行列の HLAWKA 不等式

木更津高専 和田 州平 (SHUHEI WADA)

1. Introduction

For arbitrary complex numbers x, y, z, the inequality

$$|x+y| + |y+z| + |z+x| \le |x| + |y| + |z| + |x+y+z|$$

is well known as Hlawka's inequality. Djoković [2] proved the following inequalities which contain the above one as a special case:

(1)
$$\sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} |x_{i_1} + \dots + x_{i_k}| \le \binom{n-2}{k-2} \left(\frac{n-k}{k-1} \sum_{i=1}^n |x_i| + \left| \sum_{j=1}^n x_j \right| \right)$$

for complex numbers x_1, \ldots, x_n and $2 \le k \le n$.

In this paper, we pay attention to the special case k = n - 1 of (1), namely

(2)
$$\|\mathbf{a} - \operatorname{Tr} \mathbf{a}\|_1 \le \|\mathbf{a}\|_1 + (n-2)|\operatorname{Tr} \mathbf{a}|$$

for a vector $\mathbf{a} = (a_1, \dots, a_n)$ in \mathbb{C}^n $(n \geq 2)$, where $\|\cdot\|_1$ is ℓ_1 norm on \mathbb{C}^n and $\operatorname{Tr} \mathbf{a} = \sum_{i=1}^n a_i$. A weighted extension of the inequality (2) is known and is stated as follows:

Proposition 1. Let $\alpha_1, \alpha_2, \ldots, \alpha_n \geq 0$ and $x_1, x_2, \ldots, x_n \in \mathbb{C}$ $(n \geq 2)$. Then

(3)
$$\sum_{i=1}^{n} \alpha_{i} |x_{i} - \sum_{i=1}^{n} \alpha_{j} x_{j}| \leq \beta \sum_{i=1}^{n} \alpha_{i} |x_{i}| + (\sum_{i=1}^{n} \alpha_{i} - 2\alpha) |\sum_{j=1}^{n} \alpha_{j} x_{j}|,$$

where $\alpha = \min\{\alpha_i : \alpha_i > 0\}$ and $\beta = \max\{2\alpha - 1, 1\}$.

In view of the inequality (2), it might be natural to write the matrix version of Hlawka's inequality as follows:

(4)
$$||A - \operatorname{Tr} A||_1 \le ||A||_1 + (n-2)|\operatorname{Tr} A|$$

for a complex $n \times n$ matrix A, where Tr A is the trace of A and $||A||_1$ is the trace norm of A, i.e. $||A||_1 = \text{Tr }|A|$ with $|A| = (A^*A)^{1/2}$. In this paper we prove the inequality (4) in a more general form stated in (5) of the following theorem. Indeed, the inequality (5) is not only a matrix extension of (3) but also a weighted extension of (4).

Theorem 2. Let $n \in \mathbb{N}$ with $n \geq 2$ and let A, B be complex $n \times n$ matrices. If AB = BA and $B \geq 0$, then

(5)
$$\operatorname{Tr}(B|A - \operatorname{Tr} BA|) \leq \max\{2\gamma(B) - 1, 1\} \operatorname{Tr} B|A| + (\operatorname{Tr} B - 2\gamma(B))|\operatorname{Tr} BA|,$$
 where $\gamma(B)$ denotes the minimum positive eigenvalue of B .

Proof of Theorem 2

Proof. Since $B \ge 0$ and AB = BA, we can write $B = \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$ with invertible B_1 after some unitary conjugation. So it is enough to assume that B is invertible.

By approximation, we may assume that $\operatorname{Tr} B \neq 1$. If we put $A_{\varepsilon} = A + \varepsilon I$, then $A_{\varepsilon} - \operatorname{Tr} B A_{\varepsilon} = A - \operatorname{Tr} B A + \varepsilon (1 - \operatorname{Tr} B)$ is invertible for small $\varepsilon > 0$. So it suffices to prove the case where $A - \operatorname{Tr} B A$ is invertible. Since AB = BA, there is a unique unitary matrix U such that $U(A - \operatorname{Tr} B A) = |A - \operatorname{Tr} B A|$ and UB = BU. Hence there exists a unitary matrix V and diagonal matrices D_B and D_U such that

$$B = V^* D_B V, \qquad U = V^* D_U V.$$

So we have

$$\operatorname{Tr}(B|A - \operatorname{Tr} BA|) = \operatorname{Tr}(BU(A - \operatorname{Tr} BA))$$

$$= \operatorname{Tr}(V^*D_BD_UV(A - \operatorname{Tr} V^*D_BVA))$$

$$= \operatorname{Tr}(D_BD_U(VAV^* - \operatorname{Tr} D_BVAV^*)).$$

In this way, we can suppose that $B = \text{diag}(b_1, b_2, \ldots, b_n)$ with $b_i > 0$ and $U = \text{diag}(e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i\theta_n})$. Then, by using Proposition 1, we have

$$\begin{aligned} \operatorname{Tr}(B|A - \operatorname{Tr}BA|) &= |\sum_{i=1}^{n} e^{i\theta_{i}} b_{i} (A - \operatorname{Tr}BA)_{ii}| \\ &\leq \sum_{i=1}^{n} b_{i} |a_{ii} - \sum_{j=1}^{n} b_{j} a_{jj}| \\ &\leq \max\{2\min b_{i} - 1, 1\} \sum_{i=1}^{n} b_{i} |a_{ii}| + (\sum_{i=1}^{n} b_{i} - 2\min b_{i}) |\sum_{j=1}^{n} b_{j} a_{jj}| \\ &\leq \max\{2\gamma(B) - 1, 1\} \sum_{i=1}^{n} b_{i} |a_{ii}| + (\operatorname{Tr}B - 2\gamma(B)) |\operatorname{Tr}BA|. \end{aligned}$$

Moreover, note that B commutes with A and A^* so that |BA| = B|A|. Since

$$\sum_{i=1}^{n} |\langle X e_i, e_i \rangle| \le \text{Tr} |X|$$

for a general matrix X with the canonical basis e_1, \ldots, e_n of \mathbb{C}^n , it follows that

$$\sum_{i=1}^{n} b_i |a_{ii}| = \sum_{i=1}^{n} |\langle BAe_i, e_i \rangle| \le \operatorname{Tr} |BA| = \operatorname{Tr} B|A|.$$

Therefore, the desired inequality (5) is obtained. \Box

Remark. The inequality (5) fails to hold for some non-commuting pairs of matrices. For example, choose

$$A = \begin{pmatrix} 1 & 0.5 \\ 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Corollary 3. For every $n \in \mathbb{N}$ with $n \geq 2$ and every complex $n \times n$ matrix A,

(6)
$$||A - \operatorname{Tr} A||_1 \le ||A||_1 + (n-2)|\operatorname{Tr} A|$$

and

(7)
$$||A||_1 \le ||A - \frac{1}{n-1} \operatorname{Tr} A||_1 + \frac{n-2}{n-1} |\operatorname{Tr} A|.$$

Proof. The inequality (6) is a specialization of (5) to the case B = I. Replace A by $A - \frac{1}{n-1} \operatorname{Tr} A$ in (6) to obtain the inequality (7). \square

Let A be a complex $n \times n$ matrix with $n \geq 2$, and consider the function $f(t) = \|A - t \operatorname{Tr} A\|_1$ for $t \geq 0$. When $0 < t \leq 1$, it follows from the convexity of f and (6) that

$$\frac{f(t) - f(0)}{t} \le \frac{f(1) - f(0)}{1} \le (n - 2)|\operatorname{Tr} A|.$$

Therefore,

$$||A - t \operatorname{Tr} A||_1 \le ||A||_1 + t(n-2)|\operatorname{Tr} A| \qquad (0 \le t \le 1).$$

This inequality is also obtained by putting B = tI in (5). Similarly, from the convexity of f and (7), we can show that

$$||A||_1 \le ||A - t \operatorname{Tr} A||_1 + t(n-2)|\operatorname{Tr} A| \qquad (t \ge \frac{1}{n-1}).$$

3. Related inequalities

Let $M_n(\mathbb{C})$ be the space of complex $n \times n$ matrices. For $1 \leq p < \infty$ let $||A||_p$ denote the Schatten p-norm of $A \in M_n(\mathbb{C})$, i.e. $||A||_p = (\text{Tr }|A|^p)^{1/p}$. Also, the operator norm of A is denoted by $||A||_{\infty}$.

In this section, we discuss some inequalities comparing $||A - \operatorname{Tr} A||_p$ with $||A||_p$. To get such inequalities, we introduce some norms $||\cdot||_{(1,1)}$ and $|||\cdot|||$ on $M_n(\mathbb{C})$ and determine their dual norms.

Define the norm $\|\cdot\|_{(1,1)}$ on $M_n(\mathbb{C})$ by

$$||A||_{(1,1)} = ||A - \operatorname{Tr} A||_1 \qquad (A \in M_n(\mathbb{C})).$$

Note that the linear mapping $\Phi(A) = A - \operatorname{Tr} A$ on $M_n(\mathbb{C})$ has the inverse $\Phi^{-1}(A) = A - \frac{1}{n-1} \operatorname{Tr} A$, so $\|\cdot\|_{(1,1)}$ is actually a norm on $M_n(\mathbb{C})$. Consider the canonical duality $\langle A, B \rangle = \operatorname{Tr} AB$ for $A, B \in M_n(\mathbb{C})$. Then we have

$$\begin{split} \max\{|\langle A,\ B\rangle|: \|A\|_{(1,1)} &\leq 1\} = \max\{|\langle A,\ B\rangle|: \|A - \operatorname{Tr} A\|_1 \leq 1\} \\ &= \max\{|\langle A - \frac{1}{n-1}\operatorname{Tr} A,\ B\rangle|: \|A\|_1 \leq 1\} \\ &= \max\{|\langle A,\ B - \frac{1}{n-1}\operatorname{Tr} B\rangle|: \|A\|_1 \leq 1\} \\ &= \|B - \frac{1}{n-1}\operatorname{Tr} B\|_{\infty}. \end{split}$$

This says that the dual norm of $\|\cdot\|_{(1,1)}$ on $M_n(\mathbb{C})$ is equal to

(8)
$$||A||_{(1,1)}^* = ||A - \frac{1}{n-1} \operatorname{Tr} A||_{\infty}.$$

We next define the norm $|||\cdot|||$ on $M_n(\mathbb{C})$ by

$$|||A||| = ||A||_1 + (n-2)|\operatorname{Tr} A|$$
 $(A \in M_n(\mathbb{C})).$

Then the inequality (4) is rewritten as $||A||_{(1,1)} \le |||A|||$, so the dual form of (4) is given as

$$(9) |||A|||^* \le ||A||^*_{(1,1)},$$

where $|||\cdot|||^*$ is the dual norm of $|||\cdot|||$ with respect to the canonical duality. Since $||A||_{(1,1)}^* = ||A - \frac{1}{n-1} \operatorname{Tr} A||_{\infty}$ by (8), the above (9) is equivalent to

(10)
$$|||A - \operatorname{Tr} A|||^* \le ||A||_{\infty}.$$

Now let us determine the dual norm $|||\cdot|||_1^*$. To do so, define a semi-norm on the direct sum $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ by

$$|||X \oplus Y|||_1 = ||X||_1 + (n-2)|\operatorname{Tr} Y|$$
 $(X, Y \in M_n(\mathbb{C})).$

Clearly, the mapping $X \mapsto X \oplus X$ is isometric from $(M_n(\mathbb{C}), ||| \cdot |||)$ into $(M_n(\mathbb{C}) \oplus M_n(\mathbb{C}), ||| \cdot |||_1)$. Let $A \in M_n(\mathbb{C})$ satisfy $|||A|||^* \leq 1$. Then the norm of the functional $X \oplus X \mapsto \langle X, A \rangle$ on the subspace $\{X \oplus X : X \in M_n(\mathbb{C})\}$ of $(M_n(\mathbb{C}) \oplus M_n(\mathbb{C}), ||| \cdot |||_1)$ is equal to $|||A|||^*$. By the Hahn-Banach extension theorem, this can be extended to a linear functional φ on $(M_n(\mathbb{C}) \oplus M_n(\mathbb{C}), ||| \cdot |||_1)$ which has the norm ≤ 1 , namely

(11)
$$|\varphi(X \oplus Y)| \le |||X \oplus Y|||_1 = ||X||_1 + (n-2)|\operatorname{Tr} Y|.$$

On the other hand, it is obvious that we can choose matrices $B, C \in M_n(\mathbb{C})$ such that $\varphi(X \oplus Y) = \langle X, B \rangle + \langle Y, C \rangle$. Then (11) implies that B and C must satisfy $\|B\|_1^* = \|B\|_{\infty} \le 1$ and $|\langle Y, C \rangle| \le (n-2)|\operatorname{Tr} Y|$. The latter implies $C = \zeta I$ for some $|\zeta| \le n-2$, so we have $\langle X, A \rangle = \langle X, B \rangle + \langle X, \zeta I \rangle$ for every $X \in M_n(\mathbb{C})$. This means that $A = B + \zeta I$ for some $|\zeta| \le n-2$. Conversely, it is immediate to see that if $A = B + \zeta I$ with $\|B\|_{\infty} \le 1$ and $|\zeta| \le n-2$, then $\||A|\|^* \le 1$. In this way, we conclude the following proposition.

Proposition 4.

$$\{A \in M_n(\mathbb{C}) : |||A|||^* \le 1\} = \{X + \zeta I : |\zeta| \le n - 2, X \in M_n(\mathbb{C}), ||X||_{\infty} \le 1\}.$$

Put $t := |||A - \operatorname{Tr} A|||^*$. From the above proposition, we have

$$\|\frac{1}{t}(A-\operatorname{Tr} A)-\zeta\|_{\infty}\leq 1,$$

for some ζ with $|\zeta| \leq n-2$. So we have

$$\min_{|\zeta| \le t} ||A - \operatorname{Tr} A - (n-2)\zeta||_{\infty} \le |||A - \operatorname{Tr} A|||^*$$

Since the inequality (4) can be rewritten as $t \leq ||A||_{\infty}$, we have

$$\min_{|\zeta| \le \|A\|_{\infty}} \|A - \operatorname{Tr} A - (n-2)\zeta\|_{\infty} \le |||A - \operatorname{Tr} A|||^*.$$

This and (6) imply that

$$||A - \operatorname{Tr} A||_{p} \le (n-1)||A||_{p} \qquad (p=1,\infty)$$

for all $A \in M_n(\mathbb{C})$. So the following is a consequence of the complex interpolation method (cf. [5, Appendix to IX.4]).

Proposition 5. For every complex $n \times n$ matrix A with $n \geq 2$,

(12)
$$||A - \operatorname{Tr} A||_{p} \le (n-1)||A||_{p} (1 \le p \le \infty).$$

As in the last part of Sect. 1 we can get

from (12) and the convexity of $t \mapsto ||A - t \operatorname{Tr} A||_p$. According to (8) the dual form of (13) is given as

$$\|A - \frac{t}{tn-1} \operatorname{Tr} A\|_q \ge \frac{1}{tn-2t+1} \|A\|_q$$

for $1 \le q \le \infty$ and $0 \le t \le 1$ with $t \ne 1/n$. Rewriting this we obtain

$$||A - t \operatorname{Tr} A||_{p} \ge \frac{tn-1}{2tn-2t-1} ||A||_{p} \qquad (1 \le p \le \infty, \ t \ge \frac{1}{n-1}).$$

Acknowledgment

The author would like to express his thanks to T. Ando and F. Hiai for their very helpful suggestions.

REFERENCES

- [1] D. D. Adamović, Généralisation d'une identité de Hlawka et de l'iégalité correspondante, Mat. Vesnik 1(16) (1964), 39–43.
- [2] Ž. D. Djoković, Generalizations of Hlawka's inequality, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 18 (1963), 169–175.
- [3] F. W. Levi, Ein Reduktionsverfahren für lineare Vektorungleichungen, Arch. Math. (Basel) 2 (1949), 24-26.
- [4] D. S. Mitrinović (In cooperation with P. M. Vasić), *Analytic Inequalities*, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

- [5] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Volume 2, Academic Press, 1975.
- [6] D. M. Smily and M. F. Smily, *The polygonal inequalities*, Amer. Math. Monthly **71** (1964), 755–760.
- [7] Y. Takahashi, S.-E. Takahasi and S. Wada, Some convexity constants related to Hlawka type inequalities in Banach spaces (to appear).
- [8] S.-E. Takahasi, Y. Takahashi and S. Wada, An extension of Hlawka's inequality, Math. Inequal. Appl. 3 (2000), 63–67.

Shuhei Wada: Department of Information and Computer Engineering, Kisarazu National College of Technology 2-11-1 Kiyomidai-Higashi, Kisarazu, Chiba, 292-0041, Japan.