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1. INTRODUCTION AND MAIN RESULTS

In this paper we consider positive solutions of the following nonlinear elliptic equation

with a harmonic potential term |z{?u
—Au+ A+ |z)u—uflu=0, zeR*, (1.1)
where A € R and p > 1. This problem arises in the study of standing wave solutions

P(t, 7) = exp (iAt) u(z)

for the nonlinear Schrédinger equation with a harmonic potential

i = g+ ey~ WP, () € R (1.2

which is a model equation to describe the Bose-Einstein condensate with attractive 'in’terpar-
ticle interactions under a magnetic trap (see, e.g., [16]). We see that 9 (¢, x)b = exp (iMt) u(z)
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is a solution of (1.2) if u(x) satisfies (1.1). Since (1.2) has two conserved quantities, the

energy and the particle number

1 2 1 99 1 1 / 2
= = - - — - N(@) = dz,
B) = [ (G998 + 5Pl - v ) do, Nw) = [ e
it is natural to study the solutions of (l.i) and (1.2) in the energy space

= {u € L*(R™) : / ([ul? + |Vuf® + |zul?) dz < oo}.
R»

Since the embédding Y — LY(R"™) is compact for 2 < g < 2n/(n — 2)*, by the standard

variational method, we can prove that there exists at least one solution of

—Au+ A+ |zP)u—|[uflu=0, zeR"
(1.3)
vu€Y, u(r)>0 forall zeR"

ifn>1,A>-nand 1< p<(n+2)/(n—2)* (see [5] for details). Here, we note that the
condition A > —n appears naturally to show the existence of solutions for (1.3); because
the first eigenvalue of —A + |z|? on ¥ is equal to n and the cbrresponding eigénflinctions
are C'exp (—|z[*/2). Recently, the stability of standing waves for (1.2) has been studied by
[6, 21]. For studying the stability of standing waves, it is important and fundamental to

investigate the structure of solutions to (1.3) (see, e.g., [2, 3, 6, 13, 14, 17]).

In [8], we have proved the uniqueness of solution for (1.3) when n > 3 as follows.

Theorem 1.1. (See [8].) Assumen >3, A > —n and1 < p< (n+2)/(n—2). Then (1.3)

has a unique solution.

In this paper, we will show the uniqueness of solution for (1.3) in case n = 2. For related

uniqueness results, we refer the reader to [9, 10, 18] and the references cited therein.

By a bootstrap argument using the fact that

(=A+ |22 + 1) LAR™) = {v € W2I(R™) : |zf? € LIR™)}
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ifn>1and 1<gq< oo (see, e.g., [12, Theorem 2.5]), it is shown in a similar way as in [2,
Theorem 8.1.1] that all solutions of (1.3) belong to C*(R") and satisfy lim,_,o u(z) = 0
(see [5] for details). Moreover, by [11, Theorem 2], we see that all solutions of (1.3) are
radially symmetric about the origin. Therefore, the problem for solutions of (1.3) is reduced
to that for radial solutions of (1.3). Since we are interested in radial solutions (u = u(r)

with 7 = |z|) of (1.3), we study the initial value problem

-1
u'+ Ty — A+r)u+ [ lu=0, r>0,

(1.4)
u(0)=a>0, u'(0)=0,

where the prime denotes the differentiation with respect to r. In Section 2, it will be shown

that (1.4) has a unique global solution u(r) € C?([0,00)), which is denoted by u(r; a). We

classify u(r; ) as follows:

(i) u(r;a) is a crossing solution if u(r;a) has a zero in (0,00), i.e., there exists some
z € (0,00) such that u(z;) = 0.

(ii) u(r; ) is an entirely positive solution if u(r;c) > 0 for all r € [0, 00).
Moreover, we deﬁﬁe
Yrad i= {u € C([0,00)) : /:0 (Jul® + [’ + |rul?) rldr < oo}.
Then our main resul}t is 1?he following.

Theorem 1.2. If n =2, A > —n and 1 < p < oo, then there ezists a unique positive

number g such that the structure of positive solutions to (1.4) is as follows.

(a) For every a € (a, 00), u(r;a) is a crossing solution.

(b) If a = o, then u(r; @) is an entirely positive solution with u(r; ) € L.eq and satisfies

lim (/2 exp (r2/2) u(r; @) € (0, 00). (1.5)

r—00

(c) For every a € (0, ), u(r; ) is an entirely positive solution with u(r; ) ¢ Srea.
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Since, as stated above, all solutions of (1.3) belong to C?(IR™) and are radially symmetric

about the origin, as a corollary of Theorem 1.2, we have
Theorem 1.3. Ifn =2, A > —n and 1 < p < 0o, then (1.3) has a unique solution.

Remark 1.1. The uniqueness question for solutions of (1.3) seems to be open for n = 1.

In order to prove Theorem 1.2, we apply the classification theorem by Yanagida and

Yotsutani [19, 20]. Let ¢(r) be a solution of

-1
" + (nT+2r)<p’+(n—)\)(p=0, r >0,

(1.6)
0(0)=1, £'(0)=0.
For a solution u(r) of (1.4), if we put
u(r) = exp (r2/2) p(r)o(r), (17)
then we see that v(r) satisfies
(9(r)v) + g(r)K(r)[v[/~'lv =0, r>0,
(1.8)
v(0)=a>0, v'(0)=0,
where |
o) =" exp (”?) o(r)?, K (r) = exp (”;—1) (). (L9)

We should note that ¢(r) > 0 on [0,00) if A > —n by (i) of Proposition 2.2 in Section 2.
To see whether u(r) has a zero or not, we have only to check this property for v(r). For
this purpose, we employ the classification theorem by Yanagida and Yotsutani [20], which

is stated as follows. Let g(r) and K(r) satisfy

(

g(r) € C*([0,00));
g9(r) >0 on (0,00);
1/g(r) ¢ L'(0,1);
1/g(r) € L'(1,00),
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and
K(r) € C(0,00);
) K(r)>0 and K(r)#0 on (0,00); (K)
h(r)K(r) € L(0,1);
| 9(r) ()0 K () € 11(1,00),
where

) = g0) [ os) s
Moreover, define

2

G(r) = g

9(r)R(r) K (r) — / " g(s)K (s)ds, (L.10)

Hr) == —p—j—_—Ih(r)z (g—g;—)pl((r)— [oh(s) (%)Px(s)ds, 1)

and
rg :=inf{r € (0,00) : G(r) <0}, rg:=sup{r € (0,00): H(r) <0}.

Theorem A (Yanagida and Yotsutani [19, 20]). Assume that g(r) and K(r) satisfy the

conditions (g) and (K). Let v(r; ) be a solution of

{ (g(r)v') + g()K(r)@H)? =0, r>0,

(1.12)
v(0)=a>0, 9'(0)=0,
where vt := max{v, 0}, and suppose that G(r) # 0 on (0, 00).
(i) If
0<rg <rg<oo, (1.13)

then there exists a unique positive number oy such that the structure of solutions to
(1.12) is as follows.

(a) For every a € (ap, ), v(r;a) has a zero in (0,00).
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(b) If @ = ay, then v(r; ) > 0 on [0,00) and

r—00

0 < lim ([m g(s)_lds) B v(r; @) < oo. (1.14)

(c) For every a € (0, ), v(r;a) > 0 on [0,00) and

lim ( / ” g(s)“lds) B v(r; @) = oco. (1.15)

r—»00

(i) If rg < oo and rg = 0 (i.e., H(r) > 0 on [0,00)), then v(r; ) is positive on [0,00)
and satisfies (1.15) for every a > 0. |

(iii) Ifrg = oo (i.e., G(r) > 0 0n [0,00)), then v(r; @) has a zero in (0, 0c) for every o > 0.

Remark 1.2. Note that if v(r; @) is positive on [0, 00), then v(r; @) satisfies either (1.14)

or (1.15), because ( [ g(s) " ds) " u(r; @) is non-decreasing on (0, 00).

In Section 3, noting that g(r) and K (r) given by (1.9) satisfy the assumptions (9) and

(K), we will prove the following proposition.

Proposition 1.1. Ifn =2, A > —n and 1 < p < 0o, then condition (1.13) holds for (1.8)
with (1.9).

By the proposition above, we see that u(r; @) is an entirely positive solution for & € (0, a]
and a crossing solution for a € (ap, 00). Moreover, for the asymptotic behaviour of entirely

positive solutions, we will prove the following proposition in Section 5.

Proposition 1.2. Let u(r;a) and v(r;a) be entirely positive solutions of (1.4) and (1.8)

with (1.9), respectively. Then, the following three conditions are equivalent :

(i) u(r;) € Tyaq, (i) wu(r;a) satisfies (1.5), (i) v(r;a) satisfies (1.14).

Theorem 1.2 follows from Theorem A and Propositions 1.1 and 1.2.
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2. PRELIMINARIES

In this section, we prepare some results which have been shown in [8]. First, we give the

following proposition.

Proposition 2.1. The initial value problem (1.4) has a unique global solution u(r;c) in

C?%([0,00)) for every a > 0.

Next, we study the properties of solutions to the initial value problem (1.6). It is shown
that there exists a unique solution ¢(r) € C?([0,00)) of (1.6) by a standard way. Moreover,

we obtain. the following proposition, which plays an important role in what follows.

Proposition 2.2. Assume A > —n and let o(r) € C*([0,00)) be the unique solution of
(1.6). Then we have

(i) o(r) > 0 on [0,00). Moreover, ¢'(r) < 0 on [0,00) if —n < A < n and ¢'(r) > 0 on
[0,00) if A > n. Especially, (r) = 1 on [0,00) for A =n.

!
r:ﬁ(g) i is finite, and r™p(r) is non-decreasing on [0, 00).

(i) m = sup
r>0

(iii) Tg;g) _A = “+o (:—2) as T — oo.

(iv) The limit L = lim r"2/2¢(r) ezists in (0, 00).
T—»00

(v) There ezist positive constants C and R such that

rexp (r*) o (r)? / T st exp (~7) w(S)‘%ds - (l - é?"”)

<cr

2 4
holds for all ™ > R.

(vi) r(f;g) = A; "2 10 (r?) as T — 0.

3. PROOF OF PROPOSITION 1.1

In this section, we give the proof of Proposition 1.1 by applying Theorem A. In order to

apply Theorem A, we first check the conditions imposed on the coefficients of (1.12).
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Lemma 3.1. Ifn =2 and A > —n, then g(r) and K (r) given by (1.9) satisfy the assump-

tions (g) and (K).

Therefore, g(r) and K(r) given by (1.9) are admissible. Inserting their definition (1.9)

into (1.10) and (1.11), we obtain

G(r) 2 r**~2 exp (p+ 37"2) @(r)P*3 / s' " exp (—s*) p(s) 2ds

p+2

H(r) = p——i 1r2"_2 exp (p_—; 31'2) o(r)P+? (/00 s " exp (-—32) o(s) “2ds)
o0 00 +1
- / s" lexp (p—;— 132> o(s)*™ (/ t' " exp (—t?) go(t)‘%it)p ds.

In order to show (1.13), we investigate the profiles of G(r) and H(r). First, we study the

increase and decrease. Differentiating (1.10) and (1.11), we obtain

6= /rwg(s)-lds)—"_lﬂ'(w: Fo0Ke) (30 -252), @2

p+1

where

O(r) := (2g’(r) + ___g(gl({r')(r)) /roo g(s)'ds

=r"2exp (r?) p(r)? {(p+ 3) (r2 + r—‘d@) + 2(n — 1)} (3.3)

o(r)
X / s' " exp (—5) p(s) 2ds.

In view of (3.2), G(r) and H(r) have the same extremal points, namely those r > 0 which
satisfy ®(r) = (p+ 3)/2. So, to know the sign of G'(r) and H'(r), we need to study the
relation between @(r) and (p+ 3)/2. We first study the behaviour of ®(r) near r = 0 and

T = 0o by using Proposition 2.2.

Lemma 3.2. Ifn =2 and A > —n, then lim, ,o ®(r) = +oo.
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Lemma 3.3. If A > —n, then

p+3 n(p—1)+4 _
@(’l‘): 5 _ ( 4) ,,_2

+0 (r_4) as T — oo.

Noting that ®(r) is continuous in [0, 00), we see that there exists at least one crossing

point of y = ®(r) and y = (p+ 3)/2 in (r, y)-plane by Lemmas 3.2 and 3.3. The following

lemma will be proved in Section 4.

Lemma 3.4. Ifn =2, A > —n and 1 < p < oo, then there ezists a unique number
e € (0,00) satisfying ®(r.) = (p+ 3)/2 such that

3
o(r) > 2+

on [0,r.);
(3.4)

3
<I>(r)<£—;—_—— on (7, 00).

Therefore, from (3.2) and Lemma 3.4, we have

Lemma 3.5. If n = 2, A > —n and 1 < p < oo, then there ezists a unique number

T+ € (0,00) such that G(r) and H(r) are increasing on [0,7.) and decreasing on (r., 00).

Moreover, in order to locate rg and g, we need to investigate the behaviour of G(r)
and H(r) near r = 0 and r = oo by using Proposition 2.2.
Lemma 3.6. Assumen =2, A > —n and 1 < p < co. Then we have
(i) rhjg G(r) = —oo, (ii) 11_1}1(1) G(r) =0,

(iii) lim H(r) =0, (iv) lim H(r) € [-00,0).

700

Now we prove Proposition 1.1.

Proof of Proposition 1.1. As is already seen in Lemma 3.5, both G(r) and H(r) have
exactly one local maximum at r, € (0,00). Moreover, in view of Lemma 3.6, H(r) is

negative near r = 0 and positive for large r. Thus H(r,) > 0 and 0 < ry < r,. Furthermore,
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we obtain G(r.) > 0 from G(0) = 0, and the negativity of G(r) for large r yields 0 < 7, <

r¢ < 00; so we conclude that condition (1.13) holds. : ]

4. PROOF OF LEMMA 3.4

For the case A > 0, we can show Lemma 3.4 in this paper by using same method as the

proof of Lemma 3.4 in [8]. So we will consider the case —n < A < 0 in the following.

First, we define the following functions which we need in this section:

V(r) =12+ ),
r) = 2 re'(r)
F(r) = (p+3)r*V(r) — 4,

J(r) == (p+3)X(r) + 2,

L(r) i= (p+3)X(r)? + 4X (r) + (p+ 32V (r) = 2L T T (T);i s
P(r) := JI-J((TT);’.

Q(r) = 4F(r)X (r) +rF'(r),
R(r) == 16¢°r*V (r)® — 4q(q + 32)r?V (r)? — 64(q — 4)V (v)
+4¢*r*V (r)V"(r) — 80grV'(r) — 16gr2V"(r) — 5¢°r*V'(r)?,

where ¢ := (p+ 3)%. By these definitions, we can rewrite ®(r) as
B(r) = J(r)exp () o) [ 5 oxp (~7) ols) s (41)
Differentiating ®(r), we have
rd(r) = L(r) exp (r2) o(r)? / " 5 exp (—s2) (s)"2ds — J(r). (4.2)

(Here, we use the equality 7X'(r) = rV(r) — X (r)2.) In order to evaluate the sign of ®'(r),

we will investigate the behaviour of J(r) and L(r) for r € [0, c0).

- First, we study the profile of J(r). Note that the following lemma holds.
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Lemma 4.1. There erists a unique positive number 8 satisfying 8 > v/—X, F(8) = 0 and
F'(8) > 0 such that F(r) <0 on [0, 8) and F(r) >0 on (8,00).

Proof. Trivial. | [ |

It follows from ¢'(0) = 0 and (iii) of Proposition 2.2 that
J(0)=2 and lim J(r) = 4o0.
Moreover, we obtain the following lemma.

Lemma 4.2. Function J(r) satisfies one of the following conditions:

(J1) J(r) > 0 for allT > 0.

(J2) There ezist two positive numbers 1 and o satisfyingr, < B <19 and J(r1) = J(r2) =
0 such that J(r) > 0 on (0,71) U (r2,00) and J(r) < 0 on (r1,72).

(J3) J(B) = J'(B) = 0 and J(r) > 0 on (0,00) \ 8.

Proof. We have the following two equalities:

J’(T)IJ(T)=0 (pi_s%;:
J" (1) sr)=d(r)=0 2 {(p(:f)?’)rrj 1 (> 0).

Therefore, noting Lemma 4.1, we can see that if J(r) has a zero, then J(r) satisfies (J2) or

(J3). Thus we conclude this lemma. |

Next, we study the profile of L(r). Using (iii) and (vi) of Proposition 2.2, we have
L(r)=Ap+5)r?+o(r?) as r—0 and lim L(r) = +oo.
. T—00

Therefore, L(r) is negative for sufficiently small r > 0. Moreover, we can show the following

lemma.
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Lemma 4.3. Function L(r) satisfies one of the following conditions:

(L1) There exists a unique positive number 3 satisfying L(rs) = 0 such that L(r) <0 on
(0,73) and L(r) > 0 on (r3, o).
(L2) There exist two positive numbers r4 and rs satisfying L(ry) = L' (rs) = L(rs) = 0 such

that L(r) < 0 on (0,75) \ 74 and L(r) > 0 on (r5,0).

Proof. Noting the equality (p+3)L(r) = J(r)2+ F(r), we have L(8) > 0if J(r) satisfies
the condition (J1) or (J2), and L(8) = 0 if J(r) satisfies the condition (J3) from Lemmas
4.1 and 4.2. Moreover, we can see L(3) > 0 for all r > 3 from Lemma 4.1. So it is sufficient

to evaluate L(r) for 7 < 8. Note that the following equality holds:

Q(r)

L r)—0 = ]
()lgry=o (p+3)r

Concerning the profile of Q(r), we have the following lemma whose proof will be given

below.

Lemma 4.4. There ezists a unique number rs € (0, 8) satisfying Q(rg) = 0 such that

Q(r) <0 on (0,r¢) and Q(r) >0 on (re,M].

Therefore, similarly to the proof of Lemma 4.2, we can decide the location of zeros for

L(r). _ n

Remark 4.1. Set 7 := sup {r € (0,00) : L(r) < 0}. Then we can put # = r3 or ¥ = rg if
L(r) satisfies the condition (L1) or (L2), respectively. Moreover, # = Jé] if J () satisfies the
condition (J3).

Proof of Lemma 4.4. Using (vi) of Proposition 2.2, we obtain

Q(r)=2Mg—4)r*+o0(r?) as r—0 and Q(B) = BF'(B) > 0. (4.3)



219

Therefore, there exists at least one zero in (0, §) by noting 2A(¢ — 4) <. 0. So we will

evaluate the sign of Q'(r)|g(r)=0- Since the equality

@ 0)lawro = )

holds and F(r) < 0 on [0, 3), it is sufficient to investigate the profile of R(r) on [0, ).

Noting that V(r), V'(r) and V"(r) are positive for r € (v=1, ), we have

R(r) = 16¢r*V(r)*F(r) — 4q(q + 16)r*V (r)? — 64(q — 4)V (r)
+ 4gr2V"(r)F(r) — 80grV'(r) — 5g*r*V'(r)?

< 0 for re[\/—_/\,ﬂ).

Therefore, there exists at least one zero on (0,v/—X) in view of R(0) = —64A(g — 4) > 0.

Differentiating R(r), we obtain

R'(r) = 64¢*r*V (r)® +48¢*r*V (r)2V'(r) — 8q(qg + 32)rV (r)? — 8q(q + 32)r2V (r)V'(r)
—16(9q — 16)V'(7‘) + 16¢*3V (r)V"(r) — 6¢*r*V'(r)V"(r)

— 112¢rV"(r) + 4g*r*V (r)V"'(r) — 16gr2V"(r) — 20¢*r3V"(r)2.
Then it follows from R(r) = 0, which implies

—8-32¢r*V(r)V'(r) = 16¢°*r°V(r)*V'(r) — 4¢*(g + 32)r*V (r)2V'(r)
— 64’V (r)V'(r) + 4¢*rV (r)V'(r)V" (r)

— 80¢°r3V'(r)? — 16¢*r*V'(r)V"(r) — 5¢*rSV'(r)3,
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and V(r) < 0, V'(r) > 0 and V"(r) > 0 for r € (0, /=) that

R(r)|grp=o = 64¢°r°V (r)® — 80g*r*V (r)2V'(r) — 256grV (r)* + 16¢°rV (r)*V'(r)
+ 4¢3V () V' (r) V" (r) — 22¢*r*V' (r)V"(r) — 5g*r®V'(r)?
+ 16(16 — q)V'(r) + 16¢*r*V (r)V"(r) — 112grV" (r)

+ 4> 'V (r)V" (r) — 16gr*V" (r) — 4¢V'(r) {(gr*V (r) + 4)* + 16}

2

. 25
— 8¢°r { (V(r) + %"V’(T)) + 74——T2V'(r)2}
< 0 for re (0,\/—)\) .
(Note that V'"(r) = 0.) Thus there exists a unique positive number r; € (0, #) such that

R(r)>0 on [0,77), ie, @Q'(r)<0 if Q(r) hasazeroin [0,r7),
R(r;)=0 and R'(r;) <0, ie, Q(r)=0 if Q(r) hasazeroat r=ry,
R(r)<0 on (r7,B), ie, Q(r)>0 if Q(r) hasazeroin (r7,[).

Define £ := inf {r € (0,00) : Q(r) = 0}. Then @'(£) > 0 from (4.3), which implies £ > r7.
Moreover, we have £ # r. In fact, if £ = r7, then Q(r7) = Q'(r7) = 0 and Q"(r7) must be

non-positive from (4.3). However, it is impossible by the following equality

2R(r7) + R/ (r7)
4F () (>0).

Qll (T'T) :

Therefore, there exists a unique number r¢ € (77, §) satisfying Q(rg) = 0 such that Q(r) < 0

on (0,7¢) and Q(r) > 0 on (re, G- |
Now we obtain the following lemma about the profile of ®(r) in view of (4.1), (4.2) and
Lemmas 4.2 and 4.3.

Lemma 4.5. Function ®(r) satisfies the following conditions:

(i) If J(r) satisfies the condition (J1), then ®(r) is decreasing on (0, 7.
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(i) If J(r) satisfies the condition (J2), then 7 satisfies 11 < 7 < r9. Moreover, ®(r) is
decreasing on (0,71) and increasing on (,72). Especially, ®(r;) = ®(ry) = 0 and
®(r) <0 on (r1,72).

(iii) If J(r) satisfies the condition (J3), then ®(r) is decreasing on (0,83) and ®(8) = 0
with ®'(8) = 0.

Proof. If J(r) satisfies the condition (J2), then we have L(r;) = J(r)?2 + F(r;) < 0 and
L(ry) = J(r9)? + F(ra) > 0 because J(ry) = J(rs) = 0 and r; < B < ro. Thus we get
r1 < 7 < rq in view of Lemma 4.3. Moreover, noting Remark 4.1, we can show the increase

and decrease of ®(r) for each cases automatically from Lemmas 4.2 and 4.3. ]

It remains to consider the behaviour of ®(r) for
r>f, r>ry or r>f (4.4)

when J(r) satisfies the condition (J1), (J2) or (J3), respectively. Our strategy is to evaluate
the critical values of ®(r). Namely, we will investigate the value of ®(r*) for r* satisfying

®'(r*) = 0. Combining (4.1) and (4.2) with r = r*, we obtain

J(r*)2
®(r*) = P(r*) = ———. 4.5
Now we study the profile of P(r) for (4.4). First, it is easily seen that
p+3 1 :
P(r) converges to —— 8 T with increasing. (4.6)

Moreover, we can show the following lemma.
Lemma 4.6. Function P(r) satisfies the following conditions:

(i) If J(r) satisfies the condition (J1), then there ezists a unique positive number T satis-
fying P(r) = (p+ 3)/2 such that

3 3
P(r)>% on (7,7) and 0<P(r)<% on (7,00).
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(ii) If J(r) satisfies the condition (J2), then

, , 3 ,
0<P(r)<% on (rg,00).

(iii) If J(r) satisfies the condition (J3), then

0< P(r) < %3 on (B,00).

Proof. Assume J(r) satisfies the condition (J1). It follows from Lemmas 4.2 and 4.3 that

lim P(r) = +oo0. (4.7)

r—74+0

Moreover, for r > 7 there exists at least one crossing point of y = P(r) and y = (p+ 3)/2

in (r,y)-plane from (4.6) and (4.7). For 7 satisfying P(7) = (p + 3)/2, we have F(7)
J(7)? > 0; so it must be that ¥ > 8 holds true. Moreover,‘ we have the following equality

F(r)f(r)
7 (J(r)? + F ()"

P'(7) =

where
f(r) = 8F(r)— (p+3)rF'(r)

~2(p— 1) (p+3)’r*V(r) ~ (p+3)°r’V'(r) - 32.

Therefore, we can see f(r) < 0 for all 7 > f; so we obtain P'(7) < 0 which implies the

uniqueness of crossing point from (4.6) and (4.7).
If J(r) satisfies the condition (J2), then P(r;) = 0 holds. Therefore, from (4.6) and

P'(r)|pary=(p+3)/2 < 0 on (B, 00), y = P(r) cannot cross y = (p+ 3)/2 on (ry, o0).

Moreover, if J(r) satisfies the condition (J3), then we have lim,_,5 P(r) = 0 by I’Hospital’s

theorem. So it is impossible that y = P(r) crosses y = (p+ 3)/2 on (8, 00) by the same
reason stated above. Thus we finish the proof. [ ]
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Now we will prove Lemma 3.4.

Proof of Lemma 8.4. Tf J(r) satisfies the condition (J1), then @(r) > 0 for all r > 0
in view of (4.1). As already seen, ®(r) is decreasing on (0,7]. If y = @(r) first crosses
y = (p+3)/2 at r = . € (0,7], then ®(r) is decreasing on (., 7] because P(r) > (p+3)/2
on (#,7), and ®(r) has a local minimum at some point in (7, c0). Moreover, noting that
P(r) < (p+ 3)/2 on (7,00) and Lemma 3.3, we can see that it is impossible that ®(r) >
(p+3)/2 at some point in (7,00). On the other hand, if y = ®(r) first crosses y = (p+3)/2
at r =r, € (7,00), then ®(r) < (p+3)/2 holds in (r.,00) by the same reason stated above.

Thus we can see that y = ®(r) crosses y = (p+ 3)/2 only once on (0, 0c).

If J(r) satisfies the condition (J2), then 0 < &(r) < (p+ 3)/2 on (r2,00) holds true by
noting ®(ry) = 0, P(r) < (p+3)/2 and J(r) > 0 on (ry, oo) and Lemma 3.3. Thus y = ®(r)
crosses y = (p+ 3)/2 once at some point in (0,7;) from Lemma 4.5.

Finally, if J(r) satisfies the condition (J3), then 0 < ®(r) < (p+ 3)/2 on (8,00) by the
same reason as the case (J2). Therefore, there exists only one crossing point of y = &(r)

and y = (p+3)/2 in (0, §) from Lemma 4.5. Thus we can conclude this lemma. n

5. PROOF OF PROPOSITION 1.2

In this section, we give the proof of Proposition 1.2.

First, we show the equivalence between (ii) and (iii). For functions f,(r) and' fo(r), we
denote fi(r) ~ fo(r) if the limit lim, o fi(r)/f2(r) exists in (0,00). From (1.9) and (iv)
and (v) of Proposition 2.2, we have

/00 g(s)'ds ~ r™exp (—r2) p(r) 2 ~ r 2 exp (—17),

from which together with (1.7) and (iv) of Proposition 2.2, the equivalence between (ii) and

(iii) follows.
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Next, we show that (ii) implies (i). From (1.4), we see that u'(r) satisfies

(r ' (1)) = {(A+ ) u(r) — Ju(r) P lu(r) } (5.1)

Since u(r) decays exponentially as r — oo, integrating (5.1) on (ry,r) and letting r — oo,
we see that 7" 'u'(r) has a limit as r — oo and this limit must be zero by (1.5). Thus,
integrating (5.1) on (r,00), we see that u'(r) decays exponentially as 7 — oo, from which

together with (1.5), we obtain that u(r) € X,,4.

Finally, we show that (i) implies (iii). We first note that u(r) and «'(r) decay exponen-
tially as 7 — oo, because u(r) is a solution of (1.4) in X,,4 (see [1, Lemma 2] and [15]). Set

U(r) = (1+r)®/2y(r) and
V() i=0) U0) +10@), () = (1) exp (-12/2),

then V(r) satisfies

V'(’.") — ()U(r) {n+/\ + (n—1)n+2) @+ANn+r+2) |u(r)|”_1}.

1+r 2r(1+7) o 4(147)?

From the assumption A > —n and the exponential decay of u(r) at infinity, there exists

r2 € (1,00) such that

n+)\+ m—1)n+A) O+ANn+A+2)
1+r 2r(1+r) 4(1 +r)?

—|u(r)P' >0 for r>r.

Thus, noting that U(r) > 0, we see that V' (r) is non-decreasing on [rs, 00). If there exists

r3 > 13 such that V(r3) > 0, then V(r) > V(r3) > 0 for all 7 > r3. This implies that
Ulr)+rU(r) > V(rs)/n(r), r>rs.

However, this is a contradiction, because the left hand side converges to 0 from the definition
of U(r) and the exponential decay of u(r) and u'(r) at infinity, while the right hand side

goes to infinity as r — oo from the definition of 7(r). Therefore, we have V(r) < 0 for all
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T > 7r9. This shows that

(exp (r2/2) U(r))' = exp (r/2) (U'(r) +rU(r))

= "1 +r)"Pexp (r) V(r) <0, 1>y,

which implies that U(r) < C; exp (—r2/2) for r > ry, where C; = exp (r,2/2) U(ry). From

the definition of U(r), we obtain that
u(r) < Cor ™V 2exp (—r2/2), r>ry (5.2)

for some Cy > 0and r4 > 0. As in the proof for the equivalence between (ii) and (iii) above,

from (5.2), (1.7), (1.9) and (iv) and (v) of Proposition 2.2, we see that v(r) satisfies
v(r) < 03/ g(s)'ds, r>rs (5.3)
T

for some C3 > 0 and 75 > 0. Since v(r) is an entirely positive solution of (1.8) with (1.9),

from (5.3) and Theorem A, we see that v(r) satisfies (1.14). This completes the proof.
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