ノルムに到達するティープリッツ及びハンケル作用素の構造

東北大学大学院・理学研究科 吉野 崇 (Takashi Yoshino)

Mathematical Institute, Tohoku University

Let μ be the normalized Lebesgue measure on the Borel sets of the unit circle in the complex plane \mathbb{C} . If $e_n(z)=z^n$ for |z|=1 and $n=0,\pm 1,\pm 2,\cdots$, then the bounded measurable functions e_n constitute an orthonormal basis for $L^2=L^2(\mu)$. And the functions e_n , $n=0,1,2,\cdots$ constitute an orthonormal basis for H^2 . Let $H_0^2=\{f\in H^2: f(0)=0\}$. L^∞ denotes the set of all essentially bounded measurable functions on the unit circle and $H^\infty=H^2\cap L^\infty$. For a $\varphi\in L^\infty$ the Laurent operator L_φ is given by $L_\varphi f=\varphi f$ for $f\in L^2$ as the multiplication operator on L^2 . And the Laurent operator induces, in a natural way, twin operators on H^2 called the Toeplitz operator T_φ given by $T_\varphi f=PL_\varphi f$ for $f\in H^2$ where P is the orthogonal projection from L^2 onto H^2 and the Hankel operator H_φ given by $H_\varphi f=J(I-P)L_\varphi f$ for $f\in H^2$ where J is the unitary operator on L^2 defined by $J(z^{-n})=z^{n-1}$, $n=0,\pm 1,\pm 2,\cdots$

次の2つの結果は昨年の数理研の研究集会で示した(講究録1137,108-111).

Theorem 1. 次は同値である.

- (1) $\{f \in H^2 : \|T_{\varphi}f\|_2 = \|T_{\varphi}\|\|f\|_2\} \neq \{o\}$ (i.e., T_{φ} is norm-achieved).
- (2) $\frac{\varphi}{\|T_{\varphi}\|} = g$ for some $g \in L^{\infty}$ such that |g| = 1 a.e. and that $0 \in \sigma_p(H_g)$. In this case, $\{f \in H^2 : \|T_{\varphi}f\|_2 = \|T_{\varphi}\| \|f\|_2\} = \mathcal{N}_{H_g}$ and it is invariant under T_z .
 - (3) $\frac{\varphi}{\|T_{\varphi}\|} = \overline{q}h$ for some inner functions q and h such that q and h have no common non-constant inner factor.

Theorem 2. 次は同値である.

- (1) $\{f \in H^2 : ||H_{\varphi}f||_2 = ||H_{\varphi}|| ||f||_2\} \neq \{o\} \text{ (i.e., } H_{\varphi} \text{ is norm-achieved)}.$
- (2) $\frac{\varphi}{\|H_{\varphi}\|} = g + \psi$ for some $\psi \in H^{\infty}$ and $g \in L^{\infty}$ such that |g| = 1 a.e. and that $0 \in \sigma_p(T_g)$.

In this case, $\{f \in H^2 : \|H_{\varphi}f\|_2 = \|H_{\varphi}\| \|f\|_2\} = \mathcal{N}_{T_q}$.

The following results are known.

Proposition 1. ([1]) Let \mathcal{M} be an invariant subspace of L_z . Then, in the case where $L_z\mathcal{M}=\mathcal{M}$, there exists a characteristic function χ_E of some subset E of the unit circle such that $\mathcal{M}=L_{\chi_E}L^2$ and, in the case where $L_z\mathcal{M}\subset\mathcal{M}$, there exists a unitary Laurent operator L_g uniquely, except a constant multiple of absolute value one, such that $\mathcal{M}=L_gH^2$.

Lemma 1. ([2]) If φ is non-analytic (i.e., $\varphi \notin H^{\infty}$), then the only invariant subspace of L_{φ} which contained in H^2 is $\{o\}$ itself.

Lemma 2. If φ is non-co-analytic (i.e., $\overline{\varphi} \notin H^{\infty}$), then the only invariant subspace of L_{φ} which contained in $L^2 \ominus H_0^2$ is $\{o\}$ itself.

Proof. Let

$$\mathcal{M} = \bigvee \{ L_{\varphi}^{*n} f : f \in H_0^2, n = 0, 1, 2, \dots \}.$$

Then it is the smallest invariant subspace of L_{φ}^* which includes H_0^2 . Hence we have only to prove $\mathcal{M}=L^2$. Since L_z commutes with L_{φ}^* and since H_0^2 is invariant under L_z , \mathcal{M} is invariant under L_z .

If \mathcal{M} reduces L_z , then $\overline{z}^{n-1} = L_z^{*n}z \in \mathcal{M}$ $(n = 1, 2, \cdots)$ because $z \in H_0^2 \subseteq \mathcal{M}$ and hence $\mathcal{M} = L^2$.

If \mathcal{M} is a non-reducing invariant subspace of L_z , then $L_z\mathcal{M}\subset\mathcal{M}$ because L_z is unitary and, by Proposition 1, $\mathcal{M}=L_gH^2$ for some unitary Laurent operator L_g and $L_gL_{\varphi}^*H^2=L_{\varphi}^*\mathcal{M}\subseteq\mathcal{M}=L_gH^2$ and hence $L_{\varphi}^*H^2\subseteq H^2$. Since $1\in H^2$, $\overline{\varphi}\in H^2$ and $\overline{\varphi}\in H^2\cap L^\infty=H^\infty$. This contradicts the hypothesis that φ is non-co-analytic.

Theorem 3. ([2]) For a T_{φ} such as $||T_{\varphi}|| = 1$, if

$$\{f \in H^2 : ||T_{\varphi}^n f||_2 = ||f||_2, \ n = 0, 1, 2, \dots\} \neq \{o\},\$$

then T_{φ} is an isometry.

Proof. For a non-zero $f \in \{f \in H^2 : \|T_{\varphi}^n f\|_2 = \|f\|_2, \ n = 0, 1, 2, \cdots \}$, we have $\|f\|_2 = \|PL_{\varphi}f\|_2 \le \|L_{\varphi}f\|_2 \le \|f\|_2$ because $\|L_{\varphi}\| = \|T_{\varphi}\| = 1$. This implies that $T_{\varphi}f = PL_{\varphi}f = L_{\varphi}f$ and

$$||f||_2 = ||T_{\varphi}^2 f||_2 = ||T_{\varphi} L_{\varphi} f||_2 = ||PL_{\varphi}^2 f||_2 \le ||L_{\varphi}^2 f||_2 \le ||f||_2$$

and hence $T_{\varphi}^2 f = P L_{\varphi}^2 f = L_{\varphi}^2 f$. Similarly, we have $T_{\varphi}^n f = P L_{\varphi}^n f = L_{\varphi}^n f$ for all $n \geq 0$.

Let $\mathcal{N}=\vee\{L_{\varphi}^n f: n=0,1,2,\cdots\}$. Then $\mathcal{N}\neq\{o\}$ is an invariant subspace of L_{φ} contained in H^2 and, by Lemma 1, φ is analytic, i.e., $\varphi\in H^{\infty}$. Since, by Theorem 1, $\varphi=\overline{q}h$ for some inner functions q and h such that q and h have no common non-constant inner factor, $h=q\varphi$ and $q=e^{i\theta_0}1$ for some $\theta_0\in[0,2\pi)$ and hence $\varphi=e^{-i\theta_0}h$ is inner.

Corollary 1. ([2]) For a non-constant function φ in L^{∞} , if T_{φ} is a contraction (i.e., $||T_{\varphi}|| \leq 1$), then it is completely non-unitary.

Proof. It is known that the unitary part of T_{φ} is the restriction of T_{φ} on

$$\mathcal{H}_{T_{\varphi}}^{(u)} = \{ f \in H^2 : \|T_{\varphi}^n f\|_2 = \|T_{\varphi}^{*n} f\|_2 = \|f\|_2, \ n \ge 0 \}.$$

Hence we have only to prove $\mathcal{H}_{T_{\varphi}}^{(u)} = \{o\}$. If $\mathcal{H}_{T_{\varphi}}^{(u)} \neq \{o\}$, then $\varphi \in H^{\infty} \cap \overline{H^{\infty}} = \{\mathbb{C}1\}$ by Theorem 3.

The matrix representation $(a_{i,j})_{i,j=0}^{\infty}$ of H_{φ} where $a_{i,j} = \langle H_{\varphi}z^j, z^i \rangle$ by the basis $\{z^n : n \geq 0\}$ is determined by $\{a_{i,0} : i \geq 0\}$ and we remark here $\sum_{i=0}^{\infty} a_{i,0}z^i = H_{\varphi}1$. And hence we have the following.

Theorem 4. $H_{\varphi} = O$ if and only if $H_{\varphi}1 = o$.

It is known that there is no invertible Hankel operator. Moreover, we have the following.

Corollary 2. There is no isometric Hankel operator.

Proof. If $H_{\varphi}^*H_{\varphi}=I$, then

$$H_{\varphi}^* H_{\varphi} = I = T_z^* T_z = T_z^* H_{\varphi}^* H_{\varphi} T_z = H_{\varphi}^* T_z T_z^* H_{\varphi}$$

and $H_{\varphi}^*(I-T_zT_z^*)H_{\varphi}=O$ and hence $(I-T_zT_z^*)H_{\varphi}=O$ because $I-T_zT_z^*$ is a projection. And then $H_{\varphi}H^2\subseteq T_zH^2$ and $\langle H_{\varphi}^*1,\ H^2\rangle=\langle 1,\ H_{\varphi}H^2\rangle=0$. Therefore $H_{\varphi^*}1=H_{\varphi^*}1=o$ and, by Theorem 4, $H_{\varphi}^*=H_{\varphi^*}=O$ which contradicts $H_{\varphi}^*H_{\varphi}=I$.

Theorem 5. For a H_{φ} such as $\|H_{\varphi}\|=1$, if

$$\{f \in H^2 : ||H_{\varphi}^n f||_2 = ||f||_2, \ n = 0, 1, 2, \dots\} \neq \{o\},\$$

then H_{φ} is normal.

Proof. Since, by Theorem 2, $\varphi = g + \psi$ for some $\psi \in H^{\infty}$ and $g \in L^{\infty}$ such as |g| = 1 a.e. and $0 \in \sigma_p(T_g)$. Hence $H_{\varphi} = H_g$.

For a non-zero $f \in \{ f \in H^2 : \|H_{\varphi}^n f\|_2 = \|f\|_2, \ n \ge 0 \},$

$$||f||_2 = ||J(I-P)L_g f||_2 \le ||f||_2$$

because $||L_g|| = ||g||_{\infty}$ and $(I - P)L_g f = L_g f$ and hence $H_g f = JL_g f$. Since

$$||f||_2 = ||H_g^2 f||_2 = ||(I - P)L_g J L_g f||_2 \le ||f||_2,$$

$$(I-P)L_qJL_qf=L_qJL_qf=JL_{\overline{q^*}}L_qf$$
 and $H_q^2f=L_{\overline{q^*}}L_qf$. And

$$||f||_2 = ||H_g^3 f||_2 = ||(I - P)L_g L_{\overline{g^*}} L_g f||_2 \le ||f||_2.$$

Hence $(I-P)L_gL_{\overline{g^*}}L_gf = L_gL_{\overline{g^*}}L_gf$ and $H_g{}^3f = JL_gL_{\overline{g^*}}L_gf$. Similarly, for all $n \ge 0$,

$$(I-P)(L_gL_{\overline{g^*}})^nL_gf = (L_gL_{\overline{g^*}})^nL_gf$$

and
$$(I-P)J(L_{\overline{g^*}}L_g)^nf = J(L_{\overline{g^*}}L_g)^nf.$$

Let $\mathcal{N}=\vee\{L_{g\overline{g^*}}^nL_gf:n\geq 0\}$. Then $\mathcal{N}\neq\{o\}$ is an invariant subspace of $L_{g\overline{g^*}}$ contained in $L^2\ominus H_0^{-2}$ and, by Lemma 2, $g\overline{g^*}$ is co-analytic and hence $u=\overline{g}g^*$ is inner because $|\overline{g}g^*|=|g|\;|g^*|=1$ a.e. Since $u^*u=g\overline{g^*}\overline{g}g^*=1$, $\overline{u}=u^*\in H^\infty$ and hence u is a constant of absolute value one because $u\in H^\infty\cap\overline{H^\infty}=\mathbb{C}1$. Therefore $g^*=e^{i\theta_0}g$ for some $\theta_0\in[0,2\pi)$ and we have the conclusion.

Corollary 3. If H_{φ} is a non-normal contraction, then it is completely non-unitary.

Proof. We have only to prove that $\mathcal{H}_{H_{\varphi}}^{(u)} = \{o\}$. If $\mathcal{H}_{H_{\varphi}}^{(u)} \neq \{o\}$, then H_{φ} is normal by Theorem 5.

We say that a bounded linear operator A on a Hilbert space \mathcal{H} is paranormal if $||Ax||^2 \leq ||A^2x|| \ ||x||$ for all $x \in \mathcal{H}$.

Theorem 6. If T_{φ} is norm-achieved paranormal, then T_{φ} is a scalar multiple of an isometry.

Proof. We may assume that $||T_{\varphi}|| = 1$. Let

$$\mathcal{M} = \{ f \in H^2 : ||T_{\varphi}f||_2 = ||f||_2 \}.$$

Then, by the hypothesis, $\mathcal{M} \neq \{o\}$ and $T_{\varphi}\mathcal{M} \subseteq \mathcal{M}$ by the paranormality of T_{φ} . In fact, if $f \in \mathcal{M}$, then we have

$$||f||_2^2 \ge ||f||_2 ||T_{\varphi}^2 f||_2 \ge ||T_{\varphi} f||_2^2 = ||f||_2 ||T_{\varphi} f||_2 = ||f||_2^2$$

and this implies that $||T_{\varphi}|^2 f||_2 = ||T_{\varphi}f||_2$ and hence $T_{\varphi}f \in \mathcal{M}$. Therefore

$$\{f \in H^2 : ||T_{\varphi}^n f||_2 = ||f||_2, \ n = 0, 1, 2, \dots\} \neq \{o\}$$

and T_{φ} is an isometry by Theorem 3.

Theorem 7. If H_{φ} is norm-achieved paranormal, then H_{φ} is normal.

Proof. We may assume that $||H_{\varphi}|| = 1$. Let

$$\mathcal{M} = \{ f \in H^2 : ||H_{\varphi}f||_2 = ||f||_2 \}.$$

Then, by the hypothesis, $\mathcal{M} \neq \{o\}$ and, by the paranormality of H_{φ} , $H_{\varphi}\mathcal{M} \subseteq \mathcal{M}$. In fact, if $f \in \mathcal{M}$, then we have

$$||f||_2^2 \ge ||f||_2 ||H_{\varphi}^2 f||_2 \ge ||H_{\varphi} f||_2^2 = ||f||_2 ||H_{\varphi} f||_2 = ||f||_2^2$$

and $\|H_{\varphi}^{2}f\|_{2} = \|H_{\varphi}f\|_{2}$ and hence $H_{\varphi}f \in \mathcal{M}$. Therefore

$$\{f \in H^2 : \|H_{\varphi}^n f\|_2 = \|f\|_2, \ n = 0, 1, 2, \dots\} \neq \{o\}$$

and H_{φ} is normal by Theorem 5.

References

- [1] Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math., 81(1949), 239–255.
- [2] Yoshino, T., Note on Toeplitz operators, Tohoku Math. Journ., 26(1974), 535–540.