AND3(x2,x1,NOT1 x0),AND2(x2,NOT1 x1),
AND3(x2,NOT1 ¢1,NOT1 ¢0),AND2(x2,c1)))

($nm3 iff SAND2(xm2,cm)) &

($nm2 iff SOR2(AND2(xm2,cz),AND2(xml,cm))) &

($nm1 iff SOR3(AND2(xm2,cp),AND2(xm1l,cz),AND2(xz,cm))) &
($nz iff SOR3(AND2(xml,cp),AND2(xz,cz),AND2(xpl,cm))) & -
($npl iff SOR3(AND2(xz,cp),AND2(xpl,cz),AND2(xp2,cm))) &
($np2 iff SOR2(AND2(xpl,cp),AND2(xp2,cz)))&

($np3 iff SAND2(xp2,cp))

The tautology can be showed because part 1 and part 2 have been

verified. So the correctness of radix-4SD adder circuit is verified.



PART 1

—> w2
— wl
 » 40 +x2*xl*y2*~yl*y0 +x2*-~x1*x0*y2*yl
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ncl= x2*~x1*~x0 + y2*~yl*~y0
+ ~x2*~x1*~x0*y2*~yl + x2%~x]1*~y2*~yl*~y0
+ x2 *y2 *(~x1+-~y1) +x2*y2 * (x1 *~x0+yl*~y0)

o] De0="x2 * 2 * (x1 *x0+yl *y0)
— nc0 +~x2*~y2*(x1*y0+x0*yl)+~x2*x1*~y2*y1

+ ~xl**’yl*(xZ*x0*~y2*~y0+~x2*~xﬂ*y2*y0)
+x2 *x]1*y2*yl* (x0NANDy0)

+ x2*~x1*x0*y2 *~y1*y0
w2=~x2*%~y2* (x1XORyl) *(x0XORy0)
+ 32 *x1 *~y2 *~yl * (&0 NANDy0)
+ ~x2%*~x1*y2 *yl* (0 NAND y0)
+ x2*~x1*yl*~ yO0+x1*~x0*y2 *~yl
+~x1*x0*~y1*y0*@x2 XORy2)
+ x2* x0*y2 *y0* (x1 XNORyl)
wl= @1XNORyl) *@@0*y0) + (x1XORyl)* (x0 NAND y0)
w0 = x0XOR y0

Fig.5 The circuit verified of correctness by Mizar system (PART1)

w2——Pb
wi—>

cl—»
c0—»

PART 2

s2 =¢1 * ~cOH+~w2 * ~wl * ~w0 * ¢l
+~w2*wl*wO0+w2*wl*~w0
+x2 * ~x1 +x2 * ~¢1 * ~c0 + x2 *¢1

- p» g2 sl=~w2*~wl*~wO*cl*cO
> 51 +~w2*~wl*w0*~1*c0

—» 50 +wl*~w0*~cl

+w2*wl *w0*cl *cO

+x2*x1*x0* ~cl*~cO

SO =~w2 * ~wl *~w0 *c0 +x1 *~x0 *cO

+~x2 * ~x1 * x0 * ~c1 * ~c0
+x2 * x1 *x0 * ~¢1 * ~0

Fig.6 The circuit verified of correctness by Mizar system (PART2)



6. Conclusion

We showed it is possible to verify correctness of logical circuit’s
mathematicél modei using prqof checker Mizar.

This can be considered as a new approach to verifying correctness of
logical circuit.

The circuit we proved has been aécept by the library of Mizar, and it
can be used to prove larger circuits.

When the library is substant_iall‘y ih'future, verification of logical
circ;lité in practice can be exp‘ected. Verification of cryptogram circuit can

be realized in same way.
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