On certain conditions for starlikeness

MAMORU NUNOKAWA [布川 護] (群馬大学・教育学部) SHIGEYOSHI OWA [尾和 重義] (近畿大学・理工学部)

Abstract. The object of the present paper is to consider a sufficient condition for analytic functions in the open unit disk to be strongly starlike of order α .

1 Introduction.

Let A be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. A function f(z) in A is said to be starlike in U if it satisfies

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \quad (z \in U).$$

We denote by S^* the subclass of A consisting of all starlike functions f(z) in U. Further a function f(z) belonging to A is said to be strongly starlike of order α in U if it satisfies

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}\alpha \quad (z \in U)$$

for some α (0 < $\alpha \le 1$). We denote by $SS^*(\alpha)$ the subclass of A consisting of all strongly starlike functions of order α in U.

From the definition for strongly starlike functions of order α , we note that $f(z) \in SS^*(\alpha)$ is univalent and starlike in U. Recently, Tuneski [2] obtained the following theorem.

Key Wards and Phrases: Starlike, univalent, strongly starlike.

Theorem A. Let a function $f(z) \in A$ satisfy

$$\frac{f(z)f''(z)}{f'(z)^2} \prec 2 - \frac{2}{(1-z)^2} \quad (z \in U),$$

where the symbol " \prec " means the subordination. Then $f(z) \in S^*$.

To derive our main theorem, we need the following lemma due to Nunokawa [1].

Lemma. Let p(z) be analytic in U with p(0) = 1 and $p(z) \neq 0$ $(z \in U)$. If there exists a point $z_0 \in U$ such that

$$|\arg(p(z))| \leq \frac{\pi}{2}\alpha$$
 for $|z| < |z_0|$

and

$$|\arg(p(z_0))| = \frac{\pi}{2}\alpha \quad (\alpha > 0),$$

then we have

$$\frac{z_0p'(z_0)}{p(z_0)}=ik\alpha,$$

where $k \ge 1$ when $\arg(p(z_0)) = (\pi/2)\alpha$ and $k \le -1$ when $\arg(p(z_0)) = -(\pi/2)\alpha$.

2 Strongly starlikeness of order α

Now we derive

Theorem. Let f(z) in A satisfy the following inequalities

$$\pi - \frac{\pi}{2}\alpha - \operatorname{Tan}^{-1}\alpha < \operatorname{arg}\left(\frac{f(z)f''(z)}{f'(z)^2} - 1\right) < \pi + \frac{\alpha}{2}\alpha + \operatorname{Tan}^{-1}\alpha \quad (z \in U)$$

for some $\alpha(0 < \alpha \leq 1)$. Then f(z) belongs to the class $SS^*(\alpha)$ in U.

Proof. From the assumption in the theorem, we see that $f'(z) \neq 0$ in U. Let us define the function p(z) by p(z) = zf'(z)/f(z). Then p(z) satisfies

$$\frac{f(z)f''(z)}{f'(z)^2} = 1 + \frac{zp'(z)}{p(z)^2} - \frac{1}{p(z)}$$

and so

$$\frac{f(z)f''(z)}{f'(z)^2} - 1 = \frac{1}{p(z)} \left(-1 + \frac{zp'(z)}{p(z)} \right).$$

If there exists a point $z_0 \in U$ such that

$$|\arg(p(z))| < \frac{\pi}{2}\alpha$$
 for $|z| < |z_0|$

and

$$|\arg(p(z_0))| = \frac{\pi}{2}\alpha,$$

then Lemma gives us that

(i) for the case $arg(p(z_0)) = (\pi/2)\alpha$,

$$\arg\left(\frac{f(z_0)f''(z_0)}{f'(z_0)^2} - 1\right) = \arg\left\{\frac{1}{p(z_0)}\left(\frac{z_0p'(z_0)}{p(z_0)} - 1\right)\right\}$$

$$= -\frac{\pi}{2}\alpha + \arg\left(-1 + \frac{z_0p'(z_0)}{p(z_0)}\right)$$

$$= -\frac{\pi}{2}\alpha + \arg(-1 + ik\alpha)$$

$$\leq \pi - \frac{\pi}{2}\alpha - \operatorname{Tan}^{-1}\alpha.$$

This contradicts our condition in the theorem.

(ii) for the case $\arg(p(z_0)) = -(\pi/2)\alpha$, the application of the same method as in (i) shows that

$$\arg\left(\frac{f(z_0)f''(z_0)}{f'(z_0)^2}-1\right) \ge \pi + \frac{\pi}{2}\alpha + \operatorname{Tan}^{-1}\alpha.$$

This also contradicts the assumption of the theorem. Thus we complete the proof of our main theorem.

Putting $\alpha = 1$ in Theorem, we have the following corollary.

Corollary. If $f(z) \in A$ satisfies

$$\frac{\pi}{4} < \arg\left(\frac{f(z)f''(z)}{f'(z)^2} - 1\right) < \frac{7\pi}{4} \quad (z \in U),$$

then $f(z) \in S^*$.

References

- [1] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. 69(1993), 234 237.
- [2] N. Tuneski, On certain condotions for starlikeness, Internat. J. Math. Math. Sci. 23(2000), 521 527.

Mamoru Nunokawa
Department of Mathematics
University of Gunma
Aramaki, Maebashi, Gunma 371-8510
Japan
e-mail: nunokawa@edu.qunma-u.ac.jp

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan e-mail: owa@math.kindai.ac.jp