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Hamilton-Jacobi equations in Hilbert spaces
with applications to Navier-Stokes equations
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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm |- |.
We consider the following stationary Hamilton-Jacobi equation

(E) Mu+ (0p(z) + B(z), Du) + F(z,Du) =0 in S.

Here ¢ : H — [0, 00] is a proper lower semicontinuous convex func-
tion, A\ is a positive constant, Op denotes the subdifferential of ¢,
S is a closed subset of H which satisfies S C D(9y), and moreover,
SN D(dy) is dense in S. u(z) represents a real unknown function
on S, and Du denotes the Fréchet derivative in H of u. F'is a given
real function on S x H. B is a nonlinear (multivalued) operator
from D(B) C H into H such that D(9¢) C D(B).

When B = 0 and S = D(0y), the existence and comparison
theorems for (E) were proved in Ishii[3], Tataru[7] and Crandall-
Lions|2]. |

We introduce the existence and comparison theorem for (E) in
the case that B is an unbounded (multivalued) operator.

We give the assumptions on dp, B and F. Let v € (0, 2].

(A1), There exist positive constants C; and 0 < k < 1 such that
(b1, &1) > —[(80)°(z1) " - C1,
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|b1] < C1(|(89)° (z1)[” + 1)
and
(b1 +&1) = (b2 + &), 71 — 32) > —Ch|z1 — 3|2

forall z1, zo € SND(dp), & € dp(zy), & € Op(z2), by € B(x),
by € B(il?g) |

(A2) F e C(S x H). Moreover for each R > 0,
limsupi F(z,p) — F(z,9) | z € S,

(A3)  There is a constant Cy > 0 such that

|F(z,p)] < Co(lp* +1)  forall (z,p) €S x H.

(A4)  There is a continuous function w : [0, 00) — [0, 00) satisfying
w(0) = 0 for which

1
Fly,a(e ~y)) = Flz,ae ~y)) <o (ale —yP + -
for all z, y € SN D(8p) and a > 0.

(A5) If0 >0, € CY9), and i+ 1 attains a minimum value at
z € 5, then there are sequences {z,},{¢,} and {¢,} C H such
that the following three properties are satisfied:

i) z,—2in H as n — oo.
(i) 2, € SND(0p), & € Op(zy), and ¢, € B(z,) for n € N.

(iii)  The inequality

<£n + G, p+ D¢(xn) + 9§n> + F(xn,p + le(xn) + 9§n)
< &+ Cn7p> + F(mmp)

holds for all p € H.



(A6) F(z,0) is bounded on S.

Our main result in this paper is stated as follows.

Theorem 1. Assume that (Al),~-(A6) hold for some v € (0,2).
Then there is a unique viscosity solution u € BUC(S) of (E).

The above theorem can be applied to characterizing the value
functions associated with optimal control of systems governed by
partial differential equations of parabolic type. In particular, it
i1s important to be able to deal with nonstationary Navier-Stokes
equations in bounded domains.

2 Viscosity solutions and comparison result

Let ¢ : H — [0, 0] be a proper lower semicontinuous convex func-
tion.

Notation. We use the standard notation :

Op(z) ={p € H| p(y) > ¢(z) + (p,y —z) forally € H},
D(p) = {z € H| p(z) < oo},
D(0p) = {z € H| dp(z) # 0}.

Then it is well known that dy is a (multivalued) maximal monotone
operator on H, i.e., the following (i) and (ii) hold.

(i) (Monotonicity) For z,y € D(9¢) and p € dp(z), q € dp(y),
(ii) (Solvability) R(I 4 0y) = H.

We refer the reader to Brezis[1] for the proof of maximal mono-

tonicity of Op. By the maximal monotonicity we see that D(d¢) =
D(p).
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(0¢)° denotes the minimal section of 8y, i.e., (9p)°(z) is defined
as the unique element of least norm in dp(z).

Definition 1. Let O be a relatively open subset of S. A function

u € CY(O) is called a classical subsolution (resp., supersolution and
solution) of (E) in O if

Mu(z) + (€ + ¢, Du(z)) + F(z, Du(z)) < 0 (resp., > 0and =0)
for all z € O, £ € Op(z) and ¢ € B(zx).

Before we give the difinition of a viscosity solution, we introduce
the notation. B(z,r) denotes the closed ball of radius r with center
z in H. Let O be a relatively open subset of S. For u : O — R we
define

u'(2) = limsup{u(y) | ly — 2| < 1,y € O},
u(2) = liminf{u(y) [ ly —2[ <r,y € O}

It is clear that u, < u < u* and us = —(—u)*. Also, if u is locally
bounded in O, then

u, € LSC(O) and u* € USC(O).
Here we write
USC(O)={f: 0 — RU{zxoo} is upper semicontinuous},
LSC(O) ={f: 0 — RU{+too} is lower semicontinuous}.

Definition 2. Let O be a relatively open subset of S. A function
u: O — R is called a viscosity subsolution (resp., viscosity super-
solution) of (E) in O if it is locally bounded in O and if there is a
6o > 0 such that whenever ¢ € C1(0), 0 < 8 < 6y, and (u—0p)* —p
(resp., (u +0p): — 1) attains a maximum (resp., minimum) value
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m at a point £ € O, then

Alm + 9(2) + 0p(2))
+lim inf{(€ + ¢, DY (x) + 6€) + F(z, D() + 6¢) |
z € B(z,r) N SN D(dy), £ € dp(x),¢ € B(z)} <0

(resp.,

A(m + (&) — 0p(2))
+lmsup{{€ + ¢, Di(z) — 06) + Fla, Du(z) — 66) |
z € B(Z,r)NSND0yp),& € dp(x), € B(x)} > 0).

A function v : O — R is called a wviscosity solution of (E) if it is
both a viscosity subsolution and a viscosity supersolution of (E) in

0.
A comparison result for (E) is the following.

Theorem 2. Assume that (Al)s-(A4) hold. Let u and v be a vis-
cosity subsolution and a viscosity supersolution of (E), respectively.
Assume that u and —v are bounded above on D(p)NS. Thenu < v
in D(p) N S. Moreover the inequality

li\r‘%sup{u(x) —v(y) | z,ye D(p)NS, |z —y| <r} <0,

See [6] for the proof of Theorem 2.

3 Existence result

In this section, we introduce the existence theorem for viscosity
solutions of (E). Before we state the existence theorem, we give the
following proposition which is called Perron’s method.



Proposition 1 (Perron’s method). - Assume that (Al),-(A5)
hold for some v € (0,2). Let f and g be a wviscosity subsolution

and a viscosity supersolution of (E) in S, respectively. Assume that
f<ginS. Define

u(z) =sup {v(z) | v is a viscosity subsolution of (E) in S
and f<v<gin S} for =ze€Sb.

Then u is a viscosity solution of (E) in S.

We need the following two lemmas in order to prove Proposiotion
1. See e.g., [3], [6] for details.

Lemma 1. Assume that (Al),-(A4) hold for some v € (0,2). Let
F be a nonempty set of viscosity subsolutions of (E) in S and set
u(z) = sup {v(z) | v € F} for (z) € S. Then, if u is locally bounded
in S, then u is a viscosity subsolution of (E) in S.

See [3] for the proof of the above lemma.

Lemma 2. Assume that (A5) holds. Let § > 0 and v € C(S).
Set u(z) = v(z) — dp(z) and suppose that
Au(z) + (€ + ¢, Dv(z) — 6&) + F(z, Dv(z) — 6¢) <0

holds for all x € SN D(0p), £ € Op(x) and ¢ € B(x). Then u is a
viscosity subsolution of (E) in S. Similarly, if u(z) = v(z) + dp(z)
and the inequality

xu(z) + (€ + ¢, Du(x) + 68) + F(z, Dv(z) + 6£) > 0
holds for all z € SN D(0p), £ € Op(z) and ¢ € B(z). Then u is a

viscosity supersolution of (E) in S.

The proof of this lemma is easy and standard, and is left to the
reader.
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We obtain the following result by Theorem 2, Proposition 1 and
Lemma 2. See [6] for the proof for Theorem 3.

Theorem 3. Assume that (Al),-(A6) hold for some v € (0,2).
There is a viscosity solution u € BUC(S) of (E).

We obtain Theorem 1 by Theorem 2 and Theorem 3.

4 An optimal control problem of systems gov-
erned by the three-dimensional Navier-Stokes
equations

Let © be an arbitrary bounded domain in R? with smooth bound-
ary. In the usual way we define L?(£2) and the Sobolev space H™((2)
composed of three-dimensional vector functions. We use the follow-
ing spaces of solenoidal vector functions.

2, (Q) = {u= (v’ v’) v € CP(Q) (1=1,2,3), divu=0},

H, (2) = the completion of C{,(€2) under the L*(Q) — norm,
H, () = the completion of C§’,(€2) under the H'(Q) — norm.
We denote by P the orthogonal projection operator from L2(2) onto

H,(Q).

We define a proper lower semicontinuous convex function ¢ by

o) = {%/ﬂquPdsc it ueHL(Q),
+00 if u € Hy,(Q) \ H:(Q),

where

3 2

Vu* = 3

1,7=1

oul
8$i
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Then it can be shown that d¢ coincides with the Stokes operator A
defined by

D(A) = H*(Q) NnH,(Q),
{A(u) = —PAu for ue D(A).

We define a nonlinear operator B in H,(2) by

{ D(B) = D(0),
B(u) = P(u-V)u for ue D(B).

We consider the following initial value problem

qvp) | G 0+ 06lX(0) + BX() 3 9(X (0,0, t€ (0,00),
X(0) =

where g : H;(Q) x [0 o0) = H,(12) is assumed to satisfy

for each v € H,(2), the function g(u,t) of ¢ is measurable;

there is a constant M > 0 such that
lg(u,t) — g(v,t)llL2@) < Mlu — v
for all u, v € H,;(Q) and 0 < ¢ < oc.

Proposition 2. Under the above assumptions, there erists a pos-
itive number 6y such that if

|zllz@) + () <60 and gl zoe(m, (@) x (0,000, (2)) < o,

(IVP) has a unique s-strong solution X (t) in [0, 00), and X satisfies
the following (i) and (ii).

(i) There exists a constant C (&) such that
C(bo) = 0 (as dg — 0),

and
| X || £oo (0,008, (02)) + Stli]g (X (t)) < C(dp).



(ii) Let Y(t) be an s-strong solution of (IVP) in [0,00) with y in
place of z. If
1yllz2(@) + ©(y) < do,

then there is a positive constant mg such that

“X(t) - Y(t)HLz(Q) S emotHx - yl|L2(Q) for t Z 0.
See e.g., [4], [5] for the proof of Proposition 2.

Next we consider the following control system:
(NS)
dX

— () +0p(X () + B(X(2)) 3 g(X (1), a(t)), t € (0,00),

X(0) = z.

Let functions f : H,(2) x H,(Q) — R and ¢ : H,(Q) x H,(Q2) —
H,(Q2) be given and satisfy the following condition (AT).

(A7) f e C(H,(Q2)xH,(Q);R), g € C(H,(Q) xH,(Q2); H,(2)) and
there is a constant K > 0 such that '

[f(z,2)| < K, |f(z,2) = fly,2)] < K|z — ylle

lg(z, 2)[lL2(@) < 6o, Nlg(z,2) — 9(y, 2)llL2(@) < Kllz — yllrz(o)
for all z,y, z € H, ().

We define
= {z € LAQ)| [lzllr2(e) + ¢(z) < 8} (0 <8 < ),
C={a:[0,00) =+ H,()| «f-) is measurable},
Y=Y(0)={X(t;z,0)| t >0, z€ X5, a€C}.

Here X (¢;z, ) is the s-strong solution of (NS). If ¢ is sufficiently
small, then the set Y is invariant, i.e., the following property is
satisfied:

X(t;z,a) €Y forallz € Y,a€Cand 0 <t < co.
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Let z € Y and consider the problem of minimizing the cost
functional

J(z,0) = /0°° e MF(X(t), alt)) dt,
over all @ € C, where A > 0 is a given constant and X is the unique

s-strong solution of (NS) in [0, 00). We define the value function V
by

(1) Viz) = inf J(z,a) forzeV.
Proposition 3. Assume that (AT) holds. Then the value func-
tion V defined in (1) is bounded and uniformly continuous in Y.

The proof of this lemma is left to the reader. Also, see, e.g., [3].

The following theorem is proved by the method of dynamic progam-
ming (cf. [3]).

Theorem 4. Assume that (A7) holds. Then the value function V
defined in (1) is a unique viscosity solution of

(2)  Au+(0p(z) + B(z), Du)r2) + F(z,Du) =0 inY,

where the function F is given by

(3) F(z,p) = sup {—(g(x,2),p)12(0) — f(z,2)}.

ze€H,(Q

Remark. Incaseof S =Y, the above function F satisfies (A2),(A3)
and (A4), and moreover, we see that (Al)s holds. By Theorem 2.
it follows that V' is the unique viscosity solution of (2).

We need the next lemma to prove Theorem 4.

Lemma 3. (Dynamic Programming Principle). Assume that
(A7) holds. For anyx € Y and 7 > 0, the equality

(4) Vi) = wi{[ e (X @), o) dt+ e V(X(7))

a€elC



holds, where X (t) denotes the s-strong solution of (NS) in [0, c0).

The above discussion can be also applied to the two-dimensional
Navier-Stokes equations.
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