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1. INTRODUCTION
For arbitrary complex numbers z,y, z, the inequality
le+yl+ly+ 2|+ |z + x| < |z|+ |y + 2] + |z +y + 2|
is well known as Hlawka’s inequality. Djokovié¢ [2] proved the following inequalities
which contain the above one as a special case: o
n—2\/n-—k
(1) | .Z | ’"’”"1*"'”’*-'5(k—z)(k»—1zlmi|+ )
1<41 <2< - <1 <N =1
for complex numbers z,,...,z, and 2 < k < n. :
In this paper, we pay attention to the special case k = n — 1 of (1), namely
(2) la—Tral); < lall; + (n — 2)| Tral

for a vector a = (a1,...,a,) in C® (n > 2), where || - ||; is ¢, norm on C" and
Tra=) ., a;. A weighted extension of the inequality (2) is known and is stated as
follows:

n
>z
i=1

Proposition 1. Let aj,aq,...,a, > 0 and 1,%2,...,2, € C (n > 2). Then

n n n n n
(3) Y ailzi =Y ez <BYailmil+ () o —20) ) eyl
i=1 ji=1 i=1 i=1 j=1

where a = min{e; : @; > 0} and § = max{2a —1,1}.

In view of the inequality (2), it might be natural to write the matrix version of
Hlawka’s inequality as follows:

(4) |4 =TrAlly < [|All1 + (n — 2)| Tr 4]

for a complex n x n matrix A, where Tr A is the trace of A and || A||; is the trace norm
of 4, i.e. ||Al; = Tr|A| with |A] = (A* A)'/2. In this paper we prove the inequality (4)
in a more general form stated in (5) of the following theorem. Indeed, the inequality
(5) is not only a matrix extension of (3) but also a weighted extension of (4).

Theorem 2. Let n € N with n > 2 and let A, B be complex n X n matrices. If
AB = BA and B > 0, then

(5)  Tr(B|A — Tr BA|) < max{2y(B) — 1,1} Tr B|A| + (Tr B — 2v(B))| Tr BA],

where ¥(B) denotes the minimum positive eigenvalue of B.
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PROOF OF THEOREM 2

0 O 0 A
with invertible B; after some unitary conjugation. So it is enough to assume that B
is invertible.

By approximation, we may assume that Tr B # 1. If we put A, = A + €I, then
A — TrBA. = A— Tr BA+ ¢(1 — Tr B) is invertible for small € > 0. So it suffices
to prove the case where A — Tr BA is invertible. Since AB = BA, there is a unique
unitary matrix U such that U(A — Tr BA) = |A — Tr BA| and UB = BU. Hence
there exists a unitary matrix V' and diagonal matrices Dp and Dy such that

B=V*DgV, U=V*DyV.

Proof. Since B > 0and AB = BA, we can write B = B, 0 and A = 41 0 )

So we have
Tr(B|A — Tr BA|) = Tr(BU(A — Tr BA))
= Tr(V*DgDyV (A — Tr V* DV A))
= Tr(DgDy(VAV* — Tr DgV AV™)).

In this way, we can suppose that B = diag(b;,bs,...,b,) with b; > 0 and U =
diag(e®1, e, ..., e%=). Then, by using Proposition 1, we have

Tr(B|A— Tr BA|) =| ) €®b;(A— Tr BA)y|

=1

<Y bilas — Y _bjagl
i=1 j=1 ‘
n n n ’
S max{2 min b,, — 1, 1} Z b,|au| + (Z b,, - 2mmb,)| ija“!
=1 i=1 j=1

< max{2y(B) - 1,1} Zbi|aii] + (Tr B —2v(B))| Tr BA|.
i=1 -
Moreover, note that B commutes with A and A* so that |BA| = B|A|. Since

Y I Xes ) < Tr|X|
=1

for a general matrix X with the canonical basis e, ..., e, of C”, it follows that

) “bilaii| =) |(BAei, e;)| < Tr|BA| = Tx B|A|.
=1 1=1

Therefore, the desired inequality (5) is obtained. [

Remark. The inequality (5) fails to hold for some non-commuting pairs of matrices.
For example, choose

1 05 10
A‘<1 2)’ B—(o 2)'
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Corollary 3. For every n € N with n > 2 and every complez n X n matriz A,

RO |A—Tr All: < 1Al + (n - 2)] Tx 4]
and
o A< fa-—

Proof The inequality (6) is a spec1ahzatlon of (5) to the case B = I. Repla,ce A by
A — 5 Tr A in (6) to obtain the inequality (7). O

Let A be a complex n X n matrix with n > 2, and consider the function f(t) =
||A —tTrAll; for t > 0. When 0 < ¢ < 1, it follows from the convexity of f and (6)

that - '
fO =10  SW=1O) o)y 4
P T

Therefore, - :

[A—tTrAlly <[|Al1 +i(n—-2)|Tr 4] (0<E<T).

This inequality is also obtained by putting B = ¢I in (5). Similarly, from the convexity
of f and (7), we can show that

AL < |A—-tTr Al +t(n - 2)| T 4] (¢t > ;19).

3. RELATED INEQUALITIES

Let M,,(C) be the space of complex n x n matrices. For 1 < p < oo let ||A[|, denote
the Schatten p-norm of A € M,,(C), i.e. ||All, = (Tr |A|P)1/ P, Also, the operator norm
~ of A'is denoted by || Afjco-

In this section, we discuss some 1nequa11t1es comparing ||A — Tr A||, with ||A]l,.
To get such inequalities, we introduce some norms || - ||(1,1) and ||| - ||| on M,(C) and
determine their dual norms.

Define the norm || - ||(1,1) on M,(C) by

Al =1A-TrAlly - (A€ Mn(C)).

Note that the linear mapping ®(A) = A — Tr A on M,,(C) has the inverse ®1(A) =
A— =L Tr A, so ||-||(1,1) is actually a norm on M, (C). Consider the canonical duality
(A,B) =Tr AB for A, B € M,(C). Then we have

max{|(4, B)|: [|Allq,1 <1} = max{|(4, B)|: ||A-TrAl; <1}

1 .
= max{{(A - ~—Tr4, B)|: [|Alh <1}

= max{|(4, B~ - TrB)|: | AlL < 1)

1
=||B — ——=Tr Bl|co-
|B— —— Tt Bllw
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This says that the dual norm of || - ||(1,1) on M,(C) is equal to

. 1
®) A4l = 14 = ——= Tr All.

We next define the norm |[|| - ||| on M, (C) by
HA[ll = l|All + (n = 2)| Tx A] ~ (A € Mp(C)).

Then the inequality (4) is rewritten as || Al|¢1,1) < |||A]l], so the dual form of (4 )
given as

(9) | AN < 1ALy
where ||| - |||* is the dual norm of ||| - ||| with respect to the canomca.l duality. Since
ANy = 1A - —L- Tr Al by (8), the above (9) is equlvalent to - "
(10) | A =T Al < [ Allw.

Now let us determine the dual norm || - |||¥. To do so, define a semi-norm on the

direct sum M, (C) & M,,(C) by
X @Yl =X+ @®-2)|TxY] (X,Y € Mp(C)).

Clearly, the mapping X +— X @ X is isometric from (M,(C),|]| - |||) into (M,(C) &

M, (C), 11| 1l1)- Let A € M,(C) satisfy |||A}||* < 1. Then the norm of the functional
X @ X — (X, A) on the subspace {X & X : X € M,(C)} of (My(C)® M,(C),]||-ll1)
is equal to |||A]||*. By the Hahn-Banach extension theorem, this can be extended to
a linear functional ¢ on (M, (C) & M,(C),||| - |||1) which has the norm < 1, namely

(11) (X @YY < IX DYl = [X]l1 + (n— 2)| Tx Y],

On the other hand, it is obvious that we can choose matrices B,C € M,(C) such
that (X @ Y) = (X,B) + (Y,C). Then (11) implies that B and C must satisfy
1Bl = [|Blleo <1 and |(Y,C)| < (n —2)| TrY|. The latter implies C = (I for some
|¢] <n—2, so we have (X, A) = (X, B) + (X, (1) for every X € M,(C). This means
that A = B + (I for some |(| < n —2. Conversely, it is immediate to see that if
A = B+ (I with ||Bllooc < 1 and || < n — 2, then |||A[||* < 1. In this way, we
conclude the following proposition. -

Proposition 4.

(A€ Ma(C) : A <1} ={X+CT: [ <n—2 X € My(C), I Xloo < 1}.

Put ¢ := |||A — Tr A]||*. From the above proposition, we have

I5(A=Tr4) — Clloo < 1,



142

for some ¢ with || < n — 2. So we have

in [|[A—TrA— (n—2)(|lo < |||4 - Tr A|||*
min |4 (n = 2)Clloo < |l i

Since the inequality (4) can be rewritten as ¢ < || A||«, we have

|A—=TrA—(n—2)(lleo <[l|A—TrAll"

min
I<I<HAllo

This and (6) imply that
[A=TrAll, <(n-DfAl, (p=10)

for all A € M,(C). So the following is a consequence of the complex interpolation
method (cf. [5, Appendix to IX.4]).

Proposition 5. For every complez n X n matriz A with n > 2,
(12) [A=TrAll, <(n-DflAll, (1<p<o0).
As in the last part of Sect. 1 we can get
(13) [A-tTrAl, <(tn—-2t+1)[|Al, (1<p<oo, 0<t<1)

from (12) and the convexity of t — || A — ¢t Tr A|| p- According to (8) the dual form of
(13) is given as ’

t 1
Tr A|l, > ——— |4
tn—1 ,”"—tn—2t+1” la

for 1 <g<ooand 0 <t<1with ¢t # 1/n. Rewriting this we obtain

A -

th

1
IA=tTr Allp 2 o—5—l14ll,  (1<p<oo, t>23).
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