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1 Introduction

In this paper, we deal with fuzzy measures in the sence of s_{ugeno}[14] . That is, a fuzzy

measure  \mu is a nonnegative real valued set function defined on  \sigma ‐algebra  \mathcal{X} with the

properties  \mu(\emptyset)=0 and  A\subset B\Rightarrow\mu(A)\leq\mu(B) for  A,  B\in \mathcal{X} . We consider the space

 \mathcal{F}\mathcal{M} of fuzzy measures, that is, the linear space generated by the set of fuzzy measures.

The element of  F\mathcal{M} is a non monotonic fuzzy measure [8] of bounded variation. The

variation of non monotonic set functions is defined by Aumann and  Sha_{P^{1[1}}ey ] in the

context of game theory. The total variation is a norm in  \mathcal{F}\mathcal{M} .  \mathcal{T}_{BV} denotes the topology

of the variation norm.

The Choquet integral  [3, 7] of a nonnegative measurable function  f with respect to a

non monotonic fuzzy measure  \mu is defined by

 (C) \int fd\mu=\int_{0}^{\infty}\mu(\{_{X}|f(X)\geq a\})da .

Fuzzy measure and Choquet integral are basic tools for multicriteria decision making,

image processing and recognition  [4, 5] .
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Using the Choquet integral, we introduce the topologies  \mathcal{T}_{\mathcal{X}} and  \mathcal{T}_{B+} in the space of

fuzzy measure  \mathcal{F}\mathcal{M} . The concept of topology is equivalent to the concept of convergence.

The convergence of the net of fuzzy measures can be considered in several ways. We

discuss the relation and their difference among three types of convergence.

In section 2, we define the space  F\mathcal{M} of fuzzy measures and show the preliminary

propositions. We also define the variation, two topologies  \mathcal{T}x and  \mathcal{T}_{B+} .

In section 3, we consider the space  \mathcal{F}\mathcal{M} and the relation of three convergence. We

show that the three convergence are different from each other in the general situation.

In section 4, we consider the space  \mathcal{F}\mathcal{M}^{+} of monotone fuzzy measures and its relative

topology. Unlike the previous result, we have  \mathcal{T}_{\mathcal{X}}=\mathcal{T}_{B+} . But it remains that  \mathcal{T}_{\mathcal{X}}\neq \mathcal{T}_{BV} .

In section 5, we suppose that the universal set  X is a finite set. We show that three

types of convergence are same in this situation. This means that three topologies coincide,

that is ,  \mathcal{T}_{B}+=\mathcal{T}_{\mathcal{X}}=\mathcal{T}_{BV} .

In section 6, we define   0-\alpha fuzzy measure generated by   0-\alpha necessity measures.

We show that every fuzzy measure can be represented by the linear combination of   0-\alpha

fuzzy measures generated by   0-\alpha necessity fuzzy measures.

2 Space of fuzzy measures

In this section, we show some preliminary definitions and propositions.

Definition 2.1. Let (X,  \mathcal{X} ) be a measurable space. A non monotonic fuzzy measure is a

real valued set function on  \mathcal{X} with  \mu(\emptyset)=0 . We say that (X,  \mathcal{X},\mu ) is a non monotonic

fuzzy measure space when  \mu is a non monotonic fuzzy measure.

Definition 2.2. Let (X,  \mathcal{X},  \mu ) be a non monotonic fuzzy measure space.
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The positive variation  \mu^{+}(A) of  \mu on the set  A\in \mathcal{X} is given by

  \mu^{+}(A)=\sup\{\sum_{i=1}^{n}\max\{\mu(Ai)-\mu(Ai-1), 0\}\}
where the   \sup is taken over all non decreasing sequence  \emptyset=A_{0}\subset A_{\mathcal{X}}\subset\cdots\subset A_{n}=

 A,  A_{i}\in \mathcal{X},  i=1,2,  \cdots n , the negative variation  \mu^{-}(A) of  \mu on the set  A\in \mathcal{X} is given by

  \mu^{-}(A)=\sup\{\sum_{i=1}^{n}\max\{\mu(Ai-1)-\mu(A_{i}), o\}\}
where the   \sup is taken over all non decreasing sequence  \emptyset=A_{0}\subset A_{\mathcal{X}}\subset\cdots\subset A_{n}=

 A,  A_{i}\in \mathcal{X},  i=1,2,  \cdots n and the total variation  |\mu|(A) of  \mu on the set  A\in \mathcal{X} is given by

 |\mu|(A)=\mu^{+}(A)+\mu-(A) .

We denote the variation  |\mu|(X) by  ||\mu|| , and say that  \mu is of bounded variation if

 ||\mu||<\infty .

We define  F\mathcal{M}^{+}:= {  \mu|\mu : X  arrow R^{+},  \mu is a fuzzy measure}  (a\mu)(A)=a(\mu(A)) ,

 (\mu+\iota ノ)(A)=\mu(A)+\iota ノ(A),  (\mu-l^{ノ})(A)=\mu(A)-\nu(A) for  \mu , ιノ  \in \mathcal{F}\mathcal{M}^{+} ,  a\in R , and

 \mathcal{F}\mathcal{M}= { \mu-\nu|\mu , ιノ  \in F\mathcal{M}^{+} }. Then  \mathcal{F}\mathcal{M}^{+} is a positive cone, and  \mathcal{F}\mathcal{M} is a linear space.

Proposition 2.3. [1] Let  \mu be a non monotonic fuzzy measure. Then  \mu is of bounded

variation if and only if  \mu\in \mathcal{F}At .

The variation  ||\cdot|| is a norm on  F\mathcal{M} . We say  ||\cdot||BV‐norm. Let  (\mu_{i}) be a net in

 F\mathcal{M} . If  \mu_{i} converges to  \mu with respect to  BV‐norm, we write  \mu_{i}-^{BV}\mu .

Definition 2.4. Let  f be a nonnegative measurable function. We define the map  C_{f} :

 \mathcal{F}\mathcal{M}arrow R by   C_{f}( \mu)=(C)\int fd\mu . We define  C_{A}=C_{1_{A}} for  X\in \mathcal{X} .

We denote the set of bounded nonnegative measurable functions by  B^{+} .

It is obvious that  C_{f} is a linear map on  F\mathcal{M} for all  f\in B^{+} .
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Definition 2.5. We shall say that the coarsest topology for which every  C_{A} is continuous

for  A\in \mathcal{X} is  \mathcal{X} ‐ topology for  F\mathcal{M} , and that the coarsest topology for which every  C_{f} is

continuous for  f\in B^{+} is  B^{+} ‐ topology for  F\mathcal{M} .

Let  (\mu_{i}) be a net in  \mathcal{F}\mathcal{M} . If  \mu_{i} converges to  \mu with respect to  \mathcal{X}‐topology, we write

 \mu_{i}arrow^{\mathcal{X}}\mu . If  \mu_{i} converges to  \mu with respect to  B^{+} ‐topology, we write  \mu_{i}arrow^{B^{+}}\mu .

Lemma 2.6. [6] Let  (\mu_{i})_{i\in I} be a net in  \mathcal{F}\mathcal{M} .

(1)  \mu_{i}-^{x_{\mu}} if and only if  \mu_{i}(A)arrow\mu(A) for all  A\in \mathcal{X} .

(2)  \mu_{i}arrow^{B^{+}}\mu if and only if  c_{J(\mu_{i})}arrow C_{f}(\mu) for all  f\in B^{+} .

3 General theory

In this section, we consider the space  \mathcal{F}\mathcal{M} and the relations of three type of convergence.

The next theorem follows from the definition and Lemma 2.6.

Theorém 3.1. Let  (\mu_{i}) be a net in  F\mathcal{M} .

(1)  \mu_{i}-^{BV}\mu implies  \mu_{i}-^{B^{+}}\mu .

(2)  \mu_{i}-^{B^{+}}\mu implies  \mu_{i}arrow^{\mathcal{X}}\mu

The converse of (i) is not  \dot{a}1way_{S} true.

Example 1. Let  X=[0,1] ,  \lambda the Lebesgue measure on  X , and  \mathcal{X} be the class of Borel

subsets of  X .

We define the set function on  \mathcal{X} by

 \mu_{n}(A)=\{
 n^{2} if   \lambda(A)=\frac{k}{n^{2}}
 0 if otherwise
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for  k=1,2,3,  \cdots,  n and  A\in \mathcal{X} .

Then we have

 \mu_{n}^{+}(A.)=.(\begin{array}{l}
n^{3}if\lambda(A)\geq\frac{l}{n}
kn^{2}if\frac{k}{n^{2}}\leq\lambda(A)<\frac{k+1}{n^{2}}
\end{array}
and

 \mu_{n}^{-}(A)=\{
 n^{2} if   \lambda(A)>\frac{1}{n}
 kn if   \frac{k}{n^{2}}<\lambda(A)\leq\frac{k+1}{n^{2}}
 0 if  \lambda(A)=^{o}

for  k=0,1,2,3,  \cdots,  n and  A\in \mathcal{X} .

We have  \mu_{n}\in \mathcal{F}\mathcal{M} . Let  A\in X. If  \lambda(A)=0 then  \mu_{n}(A)=0 for every natural

number  n . If  \lambda(A)>0_{f} there exists a natural number  n_{0} such that   \lambda(A)>\frac{1}{n_{0}} . It follows

from the definition of  \mu_{n} that  n\geq n_{0} imply  \mu_{n}(A)=0 . Therefore we have  \mu_{n}(A)arrow 0

as   narrow\infty for all  A\in \mathcal{X} . Define  \mu(A)=0 for all  A\in X. We have  \mu_{n}-^{\chi}\mu as

  narrow\infty . It is obvious that  \mu\in \mathcal{F}\mathcal{M} .

Let

 f(x)=\{   \frac{n}{n+1} if   \frac{1}{(n+1)^{2}}\leq x<\frac{1}{n^{2}}
 0 if  x=0 or  x=1

for  x\in X and  n=1,2,3,  \cdots It is obvious that  f\in B^{+} . Let  A_{n} denote  A_{n}  :=

  \{x|f(X)\geq\frac{n}{n+1}\} for  n=1,2,3,  \cdots . It follows from  A_{n}=[0,  \frac{1}{n^{2}}] that   \lambda(A_{n})=\frac{1}{n^{2}}
and  \mu_{n}(A_{n})=n^{2} . Suppose that  p is a prime number, we have  \mu_{p}(A_{m})=0 for a positive

number  m such that  m\neq p .

Then we have

 C_{j}( \mu_{p})=1-\frac{1}{p+1}
if  p is a prime number.
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Since  \mu\equiv 0 , we have  C_{f}(\mu)=0 . This fact shows that  \mu_{n}arrow^{\mathcal{X}}\mu as   narrow\infty but

 \mu_{n}\neqarrow^{B^{+}}\mu as   narrow\infty .

The converse of (ii) is also not always true.

Example 2. Let  X=[0,1] ,  \mathcal{X} be the class of Borel subsets of  X and  A_{n}=( \frac{1}{n+1}, \frac{1}{n}) .

Define the sequence of set functions  \mu_{n} :  \mathcal{X}arrow[0,1] by

 \mu_{n}(A)=(\begin{array}{l}
1ifA=A_{n}
0ifotherwi_{S}e
\end{array}
for  k=1,2,3,  \cdots ,  n and  A\in \mathcal{X} .

It follows from Definition 2.2

 \mu_{n}^{+}(A)=(\begin{array}{l}
1ifA_{n}\subset A
0if_{Ot}herwise
\end{array}
and

 \mu_{n}^{-}(A)=(\begin{array}{l}
1ifA_{n}\subset A,A\neq nA
0ifotherwise
\end{array}
for  k=0,1,2,3,  \cdots,  n and  A\in \mathcal{X}

Therefore we have  \mu_{n}\in \mathcal{F}\mathcal{M} for all  n\in N .

Let  f\in B^{+} . Suppose that there exists  a>0 and  n\in N such that  A_{n}=\{x|f(X)\geq a\} .

Let  m>n . Suppose that there exists  b>0 such that  A_{m}=\{x|f(X)\geq b\} , then we have

 \{x|f(X)\geq a\}\subset\{x|f(X)\geq b\} or  \{x|f(X)\geq b\}\subset\{x|f(X)\geq a\} , and   A_{n}\cap A_{m}=\emptyset . This

is contradictory. Therefore we have

 (C) \int fd\mu_{m}=0
for all  m>n . This means  \mu_{n}-^{B+}0 . On the other  hand_{f} we have  ||\mu_{n}||=2 for all

 n\in N . That is,  \mu\neq\prec^{BV}0 .
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4 Space of monotone fuzzy measure

In this section, we consider the space of monotone fuzzy measure  \mathcal{F}\mathcal{M}^{+} and three type

of its relative topology. Unlike the previous result, the convergence with respect to  \mathcal{X}

coincide with the convergence with respect to  B^{+} .

Theorem 4.1. [9] Let  (\mu_{i}) be a net in  \mathcal{F}\mathcal{M}^{+} and consider the relative topology to  \mathcal{F}\mathcal{M}^{+} .

Then  \mu_{i}-^{\chi}\mu implies  \mu_{i}-^{B^{+}}\mu .

Even if we restrict the topology to  F\mathcal{M}^{+} , the convergence with respect to  BV is not

always coincide with the convergence with respecct to  \mathcal{X} (therefore to  B^{+} ).

Example 3. Let  X=[0,1] ,  \mathcal{X} be the class of Borel subsets of  X and  A_{n}=[0,  \frac{n-1}{n}] .

Define the sequence of set functions  \mu_{n} :  \mathcal{X}arrow[0,1] by

 \mu_{n}(A)=(\begin{array}{l}
1ifA_{n}subsetA
0if_{Othe}\Gamma wi_{S}e
\end{array}
It is obvious from the defition that  \mu_{n}\in F\mathcal{M} for all  n\in N. Define the fuzzy measure  \mu

in  \mathcal{X} by

 \mu(A)=(\begin{array}{l}
1if[o,1)\subset A
0ifotherwi_{Se}
\end{array}
Then we have  \mu_{n}-^{\chi}\mu , since  [0,1)= \bigcup_{n=0}^{\infty}A_{n} . On the other hand, we have  ||.\mu_{n}-\mu||=2
for all  n\in N , that is,  \mu_{n}\neq_{7}+^{\mathcal{X}}\mu .

5 Finite case

Suppose that  \mu_{i}arrow^{\mathcal{X}}\mu . If  X is a finite set, there exists a real number  M>0 such

that  2^{|X|}<M . For every  X\in \mathcal{X} and  \epsilon>0 , there exists  j_{0}\in J such that  j\geq j_{0} implies
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 | \mu j(A)-\mu(A)|<\frac{\epsilon}{2M} . Define  n_{j}:= \sum_{A\neq B}|(\mu j(A)-\mu(A))-(\mu j(B)-\mu(B))| . It is obvious

  n_{j}<\epsilon . It follows from Definition 2.2 that  ||\mu j-\mu||\leq n_{j} . We have  \mu j^{arrow^{BV}}\mu . Therefore

three topologies coincide.

Theorem 5.1. Suppose that  X is a finite set. Let  (\mu_{i}) be a net in  F\mathcal{M} and  \mu\in \mathcal{F}\mathcal{M}

Then  \mu_{i}arrow^{\mathcal{X}}\mu implies  \mu_{i}-^{BV}\mu .

Remark.  n_{j} in the above proof may be replaced by Banzhaf value  B(\mu_{j})[2] . In fact, it

is obvious that  n_{j}arrow O if and only if  B(\mu i-\mu)arrow 0 .

6 Extreme point of fuzzy measure space

First, we define a convex hull and an extreme point in a general vector space.

Definition 6.1. Let  E be a   vector\sim space and  A\subset E .

We define the convex hull  c(A) by

  c(A)=\cap {  Y|A\subset Y,  Yis a convex set}.

We say that  x\in X is an extreme point of  X if  x=\lambda x_{1}+(1-\lambda)x2;X1,  X_{2}\in X,  0\leq\lambda\leq 1

implies  x_{1}=x_{2}=x . We denote the set of extreme points of  A by  \mathcal{E}(A) .

It is obvious that  F\mathcal{M}^{\alpha} is a convex set. In fact we have  \lambda\mu_{1}(X)+(1-\lambda)\mu 2(x)=\alpha

for  \mu_{1},\mu_{2}\in \mathcal{F}\mathcal{M}^{\alpha},  0\leq\lambda\leq 1 .

Definition 6.2. Let  a>0 .

(1) We say that  \mu\in \mathcal{F}\mathcal{M}^{\alpha} is   0-\alpha fuzzy measure if  \mu(A)=0 or  \mu(A)=a for all

 A\in B . We denote the set of  O-a fuzzy measures by  \mathcal{F}\mathcal{M}_{0}^{\alpha} . That  is_{f}

 \mathcal{F}\mathcal{M}_{0}^{\alpha}=\{\mu|\mu\in F\mathcal{M}^{+}, \mu : Barrow
\{0, \alpha\}\} .

 \backslash 

‘
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(2) Let  B\in B . We say that  N_{B}\in \mathcal{F}\mathcal{M}_{0}^{\alpha} is   0-\alpha necessity measure if

 N_{B}(A)=\{
a  B\subset A

 0  0.w .

(3) Let  B\in B and  C\subset B .   0-\alpha fuzzy measure  N_{C} of  C generated by   0-\alpha fuzzy measure

is defined by

 N_{C}= \sup_{\in BC}N_{B}
where  N_{B} is a  O-a necessity measure.

The next proposition follows from Definition 6.2

Proposition 6.3. Let  B\in B ,  C\subset B and  a>0 .

(1)   0-\alpha fuzzy measure is   0-\alpha fuzzy measure generated by   0-\alpha necessity fuzzy

measures. That  is_{f}\mathcal{F}\mathcal{M}_{0}^{\alpha}=\{N_{C}|C\subset B\} .

(2)   0-\alpha fuzzy measure is an extreme point  ofa ‐fuzzy measure. Conversely, an extreme

point of a‐fuzzy measure is   0-\alpha fuzzy measure. That  is_{f}\mathcal{E}(\mathcal{F}\mathcal{M}^{\alpha})=\mathcal{F}\mathcal{M}_{0}^{
\alpha} .

Applying Klein‐Milman’s theorem [13], we have the next theorem.

Theorem 6.4. Let  \alpha>0 .

(1)  \mathcal{F}\mathcal{M}^{\alpha}=cl(C(\mathcal{F}\mathcal{M}_{0}\alpha)) .

(2)   If|B|<\infty ,  \mathcal{F}\mathcal{M}^{\alpha}=c(F\mathcal{M}_{0}\alpha) .

Corollary 6.5. (Representation of fuzzy measures)

Suppose that  |B|<\infty . For every  \mu\in F\mathcal{M}^{\alpha} there exist  a_{1},  a_{2},  \cdots a_{m}\geq 0(a_{1}+a_{2}+

 ...+a_{m}=1) and   C_{1},C_{2,m}\ldots C\subset B such that   \mu=\sum_{i=1}^{m}a_{i}Nc.\cdot .
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Remark In the case of  \alpha=1 a   0-\alpha fuzzy measure is sometimes called a logical fuzzy

measure. Radojevič  [11, 12] gives a logical interpretation to a discrete fuzzy measure.

In his theory, the relations between any fuzzy measure and fuzzy logical measures are

important. Radojevič’s proposition (Proposition 2 in [11]) is one of the special case of
Theorem 6.4.
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