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Ergodic properties of Fleming-Viot processes with selection and
‘ ~ recombination
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1  Introduction

‘Let E be a locally compact separable metric space and P(E) be the space
of all probability measures on E. For y € P(E) let us denote (f, u) = [ fdpu.
Forany fl’ Ty fm S D(A) and F' € 02(Rm) let <p(,u) = F(<f17u'>a T (fmaﬂ'»
= F((f, ).

Con) = 5 3 (fo ) = U D5 ) s (5,1

3 l\3|b—‘

(1) + Z(<Afh > <Bfw“2))Fzz(<faﬂ'>)

=1

+ Z{((fz Do, 1) = (fi ) (o, 6) = (£, ).
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Here E is the space of genetic types and A is a mutation operator in
C(E)(= the space of bounded continuous functions on E) which is the gen-
erator for a Feller semigroup {T'(t)} on C(E)(= the space of continuous
functions vanishing at infinity). Here o = o(z,y) is a bounded symmetric
function on E x E which is selection parameters for types z,y € £ B is a
recombination operator defined by

Bf(z,y) = o [ (/@) ~ [@)R((z,9), d')

where o > 0 and R((2,y), dz') is a one step transition function on F? x B(E),
and we denote p* the n-fold product of . According to [3], this operator
defines a generator corresponding to a Markov process on P(F) in the sense
that the Cp(g)[0, 0o) martingale problem for £ is well posed. This process



is called the Fleming-Viot process. The aim of this paper is to consider
ergodicity for this process by using the duality in the form

u[(f, )] i

forany t > 0,n € N and f € C(E™) with sup-norm ||-||. Here fi(t) € C(E*)
and satisfy 3332, v*|| fi (t)|| < oo for some v > 1 and f,(0) = f and fx(0) =0
for k # n, and we consider a semigroup for this process.

2 Construction of a semigroup

We consider that E is a locally compact separable metric space, and treat
the case of the formula (1) and assume {T'(t)} is a Feller semigroup on C/(E)
k times
with the generator A. Denote the semigroup Ti(t) = T(t) ® --- ® T(¢) on
C(E*) and its generator A®).
We now consider duality under general condition for the diffusion. In this
section we consider the operator of the form

@ Lol = 5 3 (U~ (o ) P (£,)

N)I>—‘

+ D (AS, 1) + (B %)) o (£, 1))

g

Here B is an operator from C(E) to C(E®) with Bf = Y%° 1 Bif and
.C(E) — C(E") a bounded operator and Y7°; | Bi]lv'~! < oo for some

'y > 1 and (Bfi, u™®) = Y2,(Bxfi, p#¥). In the formula (1) we consider
Bf(z) = Bf(z1, %) + o(21, 22) f(21) — 0(2, 23) f(21) and in this case L is
well defined. Let us define the space S; = {f = (f1, fa,---) € =2, C(E*) :
171l = supgoy ¥¥Ilfull < oo} Denote wp(n) = 52, (fii, u¥) for f = f =
(fl’f2> o ) € 51 Let C = {Qﬂf(ﬂ,) = 21311(fk;ﬂk> tfr € C(Ek)7 ”f”’y < oo},
and D = {(pf(:u’) = E]?;1<fk,/,bk> €C: fk € D(A(k))} For f = (.fl)f27' ’ ) €
Siand p € P(E) define (f, p*°) = 22, (i, 1°) .

We will construct a semigroup {U(t)} corresponding to £ on Banach
space S, with the norm || - ||.
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Theorem 1. Assume E is a locally compact and assume above and £ of
(2) defined on D is well defined, closable, and dissipative, and conservative,
and generates a semigroup {7 (t)} corresponding to a Markov process (P, fis)
then there exists a semigroup U (t) on Sy and constants p and co , and it holds
that

@) T()ps() = B[S 1)) = (U@, 1)
for any t > 0 and f € S; and
U@ < (1 — o) e

Proof. For wp(u) = 32, (fr, #*) € D and @,(n) = 321(gx, p*) € C, the
equation Ly (1) = ¢y(p) follows from the formula

A

Lf=g

. ' k LI
LHr= D, @§f+1)fk+1 + (AW — <2>)fk +> Bl(k l+l)fk-—l+1
=1

1<i<j<k+1

for k> 1, and B® : G(E*) — C(E*-1) defined by
(k) -
By f(zy, -+ Thpi—1) = ZBlf(xl,"',xi_l,',xi,"',xk—-l)(xk,"',xk+l_1)
=1

for f € C(E*) , and for i < j
‘I)',(,_;c)fk(xb o )xk—l) — fk(xly oy X1, Tqy Lyt )xk——l)

for f, € C(E*).
Because ||B¥|| < k| By|, for any § > 0 let a positive constant be L =
L(8) = 22510044 uch that k < L+ 6(*;") and let A > 0. Then

(' & | BE g (5) /7 + kd()
A+ (3 ! z; A+ (M) = T (39

for any k where
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d(v) =>_ 1By,
=1
and put 6 > 0 so that p = (1 +6) /v + 8d(y) < 1.

For given h € S; we consider f(t) = (fi(t), f2(t),...) with fi(t) € C(E¥)
and f(0) = h such that -

@ 2RO = G0
— Z (I)(k+l)fk l(t)

1<i<j<k+1
+(A® — ( ))fk@) + ZB/‘ Y f i (t)
for k> 1 and t > 0. This is equivalent to

G) ) = e GDEIT(E —w)fi(w)
O] T el fa(s)

1<i<j<k+1
+iBz(k_l+1)fk—l+1(S)}dS
=1
for kK > 1 and ¢t > u, and we have that
1@ < [ fe(w)]
(M [T AETRS o il TIPS

Let m(t) = SUDPg>1,s<t ’)’ke /\S”f (I,
then ||fx(s)]| < v~*e*m(s) and F ; | BE |41 < kd(v), and we have

< e )]
o [ @ (C I ramsas

k1 kd
< mi)+ ((*3 )(1)7; ()

e £ ()]

m(t).




Let A > ¢o = L(y~' +d(v))/p , then m(t) < m(u) + pm(t). Therefore by
p < 1, we have ’
() < (1 - o) m(u).

Therefore

©® RGN < Q= p) e S%P”Vkllfk(o)ll for >0

By this inequality f(0) = 0 implies f(tf) = 0. So the equation (4) has a
unique solution for f(0) = h € S; and implies

d
790 (1) = Loge ().

Therefore f(t) satisfies
T()en(n) = (f(t), 5%).

So we have

ul(hs p1g%) i (fi(), °).

By the inequality (6) there exists a semigroup {U(t)} on S; corresponding
to £ such that
U@l <1 —p)~le.

Q.E.D.
Let us denote the semigroup {U(¢)} by {Us(t)} when B = 0. Then we have

Lemma 1. Assume the assumption of Theorem 1, then {Uy(t)} and {U(t)}
on S, satisfies

IU@E) = U@l < (1= po)~" (1 — p) 7' Bd(7)e™".

where p, po, B, and co are constants depends only on v, d(7).
Proof. For given h € S; we consider fO(t) = (f(t), f3(t),...) with f2(t) €
C(E*) and f(0) = h such that

M SRO = Gl
SIS el MORRVER (V0

1<i<i<k+1
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for k > 1 and t > 0. This is equivalent to
8 ) = e OIT( - ) f2) | |
4 o ; - .
# [eOITa—{ > aE s (9))ds

1<i<j<k+1

for £ > 1 and ¢ > u, and we have that

150~ £OI < 156 - 2]
[ O( eno) -  +

) |
+ 2 IBE N fieira (9) ] s
=1 :

Let [(t) = SUDgs1 o<t Vo€ || fi(8) = £2(s)], then || fi(s)— f2(s) ]| < y~*e*l(s)
and T, || B¥HY||44! < kd(y), and we have

RO -1 < [ O] Yo ¢ o

(") (/i) + kd(y)m(t))
(5) + A '

i am) k
— 2 _
Let A > ¢ , and put py = sup Hx B = sup; (O then I(t) <

pol(t) + Bd(y)m(t). Therefore by py < 1, we have
1(t) < (1= po)~"Bd(v)m(t)-

IA

m(u) +

Therefore
@) U@ = RN < (1= po)™ (1 — p) 7" Bd(7)e™ sup Yl £ O)

fort > 0.
By the inequality (9) semigroups {Uy(t)} and {U(t)} on S; satisfies -

1UE) = Uo@)ll < (1= po) ™' (1 — p)~"Bd(y)e™".
Q.E.D.



3 Ergodicity of semigroups
We define {T'(t)} is uniformly ergodic if there exist a stationary distribution
To such that || T'(t) — (-, m) 1| — 0(t — o0).

Theorem 2. Assume and that {T'(t)} is uniformly ergodic and that for some
positive constants M and Ao and a stationary distribution mo

IT()Sf = (f, o)1 < Me™™||£].

Let A\; = min(\, 1). Then there exists a stationary distribution II such that
for any € > 0 there exist constants My = Mi(€),6 = 6(c) > 0 satisfying that

1T @) s (1) — (@r(w), 1| < Mye= X" £,
for f €Sy if |o|| +a <.

We denote hy = (1,0,0,---) € S;

Theorem 3. Under the assumption of Theorem 2 it holds that {Uo(t)}
corresponding to Ly is ergodic in the sense that for a positive constant Mz > 0
and m € S} and ho € S1 such that

1Us(t) f = {f,m)holly < Mae | fl,-

where m = (m1:m2a T ')a (f’m> = Zk<fk’mk>,mk € P(Ek) :
Proof . Let N(t) be a death process with rate (g) from j to j — 1 and 7; be

the hitting time of j. Put an operator ®; = (%5 Yi<i fbff), then by (5)
2
(Uo(®) )5 = D EelTy(t = 75)@s1 - Te(me-1) fis 73 S £ < Ty,
k>j
Let Y, = q)j+1 .- 'Tk(Tk_1)fk onT; <t<Tjpt, then
1Ue(8)f = (f,mholly, < DIE[T(t — 11)Ye — (Vi mo); t > 7|
k
+ 20y=1)7'P(n 2 1) flly
< Ay =D)7HTE =) = (mo)Ll| + 2P(m 2 )| fll,

where m = (mi, ma, - --) and my is defined by (f,mu) = ( o (dp) for
f € C(EY, my = m, and mi = Ri(())*(Tic; ®5) ma—r (k > 2). Here
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Ry ()) is the resolvent of Ty (t). By [3] P(r1 > t) < 3e™*, so the Theorem
holds.

Q.E.D.

Lemma 2. Let L be a Banach space and h € L and m € L* with ||k = a
and ||m| = b. Assume B is a bounded operator on L with uniform norm
|Bll < 1/(2 + 4ab) and (h,m) = 1. Let P, = (-,m)h and U = Py + B, then
we have

(a) For(eT={(eC:|(—1|=3},¢—U is invertible in L. Put

1 _
Pi= o= $ (- D),

then dim P,L = dimPfL* =1, PU = UP,, and P} = P;. P\L is the
eigenspace of U corresponding to the eigenvalue , contained in D = {{ € C:
| —1| < 1/2}. It becomes that the eigenvalue in D is umque with multzplzczty
1. Similar results hold as Py and U*

(b) Assume U has an eigenvalue CO with ezgenvector wo and |¢o—1] < 1/2,
then we have that @o = c(¢o — B)~th and

<900> m) =cC
and

(10) Pr=((¢o~ B)*h,m)~'(-, (G0 — B")'m)(¢o — B)'h,

UPI - PlU - Pl;
(c) Under the assumption of (b), the next relation holds.
IU =GPl < 8]|B]
if | B|| < 1/(4 + 8ab).

Lemma 3. Under the assumption of theorem 1 for any € > 0 there exists
& = 6(€) > 0 such that if d(y) < & , then there exists hy € Sy and m; € S}
and My > 0 such that

U@ f = (fyma)hally < Mue2=| £,
and (ho,m1>(ﬁ1,u°°) =1.
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Proof. By Theorem 3 we have that for any 0 < ¢ < \; there exist hg;m, and

to such that )

[UG0)S = {f,mholly < e=O=%| f],

By Lemma 1 we have that there exists § > 0 such that for d(vy) < §

JU(0)f ~ Un(to) 1y < e =% .
According to Lemma 3 we have that there exist m; , hi, and (o such that
1Ut0) f = Golfymiyhully < emPam9e||f]L,.
So we have for any n > 0 |
U (nto) f = GG {f, ma)hally < e”Cemme| L,

By Theorem 1 there exists M’ > 0 such that |U(s)|| < M’ for 0 < s < t,.
We have that

U (nto + 8)f — G{U(s) fyma)huly < Mle==9% £,

and
U (nto + 8)f = GG {f, ma)U(s)hlly < M'e=®=9%| £,

for 0 < s <tp. Then |{]| <1 and if |{o| = 1, then
(U(s)f,mi)h = (f,m1)U(s)h1 = c(s){f, 1)

with some constant ¢(s). Because 7(¢t)1 = 1, by the above equations and (3)
we have

L= (T (nto + 8)1)(n) = (U(nto + s)ho, p>) = c(8) (ho, M) (ha, 1) lim, (5

Therefore {; = 1. Because U(0) = I, ¢(s) = ¢(0) = 1 holds. Therefore let
M, = M'e®1=9)%_then the inequality of the Theorem holds.

Q.E.D.

Proof of Theorem 2. Because 7 (t)1 = 1, by Lemma 3

1= (T(@)1) (k) = (U(t)ho, u) = (ho, ma) (b, p):
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Let my = (mgl),m(f),---) = mml and hy = (ho,ml)‘hl',. then m(zk) €
P(E*) and (hy, u>°) = 1. Because (1) = (f, u°°), Lemma 3 implies that
1T (t)pr(u) = (fyma)(he, ™) = KUQ@)S = (f,ma)ha, p~)|

< Mypy(y— 1) e R £,
so Theorem 2 holds.

Q.E.D.
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