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1 Introduction

The translation semigroup on a weighted function spa\prime.eL_{\beta}^{p}(I) or  c_{0,\rho}(I) is characterized to be
hypercyclic, chaotic, supercyclic, and so on, according to the property of the admissible weight
function. In 1997, W. Desch, W. Schappacher and G. F. Webb gave a necessary and sufficient
condition to be hypercyclic for the translation semigroup on a weighted function space  L_{\rho}^{p}(I)
or  c_{0_{\rho}},(I) by using the property of an admissible weight function. In 1999, M. Yamada and
F. Takeo gave a necessary and sufficient condition to be chaotic for the translation semigroup
on the same function space  L_{\rho}^{p}(I) or  c_{0,\rho}(I) . D. A. Herrero et al. investigated the spectral
properties of hypercyclic and supercyclic operators on a complex, separable infinite dimensional
Hilbert space  [3, 4] . The definition of a hypercyclic or chaotic operator is consistent with that
of topologically transitive or chaotic, respectively in a topological space defined by Devaney [2].
In [5], chaotic semigroups are associated with the idea of exactness and are applied to partial
differential equations. C. Read has developed the theory of hypercyclic and chaotic bounded
linear operators in connection with the invariant subspace problem of Hilbert spaces [6].

We investigate how the property of an admissible weight function changes according to
supercyclic, hypercyclic and chaotic translation semigroups on a weighted function space  L_{\rho}^{p}(I)
or  c_{0.\rho}(I) . As for supercyclicity, the translation semigroup on a weighted function space  L_{\rho}^{p}(I)
or  c_{0_{\rho}}.(I) is always supercyclic if  I is an interval  [0, \infty)(Theorem1(1)) . For  I=(-\infty, \infty) ,
the semigroup is not always supercyclic and we give a necessary and sufficient condition to be
supercyclic for the translation semigroup on a weighted function space  L_{\rho}^{p}(I) or  c_{0_{\rho}},(I) (Theorem
1(2)  ) . We also construct the special function  x such that  \{cT(t)X|t\geq 0, c\in \mathbb{R}\} is dense in  X

(Remark).

2 Preliminaries

Let  X be a Banach space. A strongly continuous semigroup  \{\tau(t)\} of linear operators on  X

is called supercyclic (resp. hypercyclic) if there exists  x\in X such that  \{cT(t)_{X}|t\geq 0, c\in \mathbb{R}\}
(resp.  \{T(t)x|t\geq 0\} ) is dense in  X[4] . A strongly continuous semigroup  \{T(t)\} is called
chaotic if  \{T(t)\} is hypercyclic and the set  X_{per}=\{x\in X|\exists t>0s.t. \tau(t)x=x\} of periodic
points is dense in  X[1] . Let  I be the interval  [0, \infty) or  (-\infty, \infty) . By an admissible weight
function on  I we mean a measurable function  \rho:Iarrow \mathbb{R} satisfying the conditions:
(i)  \rho(x)>0 for all  x\in I ;
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(ii) there exist constants  M\geq 1 and  \omega\in \mathbb{R} such that  \rho(x)\leq Me^{\omega t}\rho(t+x) for all  x\in I and
 t>0 . With an admissible weight function, we construct the following function spaces:

 L_{\rho}^{p}(I, \mathbb{C})=\{u:Iarrow \mathbb{C}|u measurable,   \int_{I}|u(\tau)|p(\rho\tau)d\tau<\infty\}
with  ||u||=( \int_{I}|u(\tau)|p(\rho\tau)d\tau)^{\frac{1}{p}} ,  (p\geq 1)

 C_{0,\rho}(I, \mathbb{C})=\{u:Iarrow \mathbb{C}|u continuous,   \lim_{\tauarrow\pm\infty}\rho(\tau)u(\tau)=0\}
with  ||u||= \sup_{\tau\in I}|u(\tau)|\rho(\tau) .

We consider a (forward) translation semigroup  \{T(t)\} with parameter  t\geq 0 such as

 [T(t)u](\mathcal{T})=u(\tau+t) for  u\in C_{0,\rho}(I) or  L_{\rho}^{p}(I) .

When  \rho(\tau)=1 , weighted function spaces are equal to  L^{p} or  C_{0} and the translation semigroup
is never hypercyclic, since the norm of  T(t) is equal to 1 for all  t\geq 0 in  L^{p} or  C_{0} . Necessary
and sufficient conditions for the translation semigroup in  L_{\rho}^{p} or  C_{0,\rho} to be hypercyclic or to be
chaotic are known as follows.

The orem( A [1]. Let  X be  L_{\rho}^{p}(I) or.  C_{0,\rho}(I) with. an admissible weight function  \rho . Then the
following (1) and (2) are equivalent:

(1) the translation semigroup  \{T(t)\} on  X is hypercyclic;

(2) (i) if  I=[0, \infty) , then   \lim\inf_{tarrow\infty^{\rho}}(t)=0 holds.
(ii) if  I=(-\infty, \infty) , then for each  \theta\in \mathbb{R} there exists a sequence  \{t_{j}\}_{j=1}^{\infty}(t_{j}arrow\infty as

 jarrow\infty) of positive real numbers such that

  \lim_{jarrow\infty}\rho(t_{j}+\theta)=\lim_{jarrow\infty}\rho(-tj+\theta)=0 .

Theorem  B [7]. Let  I=(-\infty, \infty) (resp.  I=[0,  \infty )  ) and let  X be  L_{\rho}^{p}(I) . Then the
translation semigroup  \{T(t)\} on  X is chaotic if and only if for all  \epsilon>0 and for all  l>0_{f} there
exists  P>0 such that

  \sum_{n\in \mathbb{Z}\backslash \{0\}}\rho(l+nP)<\epsilon  (resp. \sum_{n=1}^{\infty}\rho(l+nP)<\epsilon) .

Theorem  C [7]. Let  I=(-\infty, \infty) (resp.  I=[0,  \infty )  ) and let  X be  c_{0,\rho}(I) . Then the
following assertions are equivalent:

(1) the translation semigroup  \{T(t)\} on  X is chaotic;

(2) for all  \xi>0 and for all  l>0 , there exists  P>0 such that
 \rho(l+nP)<\epsilon for all  n\in \mathbb{Z}\backslash \{0\} (resp.  n\in \mathbb{N});

(3) there exists  \{l_{i}\}_{i=1}^{\infty}\subset \mathbb{R}^{+} (   l_{i}arrow\infty as   iarrow\infty ) such that for all  \epsilon>0 and for all  j\in \mathbb{N}

there exists  P>0 such that  \rho(l_{i}+nP)<\epsilon for all  n\in \mathbb{Z}\backslash \{0\} (resp.  n\in \mathbb{N}).
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3 Supercyclic semigroups

As shown in the previous section, necessary and sufficient conditions for the translation semi‐
group to be hypercyclic or to be chaotic are known. In this section, we shall give a necessary
and sufficient condition for the translation semigroup to be supercyclic. In the first subsection
we consider a semigroup on a Banach space, and in the next subsection we treat a translation
semigroup on weighted function spaces.

3.1 Supercyclic semigroup on a Banach space

Lemma 1. Let  X be a separable infinite dimensional Banach space. Suppose that  \{T(t)\} is
supercyclic,  i.e . there exists  x\in X such that the set  \{cT(t)X|t\geq 0, c\in \mathbb{R}\} is dense in  X .
Then the set  \{cT(t)x|t\geq s, c\in \mathbb{R}\} is also dense in  X for all  s\geq 0 .

Proof. Assume there exists  s_{0}\geq 0 such that  A=\{cT(t)x|t\geq s_{0}, c\in \mathbb{R}\} is not dense in  X .
Hence there exists a bounded open set  U such that   U\cap\overline{A}=\phi . Therefore we have

 U\subset\overline{\{c\tau(t)X|0\leq t\leq S0,c\in \mathbb{R}\}}

by using the relation
 X=\overline{\{CT(t)X|t\geq 0,c\in \mathbb{R}\}}=\overline{\{cT(t)X|t\geq s0,
c\in \mathbb{R}\}}\cup\overline{\{c\tau(t)X|0\leq t\leq S0,c\in \mathbb{R}\}} . By the
definition of semigroup, if there exists  t_{0}>0 such that  T(t_{0)X}=0 then  \tau(tI^{x}=0 for all  t\geq t_{0} .
So we have  T(t)x\neq 0 for all  t\geq 0 since the set  \{cT(t)X|t\geq 0, c\in \mathbb{R}\} is dense in  X . Since

 T(t)x is continuous with  t and  T(t)x\neq 0 for all  t\geq 0 , there exists  m_{1},  m_{2}\in \mathbb{R} such that
 0<m_{1}\leq||T(t)x||\leq m_{2} for  0\underline{<}t\leq s_{0} .  T\underline{here}exists  M\geq 0 such that  ||y||\leq M for any

 y\in U because  U is bounded. So we have  U\subset\{cT(t)X|0\leq t\leq s_{0},  |c| \leq\frac{M}{m_{1}}\} , which means  \overline{U}

is compact. Hence  X is finite dimensional, which contradicts that  X is infinite dimensional.  \square 

Lemma 2. Let  \{T(t)|t\geq 0\} be a strongly continuous semigroup on a separable Banach space
X. Then the following are equivalent:

(1)  \{T(t)\} is supercyclicj

(2) for all  y,  z\in X and all  \epsilon>0 , there exists  v\in X,  t>0 and  c\in \mathbb{R} such that  ||y-v||<\epsilon
and  ||z-CT(t)v||<\epsilon_{f}.

(3) for all  y,  z\in X , all  \epsilon>0 and for all  l\geq 0_{f} there exists  v\in X_{f}t>l and  c\in \mathbb{R} such. that
 ||y-v||<\xi and  ||z-C\tau(t)v||<\epsilon .

 P\uparrow Oof . (1) implies (3): Let  \{cT(t)X|t\geq 0, c\in \mathbb{R}\} be dense in  X . For any  y_{)}z\in X and any
 l\geq 0 , there exists  s>0 and  c_{1}\in \mathbb{R} such that  ||y-c_{1}T(S)X||<\epsilon , and there exists  u>s+l

and  c_{2}\in \mathbb{R} such that  ||z-C_{2}\tau(u)x||<\epsilon by Lemma 1. Put  v=c_{1}T(s)x . Then we have the first
inequality. Put  t=u-s>l and  c=\angle cc_{1} . Then we have the second inequality.
(3)  i_{\ln}Plies(2) : It is obvious.
(2) implies (1): The proof is similar to the proof in case of hypercyclic in [1].  \square 
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3.2 Supercyclic translation semigroups on a separable Banach space,  L_{\rho}^{p} and
 C_{0,\rho}

In this section we shall consider a translation semigroup in  L_{\rho}^{p}(I) and  c_{0,\rho}(I) . At first we shall
quote the lemma which is needed later.

Lemma 3. [1] Let I be the interval  (-\infty, \infty) or  [0, \infty) and let  \rho be an admissible weight
function on  I , that is; there exists  M\geq 1 and  \omega\in \mathbb{R} such that  \rho(\tau)\leq Me^{tvt}\rho(\tau+t) for all  \tau\in I

and  t>0 . For  l>0 , put  M_{l}=Me^{\omega l} for  \omega>0 and  M_{l}=M for  \omega\leq 0 . Then  M_{l}\geq 1 and the
inequality .

  \frac{1}{M_{l}}\rho(\sigma)\leq\rho(\tau)\leq M\iota\rho(\sigma+\iota) (1a)

holds for any  \sigma\in I and any  \tau\in[\sigma, \sigma+l] .

By using the lemma, we give a necessary and sufficient condition for a translation semigroup
to be supercyclic.

Theorem 1. Let  X be the space  L_{\rho}^{p}(I) or  c_{0_{\rho}},(I) and  \rho be an admissible weight function. Let
 \{T(t)\} be a translation semigroup on X. Then the following assertions hold:

(1) if  I=[0, \infty) , then  \{\tau(t)\} is supercyclic;

(2) if  I=(-\infty, \infty) , then  \{T(t)\} is supercyclic if and only if there exists a sequence  \{t_{j}\}_{j=1}^{\infty}
(   t_{j}arrow\infty as   jarrow\infty ) such that   \lim_{jarrow\infty^{\rho}}(t_{j}+\theta)\rho(-t_{j}+\theta)=0 for each  \theta\in \mathbb{R} .

Proof. (1) Let  X_{0} be the set of all  x\in X such that the support of  x is compact. For any
 y,  z\in X and any  \epsilon>0 , there exists  y_{0}\in X_{0} such that  ||y-y_{0}||< \frac{\epsilon}{2} since  X_{0} is dense in  X .
There exists  t_{1}>0 such that  T(s)y0=0 for any  s\geq t_{1} since  y_{0}\in X_{0} . Put

 \omega'(_{\mathcal{T}})=\{
 z(\tau-t_{1})   t_{1}\leq\tau

  \frac{z(0)}{\epsilon}\tau+z(0)(1-\frac{t_{1}}{\epsilon})  t_{1}-\epsilon\leq \mathcal{T}\leq t_{1}
 0  0\leq\tau\leq t_{1}-\mathcal{E} .

Then  T(t_{1})\omega'=z holds. Put   \omega=\frac{\epsilon\omega'}{2||\omega||},,  c= \frac{2||\omega'||}{\epsilon} and   v=y_{0}+\omega . Then we have  v\in X ,

 ||y-v||=||y-y_{0}-\omega||\leq||y-y_{0}||+||\omega||<\epsilon and  ||z-C\tau(t_{1})v||\leq||z-cT(t_{1})\omega||+||cT(t_{1})\omega-
 cT(t_{1})v||=||z-\tau(t_{1})\omega'||+||cT(t1)y0||=0 . By Lemma 2 (2),  \{T(t)\} is supercyclic.

(2) We shall show the proof for the case  X=L_{\rho}^{p}(I, \mathbb{C})(p\geq 1),. since it is similar to that in the
case  X=c_{0,\rho}(I, \mathbb{C}) .

 (\Rightarrow) Let  \{T(t)\} be supercyclic. We will show   \lim_{jarrow\infty^{\rho}}(t_{j}+\theta)\rho(-t_{j}+\theta)=0 .
Fix any  \theta\in \mathbb{R} . Let  y,  z\in X be functions with compact support  \subset[\theta, \theta+l](l>0),  y\geq 0,  z\leq 0 ,
and  ||y||=||z||=1 . By Lemma 2 (3), for any  \xi>0 there exists  v_{\epsilon}\in X,  t_{\epsilon}>l and  c_{\epsilon}>0 such
that  ||c_{\epsilon}T(t_{\epsilon})v\epsilon-z||<\epsilon and  ||v_{\epsilon}-y||<\xi . Put  \omega_{1}=v_{\epsilon|[\theta,\theta\iota}^{+}+] and  \omega_{2}=v_{\epsilon 1[t_{\epsilon}]}^{-}\theta+t_{\epsilon},\theta+\iota+
\cdot
Then we have the following:  \omega_{1}\geq 0,  supp(\omega_{1})\subset[\theta, \theta+l],  supp(T(t\epsilon)\omega_{1})\subset[\theta-t_{\epsilon}, \theta+l-t_{\epsilon}] ,
 \omega_{2}\leq 0,  supp(\omega_{2})\subset[\theta+t_{\epsilon}, \theta+l+t_{6}],  supP(T(t\epsilon)\omega_{2})\subset[\theta, \theta+l] . Then the following holds:

 ||C_{g}T(t_{\epsilon})\omega_{1}||<\in (2a)

 ||y||-||\omega_{1}||<\in (2b)

 ||\omega_{2}||<\mathcal{E} (2c)

 ||_{Z||-}||_{C_{\epsilon}\tau}(t\epsilon)\omega 2||<\mathcal{E} . (2d)

52



By Lemma 3, there exists  M_{l}\geq 1 satisfying (1a). Then the following holds:

 ||c_{\epsilon}T(t_{\epsilon})\omega_{1}||p  =   \int_{\theta-t_{e}}^{\theta\iota-}+t_{e}\mathcal{T}\rho()|c_{\epsilon}
\omega_{1}(\mathcal{T}+t_{\epsilon})|^{p}d\tau
 \geq   \frac{1}{M_{l}}\rho(\theta-t_{\epsilon})|c_{6}|^{p}\int_{\theta-t_{\epsilon}}^
{\theta\iota}+-t_{g}|\omega 1(\tau+t_{\epsilon})|^{p}d\tau
 =   \frac{|c_{\epsilon}|^{p}}{M_{l}}\rho(\theta-t_{g})\int_{\theta}^{\theta+l}
|\omega 1(\tau)|pd\mathcal{T} ,

 ||\omega_{1}||^{p}  =   \int_{\theta}^{\theta+l}\rho(\mathcal{T})|\omega_{1}(\tau)|^{p}d\mathcal{T}
 \leq  M \iota\rho(\theta+\iota)\int_{\theta}^{\theta+l}|\omega 1(\tau)|pd\mathcal{T} .

So we have the inequality:

  \frac{||\omega_{1}||^{p}}{M\iota\rho(\theta+\iota)}\leq\frac{M_{l}
||C_{\epsilon}T(t_{\epsilon 1}\omega)||p}{|c_{\epsilon}|p\rho(\theta-
t_{\epsilon})} . (3a)

Similarly we have the following:

 ||\omega_{2}||^{p}  =   \int_{\theta+t}^{\theta+}l+t_{\epsilon}|^{p}\rho(\tau)|\omega_{2}(\tau)
d\mathcal{T}e
 \geq   \frac{1}{M_{l}}\rho(\theta+t_{\zeta})\int_{\theta+t}^{\theta+\iota}\epsilon+t_
{\epsilon}|\omega_{2}(\tau)|^{p}d\tau ,

 ||C_{\in}T(t_{\epsilon})\omega 2||p  =   \int_{\theta}^{\theta+l}\rho(\tau)|c_{\epsilonarrow}\omega 9(\mathcal{T}+
t_{\epsilon})|^{p}d\tau
 \leq  M \iota\rho(\theta+l)|c_{\xi}|^{p}\int_{\theta+t}^{\theta+^{\iota+t}}
\epsilon\epsilon|\omega_{2}(\mathcal{T})|^{p}d\mathcal{T} .

So we have the inequality:

  \frac{M_{l}||\omega_{2}||^{p}}{\rho(\theta+t_{\in})}\geq\frac{||_{C_{\epsilon}
\tau}(t\omega\epsilon 2)||p}{M_{l}|_{C_{\epsilon}}|p\rho(\theta+l)} . (3b)

By the inequalities (2a), (3a), and (2b),

 \epsilon^{p}  >  ||c_{\epsilon}T(t_{\epsilon})\omega_{1}||p

 \geq   \frac{|C_{\xi}|^{p}\rho(\theta-t\epsilon)||\omega 1||p}{M_{l}^{2}\rho(\theta+
\iota)}
 >   \frac{|c_{\epsilon}|^{p}\rho(\theta-t\epsilon)(1-\mathcal{E})^{P}}{M_{l}^{2}
\rho(\theta+\iota)} (3c)
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holds. Similarly by (2c), (3b), and (2d),

 \epsilon^{p}  >  ||\omega_{2}||^{p}

 \geq   \frac{\rho(\theta+t_{\epsilon})||Cg\tau(t_{\epsilon})\omega_{2}||p}{M_{l}^{2}
|C\epsilon|p\rho(\theta+\iota)}
 \rho(\theta+t_{\epsilon})(1-\epsilon)^{p}

 >

 \overline{M_{l}^{2}|C\epsilon|p\rho(\theta+\iota)} (3d)

holds. By (3c) and (3d), we can verify that   \epsilon^{2^{p}}>(\frac{(1-\epsilon)^{p}}{M_{l}^{2_{\beta(\theta}}+l)})^{2}
\rho(\theta+t_{\epsilon})\rho(\theta-t)\epsilon\geq 0 holds. If  c’
tends to  0 , then  \rho(\theta-t_{\epsilon})\rho(\theta+t_{\epsilon}) tends to  0 .
 (\Leftarrow) Assume for each  \theta\in \mathbb{R} , there exists a sequence  \{t_{j}\}\subset \mathbb{R}_{+} such that   \lim_{jarrow\infty^{\rho}}(t_{j}+\theta)\rho(-t_{j}+
 \theta)=0 . Let  y and  z be any nonzero functions with compact support  [\theta-l, \theta](\theta\in \mathbb{R}, l>0) .
For  l>0 , there exists  M_{l} satisfying (1a) by Lemma 3. By the assumption, for any  \epsilon>0 , there
exists  t_{j}>l such that

  \rho(t_{j}+\theta)\rho(-tj+\theta)<\frac{(\rho(\theta-l)\epsilon)^{2}}{lVI_{l}
^{4}||_{Z}||^{p}||y||p}
holds. Put

 v_{j}(\mathcal{T})=\{
 y(\tau)  \tau\in[\theta-l, \theta]
  \frac{1}{c_{j}}\cdot z(\tau-t_{j})  \tau\in[t_{j}+\theta-\iota, t_{j}+\theta]
 0 otherwise

with  c_{j}=( \frac{||z||^{p}M^{2}\rho(t+\theta t_{J})}{\epsilon\rho(\theta-\iota)})^
{\frac{1}{p}}
By Lemma 3 and the above inequality, we have

 ||v_{j}-y||p= \int_{t_{j}}^{t_{j}+\theta}+\theta-l)|\frac{1}{c_{j}}\cdot 
y(\mathcal{T}+tj|^{p}\rho(\tau)d\mathcal{T}\leq\frac{1}{c_{j}^{p}}
\cdot\frac{M_{l}^{2}\rho(t_{j}+\theta)}{\rho(\theta-^{\iota)}}||Z||^{p}=\mathcal
{E}
and

 ||_{C_{j}}T(ti)v_{j}-Z||p= \int_{\theta\iota_{-t}}^{\theta-}-j(|\frac{1}{c_{j}}
\cdot z(_{\mathcal{T}}-t_{j})|p)t_{j}\rho\tau d\tau\leq C_{j}^{P}\frac{M_{l}^{2}
\rho(\theta-t_{j})}{\rho(\theta-l)}||y||^{p}<6 .

Therefore  \{T(t)\} is supercyclic by Lemma 2.  \square 

Remark. It is possible that the supercyclicity is proved by showing the existence of the special
function  x\in X such that  \{cT(t)x|t>0, c\in \mathbb{R}\} is dense in  X . We shall show that in the case

of  X=c_{0,\rho}([0, \infty)) the translation  semigro-up on  X is supercyclic from the definition directly.
Let  C_{cpt}([o, \infty)) be the space of continuous functions on  [0, \infty) with compact support. Then

 C_{\varphi t}([0, \infty)) is a dense subset of  X . Let  c_{cpt,1}^{0}([0, \infty)) be the set  \{f\in C_{cpt}([o, \infty))|||f||_{\infty}\leq
 1,  f(O)=0\} . Put  s(f)= \sup\{\tau\in[0, \infty)|f(\tau)\neq 0\} for any  f\in C_{cpt}([o, \infty)) .

Let  F=\{f_{k}\}_{k=1}^{\infty} be a countable subset of  c_{cpt,1}^{0}([0, \infty]) such that for any  g\in C_{cp1}^{0}t,([0, \infty])
and for any  \epsilon>0 , there exists  f\in F satisfying  ||f-g||_{\infty}<\epsilon and  |s(f)-s(g)|<1 . Let
 F'=\{f1, f2, f1, f3, f_{2}, f1, f_{4}, f_{3}, f_{2}, f_{1}, \cdots\}=\{h_{1}, 
h_{2}, h_{3}, \cdots\} . For  k\in \mathbb{N} , put  L_{k}=s(h_{k})+1 ,
 I\{'k+1=\Sigma_{i=1}^{k}L_{i} and   \alpha_{k}=\sup_{\mathcal{T}\in[+}0,I^{r_{k}}1+11]  \rho(\tau) . Then  \alpha_{k} is finite by the definition of an admissible
weight function  \rho . Put  K_{1}=0,   \beta_{1}=\max\{\alpha_{1},1\} and

  \beta_{k}=\max\{k\alpha_{k}, k\beta 1\alpha k, \cdots , k\beta_{k-}1\alpha_{k}
\}
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for  k\geq 2 . Put

 x(\tau)=\{
  \frac{1}{\beta_{1}}h_{1}(\tau)  K_{1}\leq\tau\leq Ic_{2}

  \frac{1}{\beta_{2}}h_{2}(\tau-I\zeta_{2})  IC_{2}\leq\tau\leq IC_{3}

  \frac{1}{\beta_{k}}h_{k}(_{\mathcal{T}}-Ick)  If_{k}\leq \mathcal{T}\leq I\zeta_{k+}1

. . ....

Then  x is continuous on  [0, \infty) , since  h_{j}\in C_{cp1}^{0}(t,[0, \infty)) . So  x belongs to  X by the following
relation:

 \tauarrow\infty 11m|x(\tau)\rho(\mathcal{T})|  \leq   \lim_{karrow\infty_{\mathcal{T}}\in[K}\sup_{k,k}K+1]\beta_{k} \underline{1}|h_{k}(\tau-Ick)|\rho(\mathcal{T})

 \leq   \lim_{karrow\infty}\frac{1}{\beta_{k}}\cdot\alpha_{k}   \leq\lim_{karrow\infty}\frac{1}{k}=0 .

We shall show that for any  f\in X and any  \epsilon>0 , there exist  c\in \mathbb{R} and  t\geq 0 such that
 ||f-c\tau(t)X||<\epsilon . Since  C_{cpt}([o, \infty)) is dense in  X , there exists  f_{0}\in C_{cpt}([0, \infty))(||f_{0}||_{\infty}\neq 0)
such that   \sup_{\tau\in[0},\infty )  |(f( \tau)-f_{0(}\mathcal{T}))\rho(\tau)|<\frac{\epsilon}{2} .

Put  K= \sup_{\mathcal{T}}\in[0,S(fo)+2]\rho(\mathcal{T}) . There exists  h\in F such that   \sup_{\tau\in[0},\infty )  | \frac{fo(_{\mathcal{T})}}{||fo||_{\infty}}-h(\tau+1)|<
  \frac{\epsilon}{2K||fo||_{\infty}} and  |s(fo)-(s(h)-1)|<1 . By the way of construction of  F' ) there exists countable

numbers   m(1)<m(2)<\cdots<m(j)<\cdots such that  h=h_{m(j)}\in F' . For any  j\in N , put

 t_{j}=I\{_{m}'(j)+1 and  c_{j}=\beta_{m(j)}||f_{0}||_{\infty} . Then for  \tau\in[0, s(h)] we have  h_{m(j)}(\tau+1)=\beta_{m(j)^{x}}(\mathcal{T}+t_{j}) .

So by using the relations  s(h)\leq s(f_{0)}+2 and  s(f_{0})\leq s(h) , we have

  \tau\in[0_{S}sup,(h)]7|fo(\tau)-c_{j}T(t_{j})x(\tau)|\rho(\tau)=.\sup\in[0,
s(h)]||f_{0}||_{\infty}|\frac{f_{0}(\tau)}{||f_{0}||_{\infty}}-h(\tau+1)
|\rho(\mathcal{T})
 <||f_{0}|| \infty\cdot\frac{\epsilon}{2I\{'||f_{0}||_{\infty}}\cdot 
K<\frac{\epsilon}{2'}

an d

  \sup  |f_{0}(\tau)-cjT(tj)_{X}(\mathcal{T})|\rho(\tau)=   \sup  |c_{j}T(t_{j})_{X}(\mathcal{T})|\rho(\tau)
 \tau\in[s(h),\infty)  .\Gamma\in[s(h),\infty)

 =   \sup_{\iota\geq jk\in\{1,2,\cdots,m}\sup(l+1)-m(l)\}\tau\in[K_{m(\iota)}+k+
1\sup_{+I\{\iota)+k+11]m(},|\prime||f_{0}||_{\infty^{\beta_{m(j)}\frac{h_{m()+k}
(_{\mathcal{T}I:_{m(l)k}}i-\{)+}{\beta_{m(l)k}+}}}|\rho(_{\mathcal{T}-t)}j
 \leq   \sup_{l\geq j}\sup_{k}||fo||_{\infty}\beta m(j) .   \frac{\alpha_{m(l)+k}}{\beta m(l)+k}\leq||f_{0}||_{\infty}\cdot\frac{1}{m(j)} .

Since   \lim_{jarrow\infty^{m(}}j )  =\infty , we have

 ||f_{0-c_{i}}T(tj)x||  \leq   \max\{\sup_{\tau\in[0,L]}|f_{0}(\tau)-c_{i}\tau(t_{j})x(\mathcal{T})
|\rho(\mathcal{T}),\sup_{\mathcal{T}\in[L,\infty)}|f_{0}(\tau)-cj\tau(t_{j})_{X}
(\mathcal{T})|\rho(\tau)\}
 <  . \frac{6}{2})

for sufficiently large  j . By the inequality  ||f-c_{j}\tau(t_{j})_{X|}|\leq||f-fo||+||f_{0-C_{j}}\tau(t_{j})x||<\epsilon , we
get the conclusion.
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