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On shape theory and its applications
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1 Introduction

Shape theofy is a homotopy theory fof general topological spaces and has been proved
to be very effective especially for spaces that have bad local behavior, but the process
to build up the theory itself is important in various areas of mathematics. The most
userful tool in the shape theory is an inverse system, and in this approach “bad” objects
are represented as an inverse system of “good” objects. Using inverse systems allows
us to work categorically and hence provides a systematic and user ftiendly approach to
crack the “bad” objects. |

Based on thé inverse system approach, in this paper we presént applications of shape
theory to various areas of geometric topology. Since shape theory deals with general
topological spaces, the signiﬁéant differences from the usual homotopy theory are the
possibility of more applications and the possibility that things that are not possible in
the homotopy category of polyhedra may become possible if the category is extended
from the homotopy category of polyhedra to the shape category. More precisely, in the
first part of the paper we present a generalization over shape category of the well-known
result Kan-Thurston theorem in algebraic topology and as an application generalize the
well-known theorems of Dranishnikov [4] and Edwards [1] in cohomological dimension.
In the second part we introduce the generalized stable shape theory and a duality in
that category and as an application present a Vietoris-Begle theorem for pro-homology

groups that are induced by CW spectra. \
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2 Kan-Thurston theorem in shape theory

All spaces in this section are assumed to have base points. First recall

Theorem 2.1 (Kan and Thurston [9]) For each path-connected space X, there exist a
space TX and a map t : TX — X, natural for maps on X, with the following properties:

(KT1) t, : H(TX;t*A) - H.(X; A) and t* : H*(X; A) = H*(TX;t*A) are isomor-

phisms of singular homologies and cohomologies with local coefficients; and

(KT2) t, : m(TX) - m1(X) is onto, and m;(TX) =0 for i # 0.
Maunder gave a simpler proof to the theorem and obtained the following variation:

Theorem 2.2 (Maunder [12]) For each finite connected simplicial complez K, there
exist a finite simplicial complez TK of the same dimension, and a map tx : TK — K,

natural for simplicial maps on K, with properties (KT1) and (KT2).

A compactum X is said to be approzimately aspherical if every map of X into a
polyhedron factors up to homotopy through a finite aspherical CW complex. Note
that our definition is slightly stronger than the original definition of shape asphericity of
Dydak and Yokoi [7] by requiring the finiteness of the factoring CW complex. Asphericity
of compacta in the study of cell-like maps was first considered by Daverman [2] and
continued by Daverman and Dranishnikov [3]. The following is a characterization of an
approximately aspherical compactum:

Theorem 2.3 For every compactum X, the following are equivalent:

i) X is an approzimately asphérz'cal compactum,

ii) X admits an ezpansion of X, p=(p;) : X = X - (X, pii+1, N) such that each X; is
a fintie aspherical polyhedron (hefe, the expansion is in the sense of [11, p. 1.9]) ; and |
iii) Every polyhedral expansion of X, p= (p;) : X — X = (X;, pﬁlﬂ, N) has the property
that every i admits i’ > ¢ such that p,y factors through a finite aspherical polyhedron.

The following is the Kan-Thurston theorem in the shdpe theory:

Theorem 2.4 (Miyata [14]) For each continuum X (resp., continuum with dim X <
00), there exist an approzimately aspherical compactum Y (resp., approzimately aspher-
ical compactum Y with dimY = dim X ) and a surjective map ¢ : Y — X with the

following properties:



48

(S1) ¢ induces isomorphisms of Cech homologies and cohomologies;

(S2) ¢, : pro-m(Y) — pro-m(X) is an epimorphism; and

(S3) For each connected closed subset A of X, ¢~ '(A) is an aprozimately aspherical
compactum, and ol (A) : ¢ (A) = A satisfies properties (S1) and (S2).

" For any compactum X let sd X denote the shape dimension of X. There is another

version of the Kan-Thurston theorem in the shape theory:

Theorem 2.5 (Miyata [14]) For each continuum X of sd X < oo, there ezist an approz-
imately aspherical compactum Y of dimY = sd X and a shape morphism ¢ : Y — X
with properties (S1) and (S2).

‘The following is the Kan-Thurston theorem in the generalized stable shape theory: -
Theorem 2.6 (Miyata [14]) i) Every continuum has the weak stable shape type of an
approzimately aspherical compactum.

i) Every continuum X of sd X < oo has the stable shape type of an approzimately
aspherical compactum Y of dimY =sd X.

3 An'apI'.)licé‘tioln of Kan—ThurSton theorem
~ to cohomological dimension

For each compactum "X and abelian group G, the cohomological dimension cdimg X <
n if X7K(G,n), where for any ANR P, X7P denotes the property that every map of
any‘closed subset of X into P extends over X. For each compactum X, dim X denotes

the Covering dimension of X. Recall the following well-known results:

Theorem 3.1 (Edwards [1, 19]) For each compactum X, cdimz X < n if and only if
there ezists a cell-like map f:Y — X from a compactum Y of dimY < n.

and

Theorem 3.2 (Dranishnikov [4]) For each compactum X and for each prime p,
cdimg, X < n if and only if there exists a surjective map f : Y — X from a compactum

Y of dimY < n such that each fibre is acyclic modulo p.
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A question rises: Can we choose a more specific compactum for Y in each of the
above theorems? Using the notion of approximately asphericity, we can generalize those

theorems as follows:

Theorem 3.3 (Miyata[l4]) For each continuum X and for each prime p, cdimz X < n
(resp., cdimg, X < n ) if and only if there ezist an approzimately aspherical compactum
Y withdimY < n and a surjective map f : Y — X such that each fibre is acyclic (resp.,

acyclic modulo p).

4 Generalized stable shape and duality

In this section, we briefly recall the construction of the generalized stable shape theory
and present a duality in this category. For more details, see [15, 16]. All spaces in this
section are assumed to have base points. Let HCW denote the homotopy catégory of
CW complexes, and let HCW,e. denote the homotopy category of CW spectra.

Let p = (pa) : X =& X = (X, pav,A) be an HCW-expansion of a space X in the
sense of [11], and let E(X) = (E(X)), E(pax),A) be the inverse system in HCW . in-
duced by the inverse system X in HCW. A morphism e : E(X) — E = (E,, e,0, A) in
pro-HC Wy, is said to be a generalized expansion of X in HCW g, provided whenever
f : E(X) — F is a morphism in pro-HCWj,., then there exists a unique morphism
g : E — F in pro-HCW,, such that f = ge. For any two generalized expansions
e:E(X)— E and € : E(X) — E' in HCWg,, there exists the natural isofnorphism
i: E — E' in pro-HCW, such that ie = €’ '

We define the generalized stable shape category Shgpe. for spaces as follows: Let
0b Shgpec be the set of all spaces and CW-spectra. For any X,Y € ob Shgye, let £xy)
be the set of all morphisms g : E — F in pro-HCWg,e. where E is either a rudi-
mentary system (X) (if X is a CW-spectrum) or an inverse system of CW-spectra such
that e : E(X) — FE is a generalized expansion of X in HCWg,. (if X is a space),
and similarly for F. We define an equivalence relation ~ on &x,y) as follows: for
g:E— Fandg :E — F'inxy), g~ g if and only if jg = g't in pro-HCWg,,
where ¢ : E — E' and j : F — F' are the natural isomorphisms. We then define
Shy,ec(X,Y) = Ex,v)/ ~. The stable shape category for compact spaces defined by
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Henn [8] is embedded in Shg,e.. There is also a functor from the shape category Sh
to Shgpec. Then, for any spaces X and Y, if Z¥X and X*Y are equivalent in Sh for
some k > 0 then X and Y are equivalent in Shg,e.. The converse holds for any compact
Hausdorff spaces X and Y with finite shape dimension.

For each CW-spectrum FE, let E, and E* denote the homology and cohomology the-
ories on HCWy,,.. associated with E, respectively. So, for each CW-spectrum X and
for each q € Z, E,(X) = [295% E A X] and E%(X) = [X,X9E]. Then we can define the
covariant and contravariant functors E, : HCW,ec — Ab, and E* : HCWg,,. — Ab,,
where Ab, is the category of graded abelian groups and homomorphisms. These func-
tors naturally extend to the functors pro-FE, : Shgpec — pro-Ab, and pro-E* : Shgpe. —
pro-Ab,, and, taking limits, the functors E, : Shypec — Ab, and E* : Shy,e. — Ab,.

We have a duality in Shgpe. as follows:

Theorem 4.1 (Miyata [13]) i) For each compactum X, there exist a CW-spectrum X*

and a natural isomorphism
T : Shepec(Y A X, E) = Shg,ec (Y, X* A E)

for any compact Hausdorff space Y and CW-spectrum E. Moreover, such X* is unique
up to homotopy. | '
ii) For each ¢ € Shgpec(X, X') where X and X' are compact metric spaces , there erists
a niap ©* + X" — X* such that the following diagram commutes for any compact
Hausdorff space Y and CW-spectrum E: ' ‘

Shepec(Y A X, E) — Shypee(Y, X* A E)
Shspec(lyAeq,lE)T [Shspec(ly,w*/\lzs)
Shgpec(Y A X', E) —— Shgpe.(Y, X"* A E)
Moreover, such ¢* is unique up to weak hdmotopy.
There is also a dual notion of the generalized stable shape, which is called the coshape,

and the coshape category is denoted by coShg,e.. Then we have the following duality

between Shgpe. and coShgpe:

Theorem 4.2 For any compacta X and Y, there is an isomorphism

D : Shypec(X,Y) = coShgpec (Y, X¥).
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There are also dualities between homology and cohomology groups induced by CW

spectra:

Theorem 4.3 For each CW spectrum and for each compactum X, there erist natural
isomorphisms v »

EM(X) 2 E_(X*) and E,(X) = E™(X™).

5 An application of duality: Vietoris‘—Begle theorem

Using the duality in the previous section, we can prove a version of Vietoris-Begle the-
orem for pro-homology groups induced by CW spectra. First, let us recall the following

versions of Vietoris-Begle theorem:

Theorem 5.1 ([18, p. 344]) Let G be any abelian group, and let f : X — 'Y be a closed
surjective map between paracompact Hausdorff spaces. Suppose ﬁq( Yy);G) 20 for
each y € Y and for each ¢ = 0,1,... ,n. Then the induced homomorphism H'(f;G) :
H'(Y;G) = H'(X;G) is an isomorphism for eachq = 0,1, ... ,m and a monomorphism
forq=n+1. Here T denotes the reduced Alexander cohomology theory.

Theorem 5.2 (Volovikov and Ngyen [20]) Let G be any abelian group, and let f : X 5
Y be a surjective map between compacta. Suppose H,(f~1(y);G) = 0 for eachy € Y
and for each ¢ = 0,1,... ,n. Then the induced homomorphism H,(f;G) : H,(X;G) —

H,(Y;G) is an isomorphism for each ¢ =0,1,... ,n and an epimorphism for ¢ = n+1.

Theorem 5.3 (Dydak [5]) Let X and Y be compacta, let f : X — Y be a surjec-
tive map, and let R be a principal ideal domain. Suppose pro -ﬁq( X y);R) =0 for
each y € Y and for each ¢ = 0,1,... ,n. Then the induced morphism pro-H,(f;R) :
pro-H,(X;R) — pro-H,(Y;R) is an isomorphism for each ¢ = 0,1,...,n and an

eptmorphism for g =n+ 1.

Generalized versions of Theorems 5.1 can be found in Lawson [10] and Dydak [5], and -
those of Theorem 5.2 in Dydak [5]. '
For the rest of this section, all spaces are regarded as pointed spaces with distinct

base point +.
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Theorem 5.4 (Dydak and Kozlowski [6]) Let E be a CW spectrum, and let f : X —Y
be a closed surjective map betweeh paracompact Hausdorff spaces such that IndY =m <
oo. If fIf Yy : f~Y(y) = {y} induces an isomorphism E*(y) — E*(f~'(y)) for each
y €Y and k = my, mo+1,... ,mo+m, then E*(f) : E¥(Y) — E*(X) is an isomorphism
for k = mog+m and a monomorphism for k = mg+m+1. Here IndY denotes the large

inductive dimension of Y.

As an application of the duality in the generalized stable shape, we have the following

form of Vietoris—Begle theorem:

Théorem 5.5 (Miyata and Watanabe [17]) Let E be a ring spectrum, andlet f : X - Y
be a surjective map from a compact metric space X to a compact metric space Y with
a finite covering dimension such that for each y € Y, f~1(y) has a finite stable shape
dimension. If flf~'(y) : f~Yy) — {y} induces an isomorphism pro-E,(f (y)) —
pro-E,(y) for»each y € Y, then the induced morphism pro-E,(f) : pro-E.(X) —

pro-E,(Y) is an isomorphsim.
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