Coefficient Inequalities for Ceratin Analytic Functions JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Abstract. For real $\alpha(\alpha > 1)$, subclasses $M(\alpha)$ and $N(\alpha)$ of analytic functions f(z) with f(0) = 0 and f'(0) = 1 in U are introduced. The object of the present paper is to consider the coefficient inequalities for functions f(z) to be in the classes $M(\alpha)$ and $N(\alpha)$. Further, the bounds of α for functions f(z) to be starlike in U are considered.

1 Introduction

Let A denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let $M(\alpha)$ be the subclass of A consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha \qquad (z \in U)$$

for some $\alpha(\alpha > 1)$. And let $N(\alpha)$ be the subclass of A consisting of functions f(z) which satisfy

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < \alpha \qquad (z \in U)$$

for some $\alpha(\alpha > 1)$. Then, we see that $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$. Let us give examples of functions f(z) in the classes $M(\alpha)$ and $N(\alpha)$.

Remark For $1 < \alpha \leq \frac{4}{3}$, the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi, Ganigi and Sarangi [2].

Example (i)
$$f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha)$$

$$(ii)g(z) = \frac{1}{2\alpha - 1} \{ 1 - (1 - z)^{2\alpha - 1} \} \in N(\alpha)$$

Proof. Since $f(z) \in M(\alpha)$ if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} < \alpha,$$

we can write

$$\frac{\alpha - \frac{zf'(z)}{f(z)}}{\alpha - 1} = \frac{1+z}{1-z},$$

which is equivalent to

$$\frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{2(\alpha - 1)}{1 - z}.$$

Integrating both sides of the above equality, we have

$$f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha).$$

Next, since $g(z) \in N(\alpha)$ if and only if $zg'(z) \in M(\alpha)$,

$$zg'(z) = z(1-z)^{2(\alpha-1)}$$
.

for function $g(z) \in N(\alpha)$. It follows that

$$g(z) = \frac{-1}{2\alpha - 1} (1 - z)^{2\alpha - 1} + \frac{1}{2\alpha - 1}$$
$$= \frac{1}{2\alpha - 1} \left\{ 1 - (1 - z)^{2\alpha - 1} \right\} \in N(\alpha).$$

2 Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$

We try to derive sufficient conditions for f(z) which are given by using coefficient inequalities.

Theorem 1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1)$$

for some $\alpha(\alpha > 1)$, then $f(z) \in M(\alpha)$.

Proof. Let us suppose that

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1)$$

for $f(z) \in A$.

It sufficies to show that

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} - (2\alpha - 1)} \right| < 1 \qquad (z \in U).$$

We have

$$\left| \frac{\frac{zf'(z)}{f(z)} - 1}{\frac{zf'(z)}{f(z)} - (2\alpha - 1)} \right| \le \frac{\sum_{n=2}^{\infty} (n-1)|a_n||z|^{n-1}}{2(\alpha - 1) - \sum_{n=2}^{\infty} |n - 2\alpha + 1| |a_n||z|^{n-1}} < \frac{\sum_{n=2}^{\infty} (n-1)|a_n|}{2(\alpha - 1) - \sum_{n=2}^{\infty} |n - 2\alpha + 1| |a_n|}.$$

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} (n-1)|a_n| \le 2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n|$$

which is equivalent to our condition

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \le 2(\alpha-1)$$

of the theorem. This completes the proof of the theorem.

By using Theorem1, we have

Corollary 1. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n\{(n-1) + |n-2\alpha+1|\} |a_n| \le 2(\alpha-1)$$

for some $\alpha(\alpha > 1)$, then $f(z) \in N(\alpha)$.

Proof. From $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$, replacing a_n by na_n in Theorem 1 we have the corollary.

In view of Theorem1 and Corollary1, if $1 < \alpha \le 2$, then $n - 2\alpha + 1 \ge 0$ for all $n \ge 2$. Thus we have

Corollary 2. (i) If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le \alpha - 1$$

for some $\alpha(1 < \alpha \leq 2)$, then $f(z) \in M(\alpha)$.

(ii) If $f(z) \in A$, satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \le \alpha - 1$$

for some $\alpha(1 < \alpha \leq 2)$, then $f(z) \in N(\alpha)$.

3 Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$

By Silverman [1], we know that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n|a_n| \le 1,$$

then $f(z) \in S^*$, where S^* denotes the subclsses of A consisting of all univalent and starlike functions f(z) in U. Thus we have

Theorem 2. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le \alpha - 1$$

for some $\alpha(1 < \alpha \le \frac{4}{3})$, then $f(z) \in S^* \cap M(\alpha)$, therefore, f(z) is starlike in U. Further, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \le \alpha - 1$$

for some $\alpha(1 < \alpha \leq \frac{3}{2})$, then $f(z) \in S^* \cap N(\alpha)$, therefore, f(z) is starlike in U.

Proof. Let us consider α such that

$$\sum_{n=2}^{\infty} n|a_n| \le \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1}|a_n| \le 1.$$

Then we have $f(z) \in S^* \cap M(\alpha)$ by means of Theorem 1. This inequality holds true if

$$n \leq \frac{n-\alpha}{\alpha-1} \qquad (n=2,3,4,\cdots).$$

Therefore, we have

$$1 < \alpha \le 2 - \frac{2}{n+1}$$
 $(n = 2, 3, 4, \dots),$

which shows $1 < \alpha \le \frac{4}{3}$. Next, considering α such that

$$\sum_{n=2}^{\infty} n|a_n| \leq \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1}|a_n| \leq 1,$$

we have

$$n \leq \frac{n(n-lpha)}{lpha-1}$$
 $(n=2,3,4,\cdots).$

which is equivalent to

$$1<\alpha\leq\frac{n+1}{2}\qquad (n=2,3,4,\cdots).$$

This implies that $1 < \alpha \le \frac{3}{2}$.

Finally, by virtue of the result for convex functions by Silverman [1], we have if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n^2 |a_n| \le 1,$$

then $f(z) \in K$, where K denotes the subclass of A consisting of all univalent and convex functions f(z) in U. Using the same manner as in the proof of Theorem2, we derive

Theorem 3. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \le \alpha - 1$$

for some $\alpha(1 < \alpha \leq \frac{4}{3})$, then $f(z) \in K \cap N(\alpha)$, therefore, f(z) is convex in U.

4 Bounds of α for starlikeness

Note that the sufficient for f(z) to be in the class $M(\alpha)$ is given by

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1).$$

Since, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n|a_n| \le 1,$$

then $f(z) \in S^*$ (cf. [1]), it is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$.

To do this, we have to consider the following inequality

$$\sum_{n=2}^{\infty} n|a_n| \le \frac{1}{2(\alpha - 1)} \sum_{n=2}^{\infty} \{(n - 1) + |n - 2\alpha + 1|\} |a_n|$$

$$\le 1$$

which is equivalent to

$$\sum_{n=2}^{\infty} \{ |n-2\alpha+1| + (3-2\alpha)n \} |a_n| \ge 0.$$

Let us define

$$F(n) = |n - 2\alpha + 1| + (3 - 2\alpha)n \qquad (n \ge 2)$$

Then, if F(n) satisfies

$$\sum_{n=2}^{\infty} F(n)|a_n| \ge 0,$$

then f(z) belongs to S^* .

Theorem 4. Let $f(z) \in A$ satisfy

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1)$$

for some $\alpha > 1$. Further, let δ_k be defined by

$$\delta_k = \sum_{n=k}^{\infty} F(n)|a_n|.$$

Then.

(i) if
$$1 < \alpha \le \frac{3}{2}$$
, then $f(z) \in S^*$,

(ii) if
$$\frac{3}{2} \le \alpha \le \min\left(\frac{13}{8}, \frac{3+\delta_3}{2}\right)$$
, then $f(z) \in S^*$,

(iii) if
$$\frac{8}{3} \le \alpha \le \min\left(\frac{17}{10}, \frac{12 - \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48}}{12}\right)$$
, then $f(z) \in S^*$.

Proof. For $1 < \alpha \le \frac{3}{2}$, we know that

$$n-2\alpha+1\geq 3-2\alpha\geq 0 \qquad (n\geq 2),$$

that is that $F(n) \geq 0$ $(n \geq 2)$. Therefore, we have

$$\sum_{n=2}^{\infty} F(n)|a_n| \ge 0.$$

If $\frac{3}{2} \le \alpha \le \frac{13}{8}$, then $F(2) = 3 - 2\alpha \le 0$ and

$$F(n) = 2n(2 - \alpha) + 1 - 2\alpha$$

$$\geq 13 - 8\alpha$$

$$\geq 0$$

for $n \geq 3$. Further, we know that

$$|a_n| \le \frac{2(\alpha-1)}{(n-1)+|n-2\alpha+1|}$$
 $(n \ge 2),$

which given us that $|a_2| \leq 1$, therefore, we obtain that

$$\sum_{n=2}^{\infty} F(n)|a_n| = F(2)|a_2| + \sum_{n=3}^{\infty} F(n)|a_n|$$

$$\geq 3 - 2\alpha + \delta_3 \qquad \geq 0$$

for

$$\frac{3}{2} \le \alpha \le \min\left(\frac{13}{8}, \frac{3+\delta_3}{2}\right),\,$$

Furthermore, if $\frac{13}{8} \le \alpha \le \frac{17}{10}$, then

$$F(2) = 3 - 2\alpha \le 0$$

$$F(3) = |4 - 2\alpha| + 3(3 - 2\alpha)$$

= 13 - 8\alpha
\le 0,

and

$$F(n) = |n - 2\alpha + 1| + (3 - 2\alpha)n$$

$$= 4n + 1 - 2(n+1)\alpha$$

$$\geq \frac{3(n-4)}{5}$$

$$\geq 0$$

for $n \geq 4$. Noting that $|a_2| \leq 1$ and $|a_3| \leq \frac{\alpha - 1}{3 - \alpha}$, we conclude that

$$\sum_{n=2}^{\infty} F(n)|a_n| = F(2)|a_2| + F(3)|a_3| + \sum_{n=4}^{\infty} F(n)|a_n|$$

$$\geq (3 - 2\alpha) + (13 - 8\alpha)\frac{\alpha - 1}{3 - \alpha} + \delta_4$$

$$> 0.$$

for α which satisfies

$$6\alpha^2 - (12 - \delta_4)\alpha + 4 - 3\delta_4 \le 0.$$

This shows that

$$\frac{8}{3} \le \alpha \le \min\left(\frac{17}{10}, \frac{12 - \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48}}{12}\right),$$

This completes the proof of Theorem 4.

Finally, by virtue of Theorem 4, we may supporse Conjecture. If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \left\{ (n-1) + |n-2\alpha+1| \right\} |a_n| \le 2(\alpha-1)$$

for some $1 < \alpha < 2$, then $f(z) \in S^*$.

References

- [1] H.Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975),109-116.
- [2] B.A.Uralegaddi, M.D.Ganigi and S.M.Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25(1994),225-230.

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan