goooboooobgon

1189 0 2001 O 52-57 52

JILLIZEET B35 4 — T v YRUNA LT IEREDREE

FACKRFERER - HEHFEH 5% 5% (Takashi Yoshino)
‘Mathematical Institute, Tohoku University

Let u be the normalized Lebesgue measure on the Borel sets of the unit
circle in the complex plane C. If e,(z) = 2" for |z =1 and n = 0, +1, £2, - - -,
then the bounded measurable functions e,, constitute an orthonormal basis for
L? = L?(p). And the functions e, n = O‘, 1,2,... constitute an orthonormal
basis for H?. Let Hy? = {f € H? : f(0) = 0}. L* denotes the set of all
essentially bounded measurable functions on the unit circle and H® = H2 N L>.
For a ¢ € L™ the Laurent operator L, is given by L,f = ¢f for f € L2
as the multiplication operator on L2?. And the Laurent operator induces, in
a natural way, twin operators on H? called the Toeplitz operator T, given by
T,f = PL,f for f € H? where P is the orthogonal projection from L? onto H?
and the Hankel operator'H(P given by H,f = J(I — P)L,f for f € H* where .J
is the unitary operator on L? defined by J(z7") = 2"~ ! n =0,+1,+2,---

| ®D 20@%%%’#@%&@&@&%&%@% L7- GEZesk 1137, 108-111) .

. Theorem 1. RIXFMETH 5.
(0 {fed?*:Tfllz =Tl fll2} # {0} (ie., T, is norm-achieved).
(2) II_T%W = g for some g € L*° such that |g| = 1 a.e. and that 0 € o, (H,).
In this case, {f € H?: [T, fll2 = | Tl fll2} = N, and it is invariant under

(3) ﬁ = gh for some inner functions ¢ and h such that ¢ and A have no

common non-constant inner factor.

Theorem 2. KIZFMETH 5.

(1) {feH? : |Hyfll2=H|||fll2} # {0} (ie., H, is norm-achieved).

(2) m = g + % for some € H* and g € L* such that |[¢| = 1 a.e.
and that 0 € 0,(T}).



In this case, {f € H? : [[H,fllz = [[H,|ll|Ifll2} = Nz,
The following results are known.

Proposition 1. ([1]) Let M be an invariant subspace of L,. Then, in the
case where [, M = M, there exists a characteristic function x, of some subset
E of the unit circle such that M = L, LZ and, in the case where LM C M,
there exists a unitary Laurent operator Lg uniquely, except a constant multiple
of absolute value one, such that M = L, H 2,

Lemma 1. ([2]) If ¢ is non-analytic (i.e., ¢ ¢ H*), then the only 1nvarlant

subspace of L, which contained in H? is {0} itself.

Lemma 2. If p is non-co-analytic (i.e., ¢ ), then the only invariant

subspace of L, which contained in L? © Hg? is {0} itself.
Proof. Let
M=V{L,*"f : fe Hy* n=0,1,2,---}.

Then it is the smallest invariant subspace of L,* which includes Hp?. Hence we

have only to prove M = L2,

Since L, commutes with L,* and since Ho? is
invariant under L,, M is invariant under L,.

If M reduces L,, then 2" 1 = L ,*"2 € M (n=1,2,---) because z € Hy? C
M and hence M = L2.

If M is a non-reducing invariant subspace of L,, then L, M C M because L,
is unitary and, by Proposition 1, M = L, H? for some unitary Laurent operator
Ly, and LgL¢*H2 = L, MC M = LQH2 and hence L¢*H2 C H?. Since
1€ H?, € H>and p € H?NL*® = H*. This contradicts the hypothesis that

is non-co-analytic. O
Theorem 3. ([2]) For a T, such as ||T,,|| =1, if
{fed” T fll=1fll2; n=0,1,2,---} # {o},

then 7., is an isometry.
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Proof. For anon-zero f € {f € H?> : || T,"fllz = ||fll2, » =0,1,2,---},
we have [|flls = [PLyfll2 < [[Lyfll2 < [|If]l2 because [|Ly|| = [T, || = 1. This
implies that T, f = PL,f = L, f and

I£llz = 1T  fll2 = | T Lo fll2 = IPLG* fll2 < L2 fll2 < I fl2

and hence T,,f = PL,?f = L,2f. Similarly, we have T,," f = PL,"f = L,"f
for all n > 0. |

Let N =V{L,"f : n=0,1,2,--- }. vThen_kN # {0} is an invariant subspace
of L, contained in H? and, by Lemma 1,  is analytic, i.e., p € H*. Since, by
Theorem 1, ¢ = gh for some inner functions ¢ and h such that ¢ and /i have no
common non-constant inner factor, h = qp and ¢ = €*%1 for some ¢ € [0, 27) and

hence ¢ = e*%} is inner. O

Corollary 1. ([2]) For a non-constant function ¢ in L*, if T, is a contrac-

tion (i.e., || T,|| < 1), then it is completely non-unitary.
Proof. It is known that the unitary part of T, is the restriction of T, on
MY ={f € H? : ||T,"flla = IT,* fll2 = [| fll2, n > 0}.

Hence we have only to prove H%) = {o}. If Hf_ﬁi) # {o}, then p € H® N H® =
{C1} by Theorem 3. '

O

The matrix representation (a;, ;)% of H, where a;; = (H,2z’, z*) by the
basis {z” : n > 0} is determined by {¢;o : ¢ > 0} and we remark here

S 2o @iz = H,1l. And hence we have the following.
Theorem 4. H, = O if and only if H,1 = o.

It is known that there is no invertible Hankel operator. Moreover, we have

the following.
Corollary 2. There is no isometric Hankel operator.
Proof. If H,*H, = I, then

H,*H, =1 =T,*T, = T,*H,*H,T, = H,*T,T,*H,,



and H,*(I —T,T,*)H, = O and hence (I —-T,T,*)H, = O because I -T,T," isa
projection. And then H,H? C T,H? and (H,*1, H?) = (1, H,H?) = 0. There-
fore H,-1 = H,*1 = 0 and, by Theorem 4, H,* = H,- = O which contradicts
H,*H, =1. O

Theorem 5. For a H, such as ||H,|| =1, if

{ferd® . |Hfl2=Ifllz, n=0,1,2,---} # {0},

then H, is normal.

Proof. Since, by Theorem 2, ¢ = g+ 1) for some ¢y € H* and g € L* such
as |g| =1 ae. and 0 € 0,(7}). Hence H, = H,.
For a non-zero f € {f € H? : |H,"fllz = [|fll2, n >0},

Ifllz = [IJ(I = P)Lg fll2 < I /]2
because || Ly = |lglleo and (I — P)Lyf = Lyf and hence H,f = JL,f. Since
1/ llz = 1 Hy?fll2 = (I = P)Lg JLgfll2 < || f2,
(I = P)LyJLyf = LyJLyf = JL—<L,f and Hy?f = L=L,f. And
1l = 1Hg fll2 = (I = P)LyLgeLo fll2 < |12

Hence (I — P)Lng—*Lgf = Lng—*Lgf and H3f = JLngTLgf'. Similarly, for all
n >0,

(1 — P)(Lng_*)nLgf = (Lng—*)nLgf
and (I — P)J(LyeLy)"f = J(Lz=Ly)" f.

Let N = V{L ="Lyf : n >0}. Then N # {o} is an invariant subspace of L o=
contained in L? & Hy? and, by Lemma 2, gg* is co-analytic and hence u = Gg* is
inner because [gg*| = |g| |¢*| = 1 a.e. Since u*u = gg*gg9* =1, =u* € H* and
hence u is a constant of absolute value one because u € H*®NH* = C1. Therefore

g* = e g for some 6 € [0,27) and we have the conclusion. O
9 0

Corollary 8. If H, is a non-normal contraction, then it is completely non-

unitary.
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Proof. We have only to prove that Hg) ={o}. If Hg) # {0}, then H, is
normal by Theorem 5. L

We say that a bounded linear operator A on a Hilbert space H is paranormal
if || Az||? < || A%z|| ||z]| for all = € H.

Theorem 6. If T, is norm-achieved paranormal, then 7}, is a scalar multiple

of an isometry.
Proof. We may assume that ||T,,|| = 1. Let
M={f e H*: T, fll2 = | fll2}.

Then , by the hypothesis, M # {0} and T, M C M by the paranormality of 7.
In fact, if f € M, then we have

1£112* 2 1 fll2 12 fll2 2 1T fll2° = 1 All2 1T fll2 = 11 £112°
and this implies that || T, f||2 = |7}, f||> and hence T, f € M. Therefore
{fed® T fll2=lfll2, n=10,1,2,--- } # {0}
and 7, is an isometry by Theorem 3. 0
Theorem 7. If H, is norm-achieved paranormal, then f., is normal.
Proof. We may assume that ||| = 1. Let
M={f e H*:|Hyfll2 = ||fll2}.

Then , by the hypothesis, M # {0} and, by the paranormahty of H,, H, M C M.
In fact, if f € M, then we have

1F12% = I fllz 1Ho? fll2 = 1 He fll2* = 111l 1H fll2 = 1 f112?
and ||H,%f||2 = ||H,f||> and hence H,f € M. Therefore

{fef? : |HS  fllz=fllz, n=0,1,2,--} # {0}



and H, is normal by Theorem 5. o , o " ]
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