COXETER GROUPS の境界と VIRTUAL COHOMOLOGICAL DIMENSION について

筑波大学 数学研究科 保坂 哲也 (TETSUYA HOSAKA) 島根大学 総合理工学部 横井 勝弥 (KATSUYA YOKOI)

The purpose of this note is to introduce our recent paper [Ho-Y] about Coxeter groups and their boundaries. Let V be a finite set and $m: V \times V \to \mathbb{N} \cup \{\infty\}$ a function satisfying the following conditions:

- (1) m(v, w) = m(w, v) for all $v, w \in V$,
- (2) m(v,v) = 1 for all $v \in V$, and
- (3) $m(v, w) \geq 2$ for all $v \neq w \in V$.

A Coxeter group is a group Γ having the presentation

$$\langle V | (vw)^{m(v,w)} = 1 \text{ for } v, w \in V \rangle,$$

where if $m(v,w)=\infty$, then the corresponding relation is omitted, and the pair (Γ,V) is called a Coxeter system. If m(v,w)=2 or ∞ for all $v\neq w\in V$, then (Γ,V) is said to be right-angled. For a Coxeter system (Γ,V) and a subset $W\subset V$, Γ_W is defined as the subgroup of Γ generated by W. The pair (Γ_W,W) is also a Coxeter system. Γ_W is called a parabolic subgroup.

For a Coxeter system (Γ, V) , the simplicial complex $K(\Gamma, V)$ is defined by the following conditions:

- (1) the vertex set of $K(\Gamma, V)$ is V, and
- (2) for $W = \{v_0, \ldots, v_k\} \subset V$, $\{v_0, \ldots, v_k\}$ spans a k-simplex of $K(\Gamma, V)$ if and only if Γ_W is finite.

A simplicial complex K is called a *flag complex* if any finite set of vertices, which are pairwise joined by edges, spans a simplex of K. For example, the barycentric subdivision of a simplicial complex is a flag complex.

For any finite flag complex K, there exists a right-angled Coxeter system (Γ, V) with $K(\Gamma, V) = K$. Namely, let V be the vertex set of K and define $m: V \times V \to \mathbb{N} \cup \{\infty\}$ by

$$m(v,w) = \left\{ egin{array}{ll} 1 & ext{if } v = w, \ 2 & ext{if } \{v,w\} ext{ spans an edge in } K, \ \infty & ext{otherwise.} \end{array}
ight.$$

The associated right-angled Coxeter system (Γ, V) satisfies $K(\Gamma, V) = K$. Conversely, if (Γ, V) is a right-angled Coxeter system, then $K(\Gamma, V)$ is a finite flag complex ([D2, Corollary 9.4]).

For a group Γ and a ring R with identity, the cohomological dimension of Γ over R is defined as

$$\operatorname{cd}_R \Gamma = \sup\{i \mid H^i(\Gamma; M) \neq 0 \text{ for some } R\Gamma\text{-module } M\}.$$

If $R = \mathbb{Z}$ then $\operatorname{cd}_{\mathbb{Z}} \Gamma$ is simply called the cohomological dimension of Γ , and denoted $\operatorname{cd} \Gamma$. It is obvious that $\operatorname{cd}_R \Gamma \leq \operatorname{cd} \Gamma$ for a ring R with identity. It is known that $\operatorname{cd} \Gamma = \infty$ if Γ is not torsion-free ([Br, Corollary VIII.2.5]). A group Γ is said to be *virtually torsion-free* if Γ has a torsion-free subgroup of finite index. For a virtually torsion-free group Γ the *virtual cohomological dimension of* Γ over a ring R is defined as $\operatorname{cd}_R \Gamma'$, where Γ' is a torsion-free subgroup of Γ of finite index, and denoted $\operatorname{vcd}_R \Gamma$. It is a well-defined invariant by Serre's Theorem: if G is a torsion-free group and G' is a subgroup of finite index, then $\operatorname{cd}_R G' = \operatorname{cd}_R G$ ([Br, Theorem VIII.3.1]). If $R = \mathbb{Z}$ then $\operatorname{vcd}_\mathbb{Z} \Gamma$ is simply called the virtual cohomological dimension of Γ , and denoted $\operatorname{vcd} \Gamma$. It is known that every Coxeter group is virtually torsion-free and the virtual cohomological dimension of each Coxeter group is finite (cf. [D1, Corollary 5.2, Proposition 14.1]).

For a simplicial complex K and a simplex σ of K, the closed star $\operatorname{St}(\sigma, K)$ of σ in K is the union of all simplexes of K having σ as a face, and the link $\operatorname{Lk}(\sigma, K)$ of σ in K is the union of all simplexes of K lying in $\operatorname{St}(\sigma, K)$ that are disjoint from σ .

In [Dr2], Dranishnikov gave the following formula.

Theorem 1 (Dranishnikov [Dr2]). Let (Γ, V) be a Coxeter system and R a principal ideal domain. Then there exists the formula

$$\operatorname{vcd}_R \Gamma = \operatorname{lcd}_R CK = \max \{ \operatorname{lcd}_R K, \operatorname{cd}_R K + 1 \},$$

where $K = K(\Gamma, V)$ and CK is the simplicial cone of K.

Here, for a finite simplicial complex K and an abelian group G, the local cohomological dimension of K over G is defined as

$$\operatorname{lcd}_G K = \operatorname{max}_{\sigma \in K} \{ i \, | \, H^i(\operatorname{St}(\sigma, K), \operatorname{Lk}(\sigma, K); G) \neq 0 \},$$

and the global cohomological dimension of K over G is

$$\operatorname{cd}_G K = \max\{i \,|\, \tilde{H}^i(K;G) \neq 0\}.$$

When $\tilde{H}^{i}(K;G) = 0$ for each i, then we consider $\operatorname{cd}_{G}K = -1$. We note that $H^{i}(\operatorname{St}(\sigma,K),\operatorname{Lk}(\sigma,K);G)$ is isomorphic to $\tilde{H}^{i-1}(\operatorname{Lk}(\sigma,K);G)$. Hence, we have

$$\operatorname{lcd}_{G} K = \max_{\sigma \in K} \{\operatorname{cd}_{G} \operatorname{Lk}(\sigma, K) + 1\}.$$

Remark. We recall Dranishnikov's remark in [Dr3]. The definition of the local cohomological dimension in [Dr2] is given by the terminology of the normal star and link. Since $Lk(\sigma, K)$ is homeomorphic to the normal link of σ in K, their definitions are equivalent by the formula above.

Dranishnikov also proved the following theorem as an application of Theorem 1.

Theorem 2 (Dranishnikov [Dr2]). A Coxeter group Γ has the following properties:

- (a) $\operatorname{vcd}_{\mathbb{Q}} \Gamma \leq \operatorname{vcd}_{R} \Gamma$ for any principal ideal domain R.
- (b) $\operatorname{vcd}_{\mathbb{Z}_p} \Gamma = \operatorname{vcd}_{\mathbb{Q}} \Gamma$ for almost all primes p.
- (c) There exists a prime p such that $\operatorname{vcd}_{\mathbb{Z}_p} \Gamma = \operatorname{vcd} \Gamma$.
- (d) $\operatorname{vcd} \Gamma \times \Gamma = 2 \operatorname{vcd} \Gamma$.

We extend this theorem to one over principal ideal domain coefficients.

Theorem A. Let Γ be a Coxeter group and R a principal ideal domain. Then Γ has the following properties:

- (a) $\operatorname{vcd}_{\mathbb{Q}}\Gamma \leq \operatorname{vcd}_{R/I}\Gamma \leq \operatorname{vcd}_R\Gamma \leq \operatorname{vcd}\Gamma$ for any prime ideal I in R.
- (b) $\operatorname{vcd}_{R/I}\Gamma = \operatorname{vcd}_{\mathbb{Q}}\Gamma$ for almost all prime ideals I in R, if R is not a field.
- (c) There exists a non-trivial prime ideal I in R such that $\operatorname{vcd}_{R/I}\Gamma = \operatorname{vcd}_R\Gamma$, if R is not a field.
- (d) $\operatorname{vcd}_R \Gamma \times \Gamma = 2 \operatorname{vcd}_R \Gamma$.

Let (Γ, V) be a Coxeter system and $K = K(\Gamma, V)$. Consider the product space $\Gamma \times |CK|$ of Γ with the discrete topology and the underlying space |CK| of the cone of K. Define an equivalence relation \sim on the space as follows: for $(\gamma_1, x_1), (\gamma_2, x_2) \in \Gamma \times |CK|, (\gamma_1, x_1) \sim (\gamma_2, x_2)$ if and only if $x_1 = x_2$ and $\gamma_1^{-1} \gamma_2 \in \Gamma_{V(x_1)}$, where $V(x) = \{v \in V | x \in St(v, \beta^1 K)\}$. Here we consider that |K| is naturally embedded in |CK| as the base of the cone and $\beta^1 K$ denotes the barycentric subdivision of K. The natural left Γ -action on $\Gamma \times |CK|$ is compatible with the equivalence relation; hence, it passes to a left action on the quotient space $\Gamma \times |CK|/\sim$. Denote this quotient space by $A(\Gamma, V)$. The space $A(\Gamma, V)$ is contractible and Γ acts cocompactly and properly discontinuously on the space ([D1, Theorem 13.5]).

We can also give the space $A(\Gamma, V)$ a structure of a piecewise Euclidean cell complex with the vertex set $\Gamma \times \{v_0\}$ ([D2, §9]). $\Sigma(\Gamma, V)$ denotes this piecewise Euclidean cell complex. Refer to [D2, Definition 2.2] for the definition of a piecewise Euclidean cell complex. In particular, if (Γ, V) is right-angled, then each cell of $\Sigma(\Gamma, V)$ is a cube, hence, $\Sigma(\Gamma, V)$ is a cubical complex. More precisely, for a right-angled Coxeter system (Γ, V) , we can define the cubical complex $\Sigma(\Gamma, V)$ by the following conditions:

- (1) the vertex set of $\Sigma(\Gamma, V)$ is Γ ,
- (2) for $\gamma, \gamma' \in \Gamma$, $\{\gamma, \gamma'\}$ spans an edge in $\Sigma(\Gamma, V)$ if and only if the length $l_V(\gamma^{-1}\gamma') = 1$, and
- (3) for $\gamma \in \Gamma$ and $v_0, \ldots, v_k \in V$, the edges $|\gamma, \gamma v_0|, \ldots, |\gamma, \gamma v_k|$ form a (k+1)-cube in $\Sigma(\Gamma, V)$ if and only if $\{v_0, \ldots, v_k\}$ spans a k-simplex in $K(\Gamma, V)$.

We note the 1-skeleton of this cell complex is isomorphic to the Cayley graph of Γ with respect to V. For $\gamma \in \Gamma$ and a k-simplex $\sigma = |v_0, \ldots, v_k|$ of $K(\Gamma, V)$, let $C_{\gamma, \sigma}$ be the (k+1)-cube in $\Sigma(\Gamma, V)$ formed by $|\gamma, \gamma v_0|, \ldots, |\gamma, \gamma v_k|$. Then the vertex set of $C_{\gamma, \sigma}$ is $\gamma \Gamma_{\{v_0, \ldots, v_k\}}$. We note that

$$\gamma\Gamma_{\{v_0,\dots,v_k\}} = \{\gamma v_0^{\epsilon_0} \cdots v_k^{\epsilon_k} \mid \epsilon_i \in \{0,1\}, \ i = 0,\dots,k\}.$$

For every Coxeter system (Γ, V) , $\Sigma(\Gamma, V)$ is a CAT(0) geodesic space by a piecewise Euclidean metric (cf. [D2, Theorem 7.8]). We define the boundary $\partial\Gamma$ as the set of

geodesic rays in $\Sigma(\Gamma, V)$ emanating from the unit element $e \in \Gamma \subset \Sigma(\Gamma, V)$ with the topology of the uniform convergence on compact sets, i.e., $\partial\Gamma$ is the visual sphere of $\Sigma(\Gamma, V)$ at the point $e \in \Sigma(\Gamma, V)$. In general, for all points x, y in a CAT(0) space X, the visual spheres of X at points x and y are homeomorphic (cf. [Dr1, Assertion 1]). This boundary is known to be a finite-dimensional compactum (i.e., metrizable compact space). Details of the boundaries of CAT(0) spaces can be found in [D2] and [D-J].

It is still unknown whether the following conjecture holds.

Rigidity Conjecture (Dranishnikov [Dr4]). Isomorphic Coxeter groups have homeomorphic boundaries.

We note that there exists a Coxeter group Γ with different Coxeter systems (Γ, V_1) and (Γ, V_2) .

Let X be a compact metric space and G an abelian group. The cohomological dimension of X over G is defined as

$$\operatorname{c-dim}_{G} X = \sup\{i \mid \check{H}^{i}(X, A; G) \neq 0 \text{ for some closed set } A \subset X\},\$$

where $\check{H}^{i}(X,A;G)$ is the Čech cohomology of (X,A) over G.

In [B-M], Bestvina-Mess proved the following theorem for hyperbolic groups. An analogous theorem for Coxeter groups is proved by the same argument (cf. [Dr1]).

Theorem 3 (Bestvina-Mess [B-M]). Let Γ be a Coxeter group and R a ring with identity. Then there exists the formula

$$\operatorname{c-dim}_R \partial \Gamma = \operatorname{vcd}_R \Gamma - 1.$$

We have a dimension theoritic theorem in the study of Coxeter groups.

Theorem B. Let (Γ, V) be a right-angled Coxeter system with $\operatorname{vcd}_R \Gamma = n$, where R is a principal ideal domain. Then there exists a sequence $W_0 \subset W_1 \subset \cdots \subset W_{n-1} \subset V$ such that $\operatorname{vcd}_R \Gamma_{W_i} = i$ for $i = 0, \ldots, n-1$. In particular, we can obtain a sequence of simplexes $\tau_0 \succ \tau_1 \succ \cdots \succ \tau_{n-1}$ such that W_i is the vertex set of $\operatorname{Lk}(\tau_i, K(\Gamma, V))$ and $K(\Gamma_{W_i}, W_i) = \operatorname{Lk}(\tau_i, K(\Gamma, V))$.

We note that Theorem B is not always true for general Coxeter groups.

Example. We consider the Coxeter system (Γ, V) defined by $V = \{v_1, v_2, v_3\}$ and

$$m(v_i, v_j) = \begin{cases} 1 & \text{if } i = j, \\ 3 & \text{if } i \neq j. \end{cases}$$

Then Γ is not right-angled, and $K(\Gamma, V)$ is not a flag complex. Indeed, $\Gamma_{\{v_i, v_j\}}$ is finite for each $i, j \in \{1, 2, 3\}$, but Γ is infinite (cf. [Bo, p.98, Proposition 8]). Since $\operatorname{cd} K(\Gamma, V) = 1$ and $\operatorname{lcd} K(\Gamma, V) = 1$, we have $\operatorname{vcd} \Gamma = 2$ by Theorem 1. For any proper subset $W \subset V$, $\operatorname{vcd} \Gamma_W = 0$, because Γ_W is a finite group. Hence there does not exist a subset $W \subset V$ such that $\operatorname{vcd} \Gamma_W = 1$. \square

By Theorem 3, we can obtain the following corollary.

Corollary B'. For a right-angled Coxeter system (Γ, V) with $\operatorname{c-dim}_R \partial \Gamma = n$, where R is a principal ideal domain, there exists a sequence $\partial \Gamma_{W_0} \subset \partial \Gamma_{W_1} \subset \cdots \subset \partial \Gamma_{W_{n-1}}$ of the boundaries of parabolic subgroups of (Γ, V) such that $\operatorname{c-dim}_R \partial \Gamma_{W_i} = i$ for each $i = 0, 1, \ldots, n-1$.

In general, for a finite dimensional compactum X, the equality $\operatorname{c-dim}_{\mathbb{Z}} X = \dim X$ holds ([K, §2, Remark 4]). Since the boundaries of Coxeter groups are always finite dimensional, we obtain the following corollary.

Corollary B". For a right-angled Coxeter system (Γ, V) with dim $\partial \Gamma = n$, there exists a sequence $\partial \Gamma_{W_0} \subset \partial \Gamma_{W_1} \subset \cdots \subset \partial \Gamma_{W_{n-1}}$ of the boundaries of parabolic subgroups of (Γ, V) such that dim $\partial \Gamma_{W_i} = i$ for each $i = 0, 1, \ldots, n-1$.

Finally, we see a relation between a subgroup of a Coxeter group which is of finte index and their boundaries.

If X and Y are topological spaces, let us define X * Y to be the quotient space of $X \times Y \times [0,1]$ obtained by identifying each set $X \times Y \times 0$ to a point and each set $X \times Y \times 1$ to a point.

Theorem C. Let (Γ, V) be a right-angled Coxeter system and W a subset of V. Then the following conditions are equivalent:

- (1) The parabolic subgroup $\Gamma_W \subset \Gamma$ is of finite index.
- (2) $\{v,v'\}$ spans an edge of $K(\Gamma,V)$ for any $v \in V \setminus W$ and $v' \in V$.
- (3) $\Gamma = \Gamma_W \times \Gamma_{V \setminus W}$ and $\Gamma_{V \setminus W} \approx \mathbb{Z}_2^{|V \setminus W|}$.
- (4) $\partial \Gamma = \partial \Gamma_W$.

REFERENCES

- [B] M. Bestvina, The virtual cohomological dimension of Coxeter groups, Geometric Group Theory Vol 1, LMS Lecture Notes, vol. 181, 1993, pp. 19–23.
- [B-M] M. Bestvina and G. Mess, The boundary of negatively curved groups, Jour. of Amer. Math. Soc. 4 (no. 3) (1991), 469-481.
- [Bi] R. Bieri, Homological dimension of discrete groups, Queen Mary College, London (1976).
- [Bo] N. Bourbaki, Groupes et Algebrès de Lie, Chapters IV-VI, Masson, Paris, 1981.
- [Br] K. S. Brown, Cohomology of groups, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [D1] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Annals of Math. 117 (1983), 293-324.
- [D2] M. W. Davis, Nonpositive curvature and reflection groups, Preprint (1994).
- [D-J] M. W. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geometry 34 (1991), 347–388.
- [Dr1] A. N. Dranishnikov, Boundaries and cohomological dimensions of Coxeter groups, Preprint (1994).
- [Dr2] A. N. Dranishnikov, On the virtual cohomological dimensions of Coxeter groups, Proc. Amer. Math. Soc. 125 (no. 7) (1997), 1885–1891.
- [Dr3] A. N. Dranishnikov, Boundaries of Coxeter groups and simplicial complexes with given links, Preprint (1997).
- [Dr4] A. N. Dranishnikov, On boundaries of hyperbolic Coxeter groups, Preprint (1998).
- [E] R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Math., vol. 10, Heldermann Verlag, 1995.
- [G] M. Gromov, Hyperbolic groups, in Essays in group theory (S. M. Gersten, ed.), M.S.R.I. Publ. 8, 1987, pp. 75-264.

- [Ho-Y]T. Hosaka and K. Yokoi, The boundary and the virtual cohomological dimension of Coxter groups, Houston J. of Math. (to appear).
- [H] T. W. Hungerford, Algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [Hu] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
- [K] V. I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (no. 5) (1968), 1–45.

Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571, Japan *E-mail address*: thosaka@math.tsukuba.ac.jp

DEPARTMENT OF MATHEMATICS, INTERDISCIPLINARY FACULTY OF SCIENCE AND ENGINEERING, SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN

 $E ext{-}mail\ address: yokoi@math.shimane-u.ac.jp}$