Degree of Order regarding Multidimensional Fuzzy Sets

北九州大学経済学部 吉田祐治 (Yuji YOSHIDA) ゲント大学応用数学科 ケアー (E.E.Kerre)

1. Introduction and notations

Kurano et al. [4] studied a pseudo order regarding fuzzy sets on \mathbb{R}^n on the basis of a set-relation in \mathbb{R}^n studied by Kuroiwa et al. [2] and Kuroiwa [3] for multi-criteria crisp set-valued optimizations in mathematical programming. First, we introduce a fuzzy relation, which is fuzzy partial ordering, induced by closed convex cones. Next, a pseudo order regarding fuzzy sets on \mathbb{R}^n is given by inclusions defined from the fuzzy relation, and it is also a reasonable multi-dimensional extension of the fuzzy max order regarding fuzzy numbers. For incomparable fuzzy sets on \mathbb{R}^n , we present a degree of order, using a subsethood degree. This method is flexible and can be applied to various types of fuzzy decision-making and optimization problems in multi-criteria. For example, we can apply the method to problems where compornents on \mathbb{R}^n are related to each other in multi-criteria.

In the rest of this section, we give some notations and introduce some results regarding vector ordering on \mathbb{R}^n by convex cones. Let \mathbb{R} be the set of all real numbers and let \mathbb{R}^n be an n-dimensional Euclidean space, where n is a positive integer. We write fuzzy sets on \mathbb{R}^n and their membership functions by \tilde{A} and $\mu_{\tilde{A}}: \mathbb{R}^n \to [0,1]$ respectively. The α -cut $(\alpha \in [0,1])$ of the fuzzy set \tilde{A} on \mathbb{R}^n is defined as

$$ilde{A}_{lpha}:=\{x\in\mathbb{R}^n\mid \mu_{ ilde{A}}(x)\geq lpha\}\,\,(lpha>0)\quad ext{and}\quad ilde{A}_0:= ext{cl}\{x\in\mathbb{R}^n\mid \mu_{ ilde{A}}(x)>0\},$$

where cl denotes the closure of the set. A fuzzy set \tilde{A} is called convex if the α -cut \tilde{A}_{α} is a convex set for all $\alpha \in [0,1]$. Let $\mathcal{F}(\mathbb{R}^n)$ be the set of all convex fuzzy sets \tilde{A} whose membership functions $\mu_{\tilde{A}}: \mathbb{R}^n \to [0,1]$ are upper-semicontinuous and normal $(\sup_{x \in \mathbb{R}^n} \mu_{\tilde{A}}(x) = 1)$ and have a compact 0-cut. When one-dimensional case (n = 1), the fuzzy sets are called fuzzy numbers and $\mathcal{F}(\mathbb{R})$ denotes the set of all fuzzy numbers. In this paper, we deal with fuzzy sets on \mathbb{R}^n as a multi-dimensional extension of fuzzy numbers. Let $\mathcal{C}(\mathbb{R}^n)$ be the set of all non-empty compact convex subsets of \mathbb{R}^n .

The definitions of addition and scalar multiplication on $\mathcal{F}(\mathbb{R}^n)$ are as follows: For fuzzy sets $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$ and a scalar $\lambda \geq 0$, the sum $\tilde{A} + \tilde{B}$ and scalar multiplication $\lambda \tilde{A}$ are given by applying Zaheh's extension principle:

$$\mu_{\tilde{A}+\tilde{B}}(x) := \sup_{y,z \in \mathbb{R}^n; \ y+z=x} \min\{\mu_{\tilde{A}}(y), \mu_{\tilde{B}}(z)\}, \tag{1.1}$$

$$\mu_{\lambda\tilde{A}}(x) := \begin{cases} \mu_{\tilde{A}}(x/\lambda) & \text{if } \lambda > 0\\ 1_{\{\mathbf{0}\}}(x) & \text{if } \lambda = 0 \end{cases}$$
 (1.2)

for $x \in \mathbb{R}^n$, where $1_{\{\cdot\}}(\cdot)$ is an indicator and $\{0\}$ denotes the crisp set of zero in \mathbb{R}^n . By using set operations $A + B := \{x + y \mid x \in A, y \in B\}$ and $\lambda A := \{\lambda x \mid x \in A\}$ for

 $A, B \in \mathcal{C}(\mathbb{R}^n)$, the following holds immediately:

$$(\tilde{A} + \tilde{B})_{\alpha} := \tilde{A}_{\alpha} + \tilde{B}_{\alpha} \quad \text{and} \quad (\lambda \tilde{A})_{\alpha} = \lambda \tilde{A}_{\alpha} \quad (\alpha \in [0, 1]).$$
 (1.3)

Let K be a non-empty convex cone of \mathbb{R}^n , i.e. $x + y \in K$ and $\lambda x \in K$ hold for all $\lambda \geq 0$ and all $x, y \in K$. Using a convex cone K, we can define a pseudo order \leq_K on \mathbb{R}^n by

(K.1) $x \leq_K y$ means that $y - x \in K$.

Let $\mathbb{R}^n_+ = \{x = (x^1, x^2, \dots, x^n) \in \mathbb{R}^n \mid x^i \geq 0 (i = 1, 2, \dots, n)\}$ be the subset of entrywise nonnegative elements in \mathbb{R}^n . When $K = \mathbb{R}^n_+$, the order $x \leq_{\mathbb{R}^n_+} y$ means that $x^i \leq y^i$ for all $i = 1, 2, \dots, n$, where $x = (x^1, x^2, \dots, x^n)$ and $y = (y^1, y^2, \dots, y^n) \in \mathbb{R}^n$.

2. Fuzzy partial ordering by convex cones

In this section, we discuss a fuzzy relation induced by closed convex cones. Let R_{α} $(\alpha \in [0,1])$ be non-empty closed convex cones on \mathbb{R}^n such that $\bigcap_{\alpha' \in (0,\alpha)} R_{\alpha'} = R_{\alpha}$ for $\alpha \in (0,1]$. To avoid meaningless ordering, we assume R_{α} $(\alpha \in (0,1])$ are acute, i.e. there exists $a \in \mathbb{R}^n$ satisfying $a \cdot x > 0$ for all $x \in R_{\alpha}$ with $x \neq 0$, where \cdot means the inner product of vectors on \mathbb{R}^n . We also put the support set by $R_0 := \operatorname{cl}(\bigcup_{\alpha \in (0,1]} R_{\alpha})$. Define a fuzzy relation \tilde{R} on $\mathbb{R}^n \times \mathbb{R}^n$ by closed convex cones R_{α} as follows.

$$\mu_{\tilde{R}}(x,y) := \sup\{\alpha \in [0,1] \mid y - x \in R_{\alpha}\} \quad ((x,y) \in \mathbb{R}^n \times \mathbb{R}^n), \tag{2.1}$$

where $\sup \emptyset := 0$. Then the α -cut \tilde{R}_{α} is

$$\tilde{R}_{\alpha} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n \mid \mu_{\tilde{R}}(x, y) \ge \alpha\} = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n \mid y - x \in R_{\alpha}\}$$
 (2.2)

for $\alpha \in (0,1]$. The fuzzy relation \tilde{R} has the following properties.

Theorem 2.1. \tilde{R} is a fuzzy partial ordering ([1]), i.e., it satisfies the following (i) – (iii):

- (i) $\mu_{\tilde{R}}(x,x) = 1$ for all $x \in \mathbb{R}^n$.
- (ii) $\mu_{\tilde{R}}(x,z) \ge \min\{\mu_{\tilde{R}}(x,y), \mu_{\tilde{R}}(y,z)\}\$ for all $x,y,z \in \mathbb{R}^n$.
- (iii) If $\mu_{\tilde{R}}(x,y) > 0$ and $\mu_{\tilde{R}}(y,x) > 0$, then x = y.

In Theorem 2.1, the property (i), (ii) and (iii) means reflexivity, transitivity and antisymmetry respectively.

rational by the contraction of t

3. Ordering of fuzzy quantities by the fuzzy relation \tilde{R}

In this section, we introduce an order for fuzzy sets on \mathbb{R}^n , using the fuzzy relation \tilde{R} from Section 2. For fuzzy sets $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$, using the sup-min composition operation with \tilde{R} ([1]), we define fuzzy sets $\tilde{A} \circ \tilde{R}, \tilde{R} \circ \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$ by

$$\mu_{\tilde{R} \circ \tilde{B}}(x) := \sup_{y \in \mathbb{R}^n} \min\{\mu_{\tilde{R}}(x, y), \mu_{\tilde{B}}(y)\} \quad (x \in \mathbb{R}^n), \tag{3.1}$$

$$\mu_{\tilde{A} \circ \tilde{R}}(y) := \sup_{x \in \mathbb{R}^n} \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{R}}(x, y)\} \quad (y \in \mathbb{R}^n). \tag{3.2}$$

Definition 1. Consider fuzzy sets $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$. The order $\tilde{A} \leq_{\tilde{R}} \tilde{B}$ means that

$$\tilde{A} \subset \tilde{R} \circ \tilde{B}$$
 and $\tilde{B} \subseteq \tilde{A} \circ \tilde{R}$.

Further, the equivalence $\tilde{A} \sim_{\tilde{R}} \tilde{B}$ means that $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ and $\tilde{B} \preceq_{\tilde{R}} \tilde{A}$. We also write $\tilde{A} \prec_{\tilde{R}} \tilde{B}$ when $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ and $\tilde{A} \not \sim_{\tilde{R}} \tilde{B}$.

Lemma 3.1. The order $\leq_{\tilde{R}}$ is a pseudo order: For fuzzy sets $\tilde{A}, \tilde{B}, \tilde{C} \in \mathcal{F}(\mathbb{R}^n)$, the following (i) and (ii) hold.

- (i) $\tilde{A} \preceq_{\tilde{R}} \tilde{A}$.
- (ii) If $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ and $\tilde{B} \preceq_{\tilde{R}} \tilde{C}$, then $\tilde{A} \preceq_{\tilde{R}} \tilde{C}$.

In Lemma 3.1, the property (i) and (ii) means reflexivity and transitivity respectively. In the one-dimensional case (n=1), the order $\leq_{\tilde{R}}$ coincides with the fuzzy max order, and then $\sim_{\tilde{R}}$ is replaced with =. The following example gives the order $\leq_{\tilde{R}}$ induced from natural fuzzy relations on $\mathbb{R}^2 \times \mathbb{R}^2$ and shows that the order $\leq_{\tilde{R}}$ is not a total order.

Example 3.1 (The order $\leq_{\tilde{R}}$ corresponding to natural fuzzy relations on $\mathbb{R}^2 \times \mathbb{R}^2$). We consider a case when n=2 and we put an acute closed convex cone $R_{\alpha}=\mathbb{R}^2_+=\{(x^1,x^2)\in\mathbb{R}^2\mid x^i\geq 0(i=1,2)\}$ for all $\alpha\in[0,1]$. Then the corresponding fuzzy relation is

$$\mu_{\tilde{R}}((x^1, x^2), (y^1, y^2)) = \begin{cases} 1 & \text{if } y^1 \ge x^1 \text{ and } y^2 \ge x^2 \\ 0 & \text{otherwise.} \end{cases}$$
 (3.3)

For $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$, the definition of the order $\tilde{A} \leq_{\tilde{R}} \tilde{B}$ is reduced to the following conditions (3.4) and (3.5):

$$\mu_{\tilde{A}}(x^1, x^2) \le \sup_{(y^1, y^2): y^1 \ge x^1, y^2 \ge x^2} \mu_{\tilde{B}}(y^1, y^2) \quad \text{for all } (x^1, x^2) \in \mathbb{R}^2 \times \mathbb{R}^2;$$
 (3.4)

$$\mu_{\tilde{B}}(y^1, y^2) \le \sup_{(x^1, x^2): y^1 \ge x^1, y^2 \ge x^2} \mu_{\tilde{A}}(x^1, x^2) \quad \text{for all } (y^1, y^2) \in \mathbb{R}^2 \times \mathbb{R}^2.$$
 (3.5)

Take pyramid-type fuzzy sets \tilde{A} and \tilde{B} defined by

$$\mu_{\tilde{A}}(x^1, x^2) = \max\{\min\{1 - |x^1 + 1|, 1 - |x^2 - 1|\}, 0\},\tag{3.6}$$

$$\mu_{\tilde{B}}(x^1, x^2) = \max\{\min\{1 - |x^1 - 1|, 1 - |x^2 + 1|\}, 0\}$$
(3.7)

for $(x^1, x^2) \in \mathbb{R}^2$. Then we can easily check that neither $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ nor $\tilde{B} \preceq_{\tilde{R}} \tilde{A}$ hold.

4. Degree of the fuzzy order $\leq_{\tilde{R}}$

In this section, by using a subsethood degree, we present a method to evaluate the degree of satisfaction of the fuzzy order $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ for all fuzzy sets $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$. The fuzzy order $\preceq_{\tilde{R}}$ is not a total order(Example 3.1), however we can apply this method to fuzzy sets which are incomparable by the order $\preceq_{\tilde{R}}$. For fuzzy sets $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$, the subsethood degree is defined by([5],[1])

$$Sub(\tilde{A} \subseteq \tilde{B}) := \frac{|\tilde{A} \cap \tilde{B}|}{|\tilde{A}|}$$
(4.1)

if $|\tilde{A}| > 0$, where

$$|\tilde{A}| := \int_{\mathbb{R}^n} \mu_{\tilde{A}}(x) \, dx \quad (\tilde{A} \in \mathcal{F}(\mathbb{R}^n)).$$
 (4.2)

For fuzzy sets \tilde{A} , $\tilde{B} \in \mathcal{F}(\mathbb{R}^n)$, in spirit of Definition 1 we define the degree of order $\tilde{A} \leq_{\tilde{R}} \tilde{B}$ by

$$D(\tilde{A} \leq_{\tilde{R}} \tilde{B}) := \min\{ \operatorname{Sub}(\tilde{A} \subseteq \tilde{R} \circ \tilde{B}), \operatorname{Sub}(\tilde{B} \subseteq \tilde{A} \circ \tilde{R}) \}. \tag{4.3}$$

Then, the degree of order $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ is written as

$$D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) = \min \left\{ \frac{|\tilde{A} \cap (\tilde{R} \circ \tilde{B})|}{|\tilde{A}|}, \frac{|\tilde{B} \cap (\tilde{A} \circ \tilde{R})|}{|\tilde{B}|} \right\}$$

$$= \min \left\{ \frac{\int_{\mathbb{R}^{n}} \min \{\mu_{\tilde{A}}(x), \mu_{\tilde{R} \circ \tilde{B}}(x)\} dx}{\int_{\mathbb{R}^{n}} \mu_{\tilde{A}}(x) dx}, \frac{\int_{\mathbb{R}^{n}} \min \{\mu_{\tilde{B}}(x), \mu_{\tilde{A} \circ \tilde{R}}(x)\} dx}{\int_{\mathbb{R}^{n}} \mu_{\tilde{B}}(x) dx} \right\}. \tag{4.4}$$

The following lemma implies a correspondence between the order $\preceq_{\tilde{R}}$ in Definition 1 and the degree of order $\preceq_{\tilde{R}}$ in (4.4).

Theorem 4.1. Let $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$. The order $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ holds if and only if $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) = 1$.

The degree of order $\leq_{\tilde{R}}$ has the following properties.

Lemma 4.1. Let $\tilde{A}, \tilde{B}, \tilde{C} \in \mathcal{F}(\mathbb{R}^n)$ and $\lambda \geq 0$. Then, the following (i) – (ii) holds:

- (i) $D(\tilde{A} \preceq_{\tilde{R}} \tilde{A}) = 1$.
- (ii) If $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) = 1$ and $D(\tilde{B} \preceq_{\tilde{R}} \tilde{C}) = 1$, then $D(\tilde{A} \preceq_{\tilde{R}} \tilde{C}) = 1$.

The following results are related to Theorem 3.1.

Theorem 4.2. Let $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$, $z \in \mathbb{R}^n$ and $\lambda > 0$. Then

$$D(\tilde{A} \leq_{\tilde{R}} \tilde{B}) = D(\tilde{A} + \{z\} \leq_{\tilde{R}} \tilde{B} + \{z\}) = D(\lambda \tilde{A} \leq_{\tilde{R}} \lambda \tilde{B}). \tag{4.5}$$

The following theorem is useful to calculate fuzzy sets $\tilde{R} \circ \tilde{B}$ and $\tilde{A} \circ \tilde{R}$ in the order $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ and the degree of order $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B})$ (Definition 1 and (4.4)).

Theorem 4.3. Let $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$ and $\alpha \in (0,1]$. Then, the following (i) – (ii) holds:

(i)
$$(\tilde{R} \circ \tilde{B})_{\alpha} = \tilde{B}_{\alpha} - R_{\alpha};$$

(ii)
$$(\tilde{A} \circ \tilde{R})_{\alpha} = \tilde{A}_{\alpha} + R_{\alpha}$$
,

where $-R_{\alpha} = \{-x \mid x \in R_{\alpha}\}.$

We consider an example in the two-dimensional case to illustrate the meaning of the degree of order $\leq_{\tilde{R}}$.

Example 4.1 (Degree of order $\preceq_{\tilde{R}}$ on $\mathcal{F}(\mathbb{R}^2)$). We consider the case when n=2 and the acute closed convex cone $R_{\alpha}=\mathbb{R}^2_+$ for all $\alpha\in[0,1]$ in Example 3.1. First, for fuzzy sets \tilde{A} and \tilde{B} given by (3.6) and (3.7), we have $\tilde{A}_{\alpha}=[-2+\alpha,-\alpha]\times[\alpha,2-\alpha]$ and $\tilde{B}_{\alpha}=[\alpha,2-\alpha]\times[-2+\alpha,-\alpha]$. From Theorem 4.3, $(\tilde{R}\circ\tilde{B})_{\alpha}=\tilde{B}_{\alpha}-R_{\alpha}=(-\infty,2-\alpha]\times(-\infty,-\alpha]$ and $(\tilde{A}\circ\tilde{R})_{\alpha}=\tilde{A}_{\alpha}+R_{\alpha}=[-2+\alpha,\infty)\times[\alpha,\infty)$. Clearly, $\tilde{A}_{\alpha}\cap(\tilde{R}\circ\tilde{B})_{\alpha}=\tilde{B}_{\alpha}\cap(\tilde{A}\circ\tilde{R})_{\alpha}=\emptyset$ for all $\alpha\in(0,1]$, and so $D(\tilde{A}\preceq_{\tilde{R}}\tilde{B})=0$. Similarly we can check $D(\tilde{B}\preceq_{\tilde{R}}\tilde{A})=0$. Next, we take polyhedral cone-type fuzzy sets \tilde{A} and \tilde{B} by

$$\mu_{\tilde{A}}(x^1, x^2) = \max\{\min\{1 - |x^1 + 1|, 1 - |x^2 - 1|\}, 0\},\tag{4.6}$$

$$\mu_{\tilde{B}}(x^1, x^2) = \max\{\min\{-\sqrt{3}x^2/2, (3x^1 + \sqrt{3}x^2 + 6)/4, (-3x^1 + \sqrt{3}x^2 + 6)/4\}, 0\}$$
 (4.7)

for $(x^1, x^2) \in \mathbb{R}^2$. Then similarly we can easily check $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) = 0$ and $D(\tilde{B} \preceq_{\tilde{R}} \tilde{A}) = \min\{\operatorname{Sub}(\tilde{B} \subseteq \tilde{R} \circ \tilde{A}), \operatorname{Sub}(\tilde{A} \subseteq \tilde{B} \circ \tilde{R})\} = \min\{7/9, 1/3\} = 1/3$.

5. Approximation for numerical calculation

Let $\tilde{A}, \tilde{B} \in \mathcal{F}(\mathbb{R}^n)$. In this section, using discrete cases, we discuss a method to approximate the degree of fuzzy order $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B})$ numerically. For simplicity, we deal with the case when n=2 and fuzzy sets \tilde{A}, \tilde{B} such that membership functions $\mu_{\tilde{A}}, \mu_{\tilde{B}}, \mu_{\tilde{A} \cap (\tilde{R} \circ \tilde{B})}$ and $\mu_{\tilde{B} \cap (\tilde{A} \circ \tilde{R})}$ are continuous. In the discrete case, the subsethood degree ([1, p.28]) is defined by (4.1) with scalar cardinality

$$\|\hat{I}\|_{L^{\infty}} = \|\hat{I}\|_{L^{\infty}} \|\hat{A}\|_{L^{\infty}} := \sum_{x} \mu_{\tilde{A}}(x), \quad \text{for } x \in \mathbb{R}_{+}$$

where the sum is taken over some finite set. Then, the degree of order $\tilde{A} \preceq_{\tilde{R}} \tilde{B}$ in the discrete case is given by

$$\min \left\{ \frac{\sum_{x} \mu_{\tilde{A} \cap (\tilde{R} \circ \tilde{B})}(x)}{\sum_{x} \mu_{\tilde{A}}(x)}, \frac{\sum_{x} \mu_{\tilde{B} \cap (\tilde{A} \circ \tilde{R})}(x)}{\sum_{x} \mu_{\tilde{B}}(x)} \right\}. \tag{5.2}$$

We approximate (4.4), using (5.2) which are easy to calculate numerically.

Let a region $C:=[-c,c]^2$ such that $\tilde{A}_0\cup \tilde{B}_0\subseteq C=[-c,c]^2$ with c>0. For $m=1,2,\cdots$, put a mesh $C^{(m)}$ of C by $C^{(m)}:=\{(x^1,x^2)\mid x^1=ic/m,x^2=jc/m,i,j=-m,-(m-1),\cdots,-1,0,1,\cdots,m-1,m\}$. Let $I_{\tilde{A}}:=\int_{\mathbb{R}^2}\mu_{\tilde{A}}(x^1,x^2)\,dx^1dx^2$ and define

$$I_{\tilde{A}}^{(m)} := \sum_{(x^1, x^2) \in C^{(m)}} \mu_{\tilde{A}}(x^1, x^2) \left(\frac{c}{m}\right)^2 = \sum_{i=-m}^m \sum_{j=-m}^m \mu_{\tilde{A}}(x_i^{1, (m)}, x_j^{2, (m)}) \left(\frac{c}{m}\right)^2$$
(5.3)

for $m=1,2,\cdots$, where $(x_i^{1,(m)},x_j^{2,(m)})=(ic/m,jc/m)\in C^{(m)}$. Then, the integrand $I_{\bar{A}}:=\int_{\mathbb{R}^2}\mu_{\bar{A}}(x^1,x^2)\,dx^1dx^2$ is approximated:

$$I_{ ilde{A}}^{(m)}
ightarrow I_{ ilde{A}} = \int_C \mu_{ ilde{A}}(x^1,x^2) \, dx^1 dx^2 = \int_{\mathbb{R}^2} \mu_{ ilde{A}}(x^1,x^2) \, dx^1 dx^2$$

as $m \to \infty$. Here, we put an error $\varepsilon_{\tilde{A}}^{(m)} := |I_{\tilde{A}} - I_{\tilde{A}}^{(m)}|$ for $m = 1, 2, \cdots$. For fuzzy sets \tilde{B} , $\tilde{A} \cap (\tilde{R} \circ \tilde{B})$ and $\tilde{B} \cap (\tilde{A} \circ \tilde{R})$, we also define integrands, discrete approximations and errors similarly. Then we obtain the following estimation of errors. The degree of order $D(\tilde{A} \preceq_{\tilde{R}}^{(m)} \tilde{B})$ in the discrete case on $C^{(m)}$ is given by

$$D(\tilde{A} \preceq_{\tilde{R}}^{(m)} \tilde{B}) := \min \left\{ \frac{\sum_{x \in C^{(m)}} \mu_{\tilde{A} \cap (\tilde{R} \circ \tilde{B})}(x)}{\sum_{x \in C^{(m)}} \mu_{\tilde{A}}(x)}, \frac{\sum_{x \in C^{(m)}} \mu_{\tilde{B} \cap (\tilde{A} \circ \tilde{R})}(x)}{\sum_{x \in C^{(m)}} \mu_{\tilde{B}}(x)} \right\}$$
(5.4)

for $m=1,2,\cdots$.

Theorem 5.1. For $m = 1, 2, \dots$, it holds that

$$|D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) - D(\tilde{A} \preceq_{\tilde{R}}^{(m)} \tilde{B})| \leq \max \left\{ \frac{\varepsilon_{\tilde{A}}^{(m)} + \varepsilon_{\tilde{A} \cap (\tilde{R} \circ \tilde{B})}^{(m)}}{I_{\tilde{A}} - \varepsilon_{\tilde{A}}^{(m)}}, \frac{\varepsilon_{\tilde{B}}^{(m)} + \varepsilon_{\tilde{B} \cap (\tilde{A} \circ \tilde{R})}^{(m)}}{I_{\tilde{B}} - \varepsilon_{\tilde{B}}^{(m)}} \right\}$$
(5.5)

if
$$0 < \varepsilon_{\tilde{A}}^{(m)} < I_{\tilde{A}}$$
 and $0 < \varepsilon_{\tilde{B}}^{(m)} < I_{\tilde{B}}$.

Theorem 5.1 implies the convergence $D(\tilde{A} \preceq_{\tilde{R}}^{(m)} \tilde{B}) \to D(\tilde{A} \preceq_{\tilde{R}} \tilde{B})$ as $m \to \infty$ and also gives an estimation of errors. Finally, we give an example to approximate the degree of order on $\mathcal{F}(\mathbb{R}^2)$ by Theorem 5.1.

Example 5.1 (Approximation of the degree of order $\leq_{\tilde{R}}$ on $\mathcal{F}(\mathbb{R}^2)$). We consider the case when n=2 and the acute closed convex cone $R_{\alpha}=\mathbb{R}^2_+$ for all $\alpha\in[0,1]$. Take a helmet-type fuzzy set \tilde{A} and a polyhedron-type fuzzy set \tilde{B} by

$$\mu_{\tilde{A}}(x^1, x^2) = \max\{1 - 0.25(x^1 + 1)^2 - 0.25(x^2 - 1)^2, 0\},\tag{5.6}$$

$$\mu_{\tilde{B}}(x^1,x^2) = \max\{\min\{-\sqrt{3}x^2,(3x^1+\sqrt{3}x^2+6)/2,(-3x^1+\sqrt{3}x^2+6)/2,1\},0\} \quad (5.7)$$

for $(x^1, x^2) \in \mathbb{R}^2$. Then, we can approximate $D(\tilde{A} \preceq_{\tilde{R}} \tilde{B}) \approx \min\{0.0903, 0.2331\} = 0.0903$ and $D(\tilde{B} \preceq_{\tilde{R}} \tilde{A}) \approx \min\{0.5890, 0.5714\} = 0.5714$.

Table 5.1. Approximation of degree of order $\leq_{\tilde{R}}$ in Example 5.1 (n=2).

m	10	20	30	40	50	60	70	80
$D(\tilde{A} \preceq_{\tilde{R}}^{(m)} \tilde{B})$								
$D(\tilde{B} \preceq_{\tilde{R}}^{(m)} \tilde{A})$.56905	.57100	.57066	.57139	.57134	.57125	.57136	.57136

References

- [1] G.J.Klir and B.Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Prentice-Hall, London, 1995).
- [2] D.Kuroiwa, T.Tanaka and T.X.D.Ha, On cone convexity of set-valued maps, Non-linear Analysis, Theory and Applications 30 (1997) 1487-1496.
- [3] D.Kuroiwa, The natural criteria in set-valued optimization, RIMS Kokyuroku 1031 (1998) 85-90.
- [4] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, Ordering of convex fuzzy sets A brief survey and new results, J. Oper. Res. Soc. Japan. 34 (2000) 137-148.
- [5] B.Kosko, Fuzziness versus probability, Int. J. General Systems. 17 (1990) 211-240.
- [6] X. Wang and E.E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, to appear.
- [7] X. Wang and E.E. Kerre, Reasonable properties for the ordering of fuzzy quantities (II), Fuzzy Sets and Systems, to appear.