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COXETER GROUPS 0#5i ¢ VIRTUAL
COHOMOLOGICAL DIMENSION (Z-2W\WT

SLE R BUERR RIK B (TETSUYA HOSAKA)
BRKYE RAEETHM #H B (KaTsuva YoKoI)

The purpose of this note is to introduce our recent paper [Ho-Y] about Coxeter
groups and their boundaries. Let V' be a finite set and m: V xV — NU {00} a function
satisfying the following conditions:

(1) m(v,w) =m(w,v) for all v,w € V,
(2) m(v,v) =1for allv €V, and
(3) m(v,w) >2forallv#FweV.
A Cozeter group is a group I’ having the presentation

(V| (vw)™®®) =1 for v,w € V),

where if m(v, w) = oo, then the corresponding relation is omitted, and the pair (T, V)
is called a Cozeter system. If m(v,w) = 2 or oo for all v % w € V, then (I, V) is said
to be right-angled. For a Coxeter system (I',V') and a subset W C V, I'w is defined as
the subgroup of T' generated by W. The pair (I'w, W) is also a Coxeter system. L'y is
called a parabolic subgroup.

For a Coxeter system (I', V), the simplicial complex K(I',V) is defined by the fol-
Jowing conditions: '

(1) the vertex set of K(I',V) is V, and
(2) for W = {vg,...,vx} C V, {vo,...,vs} spans a k-simplex of K(T,V) if and
only if 'y is finite.

A simplicial complex K is called a flag complez if any finite set of vertices, which are
pairwise joined by edges, spans a simplex of K. For example, the barycentric subdivision
of a simplicial complex is a flag complex.

For any finite flag complex K, there exists a right-angled Coxeter system (I, V) with
K(I',V) = K. Namely, let V be the vertex set of K and define m: V xV — NU {0}
by

1 if v = w,
m(v,w) = 2 if {v,w} spans an edge in K,
00 otherwise.

The associated right-angled Coxeter system (I', V) satisfies K(I',V)) = K. Conversely,
if (T',V) is a right-angled Coxeter system, then K(I', V) is a finite flag complex ([D2,
Corollary 9.4]).
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For a group I' and a ring R with identity, the cohomological dimension of ' over R
is defined as

cdg I’ = sup{i| H* (T; M) # 0 for some RI-module M}.

If R = Z then cdz I is simply called the cohomological dimension of I, and denoted cdT.
It is obvious that cdgr I' < ¢dT for a ring R with identity. It is known that cdT' = oo if
I is not torsion-free ([Br, Corollary VIII.2.5]). A group I is said to be virtually torsion-
free if T' has a torsion-free subgroup of finite index. For a virtually torsion-free group T
the wvirtual cohomological dimension of T' over a ring R is defined as cdg I, where I
is a torsion-free subgroup of I of finite index, and denoted vedg . It is a well-defined
invariant by Serre’s Theorem: if G is a torsion-free group and G’ is a subgroup of finite
index, then cdp G’ = c¢dg G ([Br, Theorem VIIL.3.1]). If R = Z then vcdz I is simply
called the virtual cohomological dimension of I', and denoted vedT. It is known that
every Coxeter group is virtually torsion-free and the virtual cohomological dimension of
each Coxeter group is finite (cf. [D1, Corollary 5.2, Proposition 14.1]).

For a 51mphclal complex K and a simplex o of K, the closed star St(o, K) of o in K
is the union of all simplexes of K having o as a face and the link Lk(o, K) of o in K
is the union of all simplexes of K lying in St(o, K) that are dlSjOlnt from o.

In [Dr2] Dranishnikov gave the following formula.

Theorem 1 (Dramshmkov [Dr2]). Let (T, V) be a Coxeter system and R a pr1nc1pa1
ideal domain. Then there exists the formula

vedg T = ledg CK = max {ledg K, cdg K + 1},

where K = K(I', V) and CK is the simplicial cone of K.

Here, for a finite simplicial complex K and an abelian group G, the local cohomologzcal
dimension of K over G is defined as

ledg K = max,ek {i| H (St(o, K),Lk(0, K); G) # 0},
and the global cohomological dimension of K over G is
cdg K = max{i| H(K;G) # 0}.

When H*(K;G) = 0 for each i, then we consider cdg K = —1. " We note that
H'(St(o, K),Lk(0, K); G) is isomorphic to H*~'(Lk(o, K); G). Hence, we have

ledg K = maxoex{cde Lk(o, K) + 1}.

Remark. We recall Dranishnikov’s remark in [Dr3]. The definition of the local cohomo-
logical dimension in [Dr2] is given by the terminology of the normal star and link. Since
Lk(o, K) is homeomorphic to the normal link of o in K their definitions are equivalent
by the formula above. :
Dranishnikov also proved the following theorem as an application of Theorem 1.
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Theorem 2 (Dranishnikov [Dr2]). A Coxeter group I' has the following properties:

(a) vedgT' < vedg T for any principal ideal domain R.
(b) vedz, I' = vedg I’ for almost all primes p.

(c) There exists a prime p such that vedz, I' = ved T
(d) vedT' x ' = 2vedT.

We extend this theorem to one over principal ideal domain coefficients.

Theorem A. Let I' be a Coxeter group and R a principal ideal domain. Then I' has
the following properties:

(a) vedoT < vedg/; T < vedg T’ < vedT for any prime ideal I in R.

(b) vedg/T' = vedoI' for almost all prime ideals I in R, if R is not a field.

(c) There exists a non-trivial prime ideal I in R such that vedg/ T’ = vedg T, if R
is not a field.

(d) vedg' xI' = 2vedgT.

Let (', V) be a Coxeter system and K = K(I',V). Consider the product space
I'x |CK| of T with the discrete topology and the underlying space |C K| of the cone of K.
Define an equivalence relation ~ on the space as follows: for (v, z1), (72, 72) € ' x|CK]|,
(71,%1) ~ (72,%2) if and only if 1 = 73 and v; *y2 € T'v(s,), where V(z) = {v € V|z €
St(v, 8*K)}. Here we consider that |K| is naturally embedded in |CK| as the base of
the cone and 'K denotes the barycentric subdivision of K. The natural left T-action
on I' x |CK| is compatible with the equivalence relation; hence, it passes to a left action
on the quotient space I' x |CK|/ ~. Denote this quotient space by A(I', V). The space
A(T,V) is contractible and I" acts cocompactly and properly discontinuously on the
space ([D1, Theorem 13.5]).

We can also give the space A(T', V') a structure of a piecewise Euclidean cell complex
with the vertex set I' X {vo} ([D2, §9]). X(T',V) denotes this piecewise Euclidean cell
complex. Refer to [D2, Definition 2.2] for the definition of a piecewise Euclidean cell
complex. In particular, if (I', V) is right-angled, then each cell of X(I',V) is a cube,
hence, £(I', V) is a cubical complex. More precisely, for a right-angled Coxeter system
(I, V), we can define the cubical complex X(T', V') by the following conditions:

(1) the vertex set of X(I', V) is T,
(2) forv,v’ €T, {7,7'} spans an edge in X:(T, V) if and only if the length Iy, (y~1v/) =
1, and
(3) fory €I and vy, ... ,vx € V, the edges |7y, vvol,. .- , |V, Yvi| form a (k+1)-cube
in (T, V) if and only if {vo, ... ,vx} spans a k-simplex in K (T, V).
We note the 1-skeleton of this cell complex is isomorphic to the Cayley graph of T with
respect to V. For v € I and a k-simplex o = |vg,... ,vx| of K(T',V), let C, , be the
(k + 1)-cube in X(T', V) formed by |v, yvol,... , |7, Yvk|. Then the vertex set of C., , is
Y {we,... ,ux}- We note that

Y {vo,... v} = 170" - - v | & €{0,1}, i =0,... ,k}.

For every Coxeter system (I', V), X(T", V) is a CAT(0) geodesic space by a piecewise
Euclidean metric (cf. [D2, Theorem 7.8]).. We define the boundary OT' as the set of
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geodesic rays in ¥(I', V) emanating from the unit element e € I' ¢ (I, V) with the
topology of the uniform convergence on compact sets, i.e., T is the visual sphere of
(I', V) at the point e € (T, V). In general, for all points z,y in a CAT(0) space X,
the visual spheres of X at points z and y are homeomorphic (cf. [Drl, Assertion 1]).
This boundary is known to be a finite-dimensional compactum (i.e., metrizable compact
space). Details of the boundaries of CAT(0) spaces can be found in [D2] and [D-J].

It is still unknown whether the following conjecture holds.

Rigidity Conjecture (Dranishnikov [Dr4]). Isomorphic Coxeter groups have home-
omorphic boundaries.

We note that there exists a Coxeter group I' with different Coxeter systems (T, V1) and
(T, Va).

Let X be a compact metric space and G an abelian group. The cohomological di-
mension of X over G is defined as

c-dimg X = sup{i | H* (X, A; G) # 0 for some closed set A C X},

where H*(X, A;G) is the Cech cohomology of (X, A) over G.
In [B-M], Bestvina-Mess proved the following theorem for hyperbolic groups. An
analogous theorem for Coxeter groups is proved by the same argument (cf. [Drl)]).

Theorem 3 (Bestvina-Mess [B-M]). Let I' be a Coxeter group and R a ring with
identity. Then there exists the formula

c-dimpg OI' = vcdR I'-1.

We have a dlmensmn theoritic theorem in the study of Coxeter groups.

Theorem B. Let (T, V) be a right-angled Coxeter system with vedg ' = n, where R

is a principal ideal domain. Then there exists a sequence WocWiC---CW,.1CV

such that vedp'w, =i for i = 0,... ,n — 1. In particular, we can obtam a sequence of

simplexes Tg > Ty = +++ > Tp_1 Such that W, is the vertex set of Lk(n,K (T',V)) and

K(Tw, W;) = Lk(TZ,K(P ).
We note that Theorem B is not always true for general Coxeter groups.

Example. We consider the Coxeter system (I', V) defined by V = {v;,v3, v3} and

( ) { 1 if 1 = 7,

m\v;,v5) = ep - .

v 3 ife#7.

Then I' is not rlght angled, and K(I',V) is not a flag complex. Indeed, I‘{,U v} 18
finite for each 4,5 € {1,2,3}, but T is infinite (cf. [Bo, p.98, Proposition 8]). Since
cd K(I',V) =1 and led K(T', V) = 1, we have vedT' = 2 by Theorem 1. For any proper
subset W C V, ved 'y = 0, beca,use I'wy is a finite group. Hence there does not exist a
subset W C V such that vedT'yy =1. O

By Theorem 3, we can obtain the following corollary.
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Corollary B’. For a right-angled Coxeter system (I', V) with c-dimg OT' = n, where
R is a principal ideal domain, there exists a sequence o'y, C 0l'w, C --- C olw,_,
of the boundaries of parabolic subgroups of (I', V) such that c-dimg 0T'w, = i for each
1=0,1,... ,n— 1.

In general, for a finite dimensional compactum X, the equality c-dimz X = dim X
holds ([K, §2, Remark 4]). Since the boundaries of Coxeter groups are always finite
dimensional, we obtain the following corollary.

Corollary B”. For a right-angled Coxeter system (T', V) with dim O = n, there exists
a sequence Oy, C OT'w, C --- C 0w, _, of the boundaries of parabolic subgroups of
(T', V) such that dim0T'w, =i for eachi=0,1,... ,n — 1.

Finally, we see a relation between a subgroup of a Coxeter group which is of finte
index and their boundaries.

If X and Y are topological spaces, let us define X Y to be the quotient space of
X xY x[0,1] obtained by identifying each set £ xY x 0 to a point and each set X xyx1
to a point.

Theorem C. Let (I',V) be a right-angled Coxeter system and W a subset of V. Then
the following conditions are equivalent:

(1) The parabolic subgroup T'wy C T is of finite index.
(2) {v,v'} spans an edge of K(I', V) for anyv € V\W and v' € V.

(3) [ =T x Ty\w and Ty ~ Z5 "W,
(4) or = dl'w.
REFERENCES

[B] M. Bestvina, The virtual cohomological dimension of Coxeter groups, Geometric Group Theory

) . Vol 1, LMS Lecture Notes, vol. 181, 1993, pp. 19-23.

[B-M] M. Bestvina and G. Mess, The boundary of negatively curved groups, Jour. of Amer. Math. Soc.
4 (no. 3) (1991), 469-481.

[Bi] R. Bieri, Homological dimension of discrete groups, Queen Mary College, London (1976).

[Bo] N. Bourbaki, Groupes et Algebrés de Lie, Chapters IV-VI, Masson, Paris, 1981.

[Br] K. S. Brown, Cohomology of groups, Springer-Verlag, New York, Heidelberg, Berlin, 1982.

[D1] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean
space, Annals of Math. 117 (1983), 293-324.

[D2] M. W. Davis, Nonpositive curvature and reflection groups, Preprint (1994).

[D-J] M. W. Davis and T. Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geometry 34
(1991), 347-388.

[Dr1] A. N. Dranishnikov, Boundaries and cohomological dimensions of Cozeter groups, Preprint
(1994).

[Dr2] A. N. Dranishnikov, On the virtual cohomological dimensions of Cozeter groups, Proc. Amer.
Math. Soc. 125 (no. 7) (1997), 1885-1891.

[Dr3] A. N. Dranishnikov, Boundaries of Cozeter groups and simplicial complezes with given links,
Preprint (1997).

[Dr4] A. N. Dranishnikov, On boundaries of hyperbolic Cozeter groups, Preprint (1998).

[E] R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Math., vol. 10,
Heldermann Verlag, 1995.

[G] M. Gromov, Hyperbolic groups, in Essays in group theory (S. M. Gersten, ed.), M.S.R.I. Publ.
8, 1987, pp. 75-264. '



111

[Ho-Y]T. Hosaka and K. Yokoi, The boundary and the virtual cohomological dimension of Cozter
groups, Houston J. of Math. (to appear).

[H] T. W. Hungerford, Algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1974.

[Hu] J. E. Humphreys, Reflection groups and Cozeter groups, Cambridge University Press, 1990.

K]  V.I Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (no. 5) (1968), 1-45.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571, JAPAN
E-mail address: thosaka@math.tsukuba.ac.jp

DEPARTMENT OF MATHEMATICS, INTERDISCIPLINARY FACULTY OF SCIENCE AND ENGINEERING,
SHIMANE UNIVERSITY, MATSUE, 690-8504, JAPAN
E-mail address: yokoi@math.shimane-u.ac.jp



