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1Introduction and results

In this note we consider the Cauchy problem for the nonlinear Schrodinger equation in
one space dimension
(1.1) $\dot{\iota}u_{t}+\frac{1}{2}u_{xx}=F(u,\overline{u}, u_{x},\overline{u}_{x})$ ,

(1.2) $u(0, x)=u_{0}(x)$ .

Here $u$ is acomplex-valued function of $(t, x)\in \mathrm{R}\cross \mathrm{R}$ and $F$ is asmooth function on a
neighborhood of the origin such that for some integer $p\geq 2$

(1.3) $F(u,\overline{u}, q,\overline{q})=O(|u|^{p}+|q|^{p})$ near the origin.

We are interested in finding some nonlinearities $F$ such that the Cauchy problem (1.1)-
(1.2) has aunique global solution which is asymptotically free.

It is known that if $F$ satisfies

(1.4) ${\rm Re} \frac{\partial F}{\partial q}(u,\overline{u}, q,\overline{q})\equiv 0$ ,

then the usual energy method yields the local existence. When the nonlinearity $F$ does
not neccesarily satisfy (1.4) the local existence has also been established this decade
(see [7] and [9]). Concerning the global existence of solutions, Klainerman-Ponce [10]
and Shatah [13] showed that if $F$ satisfies (1.3) with $p\geq 4$ and (1.4), then (1.1)-(1.2)
possesses aunique global solution provided that the intial data $u\circ$ is small enough in a
certain Sobolev space. If the nonlinearity is of lower degree ( $i.e$ . quadratic or cubic),
it seems difficult to prove the global existence in general. In spite of this, there are
not afew papers on the global existence when the nonlinearity is cubic or quadratic. In
particular, in the case where the nonlinearity $F$ is cubic and gauge invariant, that is, $F$

satisfies
(1.5) $F(\omega u,\overline{\omega u},\omega q,\overline{\omega q})=\omega F(u,\overline{u}, q,\overline{q})$
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for any $\omega\in \mathrm{C}(|\omega|=1)$ , $u$ , $q\in \mathrm{C}$ , much has been studied. For $F=\lambda|u|^{2}u$ or $F=$

$i\lambda\partial_{x}(|u|^{2}u)$ with some $\lambda\in \mathrm{R}\backslash \{0\}$ , the global existence is well known. Furthermore, for
these nonlinearities, the asymptotic behavior of solutions is studied and the existence
of modified scattering states is proved by Hayashi and Naumkin $[4],[5]$ . They also
established the asymptotic formula of atime-global solution for large time. Katayama
and Tsutsumi [8] showed that if $F$ satisfies (1.5) and “null gauge condition of order
3” (a typical example which satisfies these conditions is $F=\partial_{x}(|u|^{2})(\lambda u+\mu u_{x})$ with
$\lambda$ , $\mu\in \mathrm{C})$ then (1.1)-(1.2) has aunique global solution for small initial data $u_{0}$ and the
usual scattering state exists. Recently, Hayashi and Naumkin [6] considered nonlinear
Schr\"odinger equations with aderivative cubic nonlinearity which does not satisfy (1.5)
and proved the global existence of solutions for small initial data and the existence of
usual or modified scattering states. However, it still remains open what kind of cubic
nonlinearities assures the global existence of solutions with afree profile in large time
for small initial data. In the present note, we consider the global existence of asolution
to the Cauchy problem (1.1)-(1.2) in the usual Sobolev spaces for small initial data and
the existence of scattering states in ausual sense for $F=cuu_{x}^{2}$ or $F=c\overline{u}\overline{u}_{x}^{2}$ with $c\in \mathrm{C}$ .
To treat these critical cubic nonlinearities we use the techniques which transform them
into harmless ones. These were developed by Shatah[14], Cohn[1],[2] and Ozawa[12] for
quadratic nonlinearity. While they discussed quadratic nonlinear Schr\"odinger equations
in $[1],[2]$ and [12] (quadratic nonlinear Klein-Gordon equations in [14]), aclass of cubic
nonlinear Schr\"odinger equations will be treated in the present note. So, it should be
emphasized that the transformation in the present paper will be more complicated than
those for quadratic nonlinearities.

Before stating our results we give several notations.

Notation.
Let $[a]$ denote the largest integer less than or equal to $a$ . Let $\hat{f}$ and $\mathcal{F}f$ denote the

Fourier transform of $f$ with respect to the space variable:

$\hat{f}(\xi)=(Ff)(\xi)=\frac{1}{(2\pi)^{\frac{n}{2}}}\int_{\mathrm{R}^{\hslash}}f(x)e^{-\dot{l}x\cdot\xi}dx$.

For $1\leq p\leq\infty$ and nonnegative integers $m$ , we denote by $IP$ $=L^{p}(\mathrm{R})$ and $W^{m,p}=$

$W^{m,p}(\mathrm{R})$ the standard Lebesgue space and Sobolev space, respectively. We also use the
notation $H^{m}:=W^{m,2}$ for the $L^{2}$-tyPe Sobolev space. Let $C^{k}(I;B)$ denote the space
of functions continuous with their derivatives up to $k$ from atime interval $I\subset \mathrm{R}$ to

2



aBanach space $B$ , and let $C(I;B):=C^{0}(I;B)$ . Let $U(t)=e^{\frac{t}{2}\partial_{\varpi}^{2}}.\cdot$ be the evolution

operator associated with the free Schr\"odinger equation.

Our main results are the following. The first theorem gives acubic nonlinear

Schr\"odinger equation which is convertible into the free Schr\"odinger equation.

Theorem 1. Let m be an integer with m $\geq 1$ and let F $–f(u)u_{x}^{2}$ where $f(u)$ is an

entire function and satisfies $f(u)=O(u^{k})$ at the origin. We put

$\varphi(u)=\int_{0}^{u}e^{-\int_{0}^{z}f(w)dw}dz$ .

Then there exist $\epsilon_{0}>0$ such that for any $u_{0}\in H^{m}$ with $||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon_{0}$ , the Cauchy

problem (1.1)-(1.2) has a unique global solution $u\in C(\mathrm{R};H^{m})\cap C^{1}(\mathrm{R};H^{m-2})$ . More-

over the solution $u$ is given explicitly by $u(t)=\varphi^{-1}(U(t)\varphi(u_{0}))$ . If in addition $u_{0}\in L^{1}$ ,

then
(1.6) $||u(t)||_{L}\infty=O(|t|^{-\frac{1}{2}})$ as $tarrow \mathrm{i}\mathrm{o}\mathrm{o}$

and there exists a unique $\phi$ $\in H^{m}\cap L^{1}$ such that

(1.7) $||u(t)-U(t)\phi||_{H^{m}}=O(|t|^{-\frac{k+1}{2}})$ as $tarrow\pm\infty$ .

Furthermore, $\phi$ is given explicitly by $\phi$ $=\varphi(u_{0})$ .

Remarks, (i) The assumption $||F\varphi(u_{0})||_{L^{1}}<\epsilon_{0}$ is fulfilled if $||u_{0}||_{H^{1}}$ is sufficiently

small.
(ii) For $\epsilon_{0}$ in Theorem 1, we can take the radius of convergence of the Taylor expansion

at the origin of the inverse function of $\varphi$ .
(iii) The results in [12] covers the result of Theorem 1if $f(u)$ is aconstant. If $f(u)=$

$O(u)$ at the origin, then Theorem 1gives acubic nonlinearity $F$ which assures the global

existence of solutions with afree profile to (1.1)-(1.2).

We next state the theorem concerning acubic nonlinear Schr\"odinger equation to

which the normal form argument by Shatah[14] is applicable.

Theorem 2. Let $m$ be an integer with $m\geq 4$ and let $F=c\overline{u}\overline{u}_{x}^{2}$ where $c$ is a complex

constant. Then there exists $\epsilon\circ>0$ such that for any $u_{0}\in H^{m}\cap W^{[(m+5)/2],1}$ with
$\max\{||u_{0}||_{H^{m}}, ||u_{0}||_{W^{[(m+5)/2],1}}\}<\epsilon_{0}$ the Cauchy problem (1.1)-(1.2) has a unique global

solution $u$ satisfying
$u\in C(\mathrm{R};H^{m})\cap C^{1}(\mathrm{R};H^{m-2})$ ,
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(1.8) $||u(t)||_{H^{m}}=O(1)$ , $||u(t)||_{W[(m+1)/2],\infty}=O(|t|^{-\frac{1}{2}})$ as t $arrow\pm\infty$ .

Moreover, there exist a unique $\phi_{+}\in H^{m}$ and a unique $\phi_{-}\in H^{m}$ such that

(1.9) $||u(t)-U(t)\phi_{+}||_{H^{m}}=O(|t|^{-1})$ as $tarrow+\infty$ ,

$||u(t)-U(t)\phi_{-}||_{H^{m}}=O(|t|^{-1})$ as $tarrow-\infty$ .

Remark. Recently, Naumkin[ll] proved the global exitence of asolution to (1.1)-(1.2)
with afairly wide class of cubic nonlinearities $F$ including two nonlinearities considered
in Theorems 1and 2. The results in [11], however, do not cover the results of Theorems
1and 2in the present note since the former require that the initial data should be small
in aweighted Sobolev space while the latter do not.

2Outline of the proof of Theorem 1

When the nonlinearity $F$ is of low degree, it does not seem that we can prove aglobal
existence result directly from the original equation. So we make use of atransformation
which converts asolution of the original nonlinear Schr\"odinger equation into one of
the linear Schr\"odinger equation. The first three Lemmas are devoted to prove that the
function $\varphi$ given in Theorem 1is the helpful transformation.

The Lemma 2.1(a) and Lemma 2.2 show that $\varphi$ is regular as atransformation on
$H^{m}$ .

Lemma 2.1 (a) $\varphi$ is an entire function on the whole complex plane.
(b) There exist a constant $\epsilon$ $>0$ and a holomorphic function $\psi$ : $B_{\epsilon}arrow\varphi^{-1}(B_{\epsilon})$ such
that $\varphi 0\psi$ $=id_{B_{*}}$ , $\psi$ $0\varphi=id_{\varphi^{-1}(B_{\epsilon})}$ and $\varphi^{-1}(B_{\epsilon})$ is bounded.

Lemma 2.2 Let m be an integer with m $\geq 1$ . For any $u_{0}\in H^{m},$ $\varphi(u_{0})\in H^{m}$ .

The following Lemma shows that if $u$ solves the original nonlinear Schr\"odinger equa-
tion (1.1)-(1.2), then $v=\varphi(u)$ solves the homogeneous linear Schr\"odinger equation
with $v(0)=\varphi(u\mathrm{o})$ .
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Lemma 2.3 Let $m$ be an integer with $m\geq 1$ . Let $u_{0}\in H^{m}$ and let $u\in C(\mathrm{R};H^{m})$ rl

$C^{1}(\mathrm{R};H^{m-2})$ satisfy (1.1)-(1.2) with $F=f(u)u_{x}^{2}$ . Then $\varphi(u(\cdot))\in C(\mathrm{R};H^{m})\cap C^{1}(\mathrm{R};H^{m-}$

and
(2.1) $\varphi(u(t))=U(t)\varphi(u_{0})$ .

Next, we have to prove that the transformed function $v(t)=\varphi(u(t))=U(t)\varphi(u_{0})$

gives the solution $u(t)$ to the original nonlinear Schr\"odinger equation. Lemma 2.1(b)

shows that this is true if $||U(t)\varphi(u_{0})||_{L^{\infty}}<\epsilon$ .

From Lemma (b), we have the expansion

$\varphi^{-1}(z)=\sum_{j=0}^{\infty}a_{j}z^{j}$

with the radius of convergence larger than or equal to $\epsilon$ . We easily see that $a_{0}=0$ , $a_{1}=$

$1$ , $a_{i}=0(2\leq i\leq k+1)$ and $a_{k+2}\neq 0$ . We put $\epsilon_{0}=\sqrt{2\pi}\epsilon$ . Then we have

$\sup_{t\in \mathrm{R}}||U(t)\varphi(u_{0})||_{L}\infty=\sup_{t\in \mathrm{R}}||F^{-1}e^{-it|\cdot|^{2}}F\varphi(u_{0})||_{L}\infty\leq\frac{1}{\sqrt{2\pi}}||\mathcal{F}\varphi(u_{0})||_{L^{1}}<\epsilon$.

Therefore the series

$U(t) \varphi(u_{0})+\sum_{j=k+2}^{\infty}a_{j}(U(t)\varphi(u_{0}))^{j}$ .

converges absolutely in $L^{2}$ . This proves that $u(t)=\varphi^{-1}(U(t)\varphi(u_{0}))$ makes sense and is

in $C(\mathrm{R};L^{2})$ . Some more calculations show that $u\in C(\mathrm{R};H^{m})\cap C^{1}(\mathrm{R};H^{m-2})$, and $u$ is

aunique solution to (1.1)-(1.2).
The decay estimate of the solution and the existence of afree profile in $L^{2}$ are shown

by using the standard $L^{\infty}$-decay estimates of the fundamental solution and following

two inequalities

$||u(t)||_{L^{\infty}}$ $\leq$ $||U(t) \phi||_{L^{\infty}}+\sum_{j=k+2}^{\infty}|a_{j}|||(U(t)\phi)^{j}||_{L^{\infty}}$

$\leq$ $\frac{||\phi||_{L^{1}}}{(2\pi|t|)^{1/2}}(1+\sum_{j=k+2}^{\infty}|a_{j}|(\frac{||\mathcal{F}\phi||_{L^{1}}}{\sqrt{2\pi}})^{j-1})$ ,

$||u(t)-U(t)\phi||_{L^{2}}$ $\leq$ $\sum_{j=k+2}^{\infty}|a_{j}|||(U(t)\phi)^{j}||_{L^{2}}$

$\leq$ $\frac{||\phi||_{L^{1}}^{k+1}||\phi||_{L^{2}}}{(2\pi|t|)^{\frac{k+1}{2}}}\sum_{j=k+2}^{\infty}|a_{j}|(\frac{||\mathcal{F}\phi||_{L^{1}}}{\sqrt{2\pi}})^{j-k-2}$

The existence of afree profile in $H^{m}$ is proved after asomewhat complicated calculation
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3 Outline of the proof of Theorem 2
The crucial part of the proof of Theorem 2is to establish apriori estimates of the
solution to (1.1)-(1.2) The global existence result is obtained by combining alocal
existence theory and apriori estimates. Since the nonlinearity $F=c\overline{u}\overline{u}_{x}^{2}$ satisfies (1.4),
the local existence is an immediate consequence of the usual energy method. But we
cannot derive sufficient time decay estimates to prove the global existence directly from
the original equation since $F$ is cubic. In order to obtain good apriori estimates, we
use the argument of normal forms introduced by Shatah (see $[1],[2],[14]$ ).

Following Shatah [14], we introduce a new unknown function $v$ :

(3.1) $v=u+K(\overline{u},\overline{u},\overline{u})$ ,

where $K$ is thought of as adistribution and the representaion of the cubic term is given
by
(3.2) $K(f, g, h)(x)= \int_{\mathrm{R}^{3}}K(x-y, x-z, x-w)f(y)g(z)h(w)dydzdw$ .

After some calculations, we obtain

(3.3) $K(f, g, h)(x)=(2 \pi)^{3/2}\int_{\mathrm{R}^{3}}\overline{K}(p, q, r)\hat{f}(p)\hat{g}(q)\hat{h}(r)e^{\dot{l}x(p+q+t)}$ dpdqdr,

(3.4) $i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v=c\overline{u}\overline{u}_{x}^{2}+[(\partial_{y}^{2}+\partial_{z}^{2}+\partial_{w}^{2}+\partial_{y}\partial_{z}+\partial_{z}\partial_{w}+\partial_{w}\partial_{y})K](\overline{u},\overline{u},\overline{u})$

$-K(\overline{c}uu_{x}^{2},\overline{u},\overline{u})-K(\overline{u},\overline{c}uu_{x}^{2},\overline{u})-K(\overline{u},\overline{u},\overline{c}uu_{x}^{2})$.

All cubic terms in (3.4) cancel out, when we take $K$ as follows:

$\overline{K}(p, q, r)=-\frac{c}{3}\frac{pq+qr+rp}{p^{2}+q^{2}+r^{2}+pq+qr+rp}$.

Then the function $v$ defined by the transformation (3.1) satisfies

(3.5) $i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v=\frac{|c|^{2}}{3}(\Omega(uu_{x}^{2},\overline{u},\overline{u})+\Omega(\overline{u},uu_{x}^{2},\overline{u})+\Omega(\overline{u},\overline{u}, uu_{x}^{2}))$ ,

where we put $\Omega=-\frac{3}{c}K$. We remark that the nonlinear term in the right hand side of
(3.5) is of degree five. This new equation (3.5) with anonlinearity of higher degree is
called anormal form.

We have to prove that the transformation (3.1) is regular in the space where we
consider the Cauchy problem in order to establish sufficient apriori estimates to prove
the global existence result. The following Lemma on Fourier multipliers due to Coifman
and Meyer ([3]) plays an important role for this purpose
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Lemma 3.1 Let

$\Lambda(f, g, h)(x)=\int_{\mathrm{R}^{3}}\lambda(p, q,r)\hat{f}(p)\hat{g}(q)\hat{h}(r)e^{:x(p+q+\mathrm{r})}dpdqdr$ ,

and let
(3.6) $|\partial_{p}^{j}\partial_{q}^{k}\partial_{r}^{l}\lambda(p,q, r)|\leq C_{j,k,l}(|p|+|q|+|r|)^{-(j+k+l)}$

for all nonnegative integers $i$ , $k$ , $l$ such that $0\leq j+k$ $+l\leq 1$ . Then

$||\Lambda(f,g, h)||_{L^{p}}\leq C_{p_{1},p_{2},p3}||f||_{L^{p_{1}}}||g||_{L^{p_{2}}}||h||_{L^{p_{3}}}$

where $\frac{1}{p}=\sum_{j=1}^{3}\frac{1}{p_{j}}$ , $1<pj\leq\infty(j=1,2)$ and $1<p_{3}<\infty$ .

The following estimate for $K$ ( $\cdot$ , $\cdot$ , $\cdot$ ) defined by (3.2) follows immediately from (3.3)

and Lemma 3.1.

Lemma 3.2 Let $P,Pj(j=1,2,3)$ satisfy $\frac{1}{p}=\sum_{j=1}^{3}\frac{1}{p_{j}}$ , $1<pj\leq\infty(j=1,2)$ and

$1<p_{3}<\infty$ . If $\overline{K}$ is a Coifman-Meyer kernel (that is, $\lambda=\overline{K}$ satisfies (3.6)), then

$||K(f, g, h)||_{L^{p}}\leq C_{p_{1},p_{2},p3}||f||_{L^{p_{1}}}||g||_{L^{p_{2}}}||h||_{L^{p_{3}}}$ .

The following lemma gives several formulas which are useful to simplify the repre-

sentation of nonlinear terms of (3.5).

Lemma 3.3 (a) $\Omega(f, g, h)=\Omega(f, h, g)=\Omega(g, f, h)$ .
(b) $\partial_{x}\Omega(f, g, g)=M(f, g, g_{x})$ , where $\overline{M}$ is a Coifman-Meyer kernel

From Lemma 3.3(a), (3.5) is rewritten as follows:

(3.7) $i \partial_{t}v+\frac{1}{2}\partial_{x}^{2}v=|c|^{2}\Omega(uu_{x}^{2},\overline{u},\overline{u})$.

We will derive apriori estimates of $u$ via this equation.

The inequalities in the following lemma are needed to estimate nonlinear terms of

(3.7) when we derive apriori estimates.

Lemma 3.4 The estimates (a) and (b) hold for $m\geq 1$ , and (c) holds for $m\geq 0$ .
(a) $||\Omega(f, g, g)||_{H^{m}}\leq C(||f||_{H^{m-1}}||g||_{W[(m+1)/2],\infty}^{2}+||f||_{W^{[(m-1)/2],\infty}}||g||_{H^{m}}||g||_{W[(m+1)/2],\infty)}$ ,

(b) $||\Omega(f, g, g)||_{W^{m,1}}\leq C(||f||_{H^{m-1}}||g||_{H^{m}}||g||_{W[(m-1)/3]+1,\infty}+||f||_{W[(m-1)/3],\infty}||g||_{H^{m)}}^{2}$ ,

(c) $||\Omega(f, f, f)||_{H^{m}}\leq C||f||_{H^{m}}||f||_{W^{[m/2],\infty}}^{2}$ ,
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The proof of Lemma 3.4(a) and (b) is based on the result in Lemma 3.3(b). Apriori
energy and decay estimates of $u$ will be derived via (3.1) and (3.7) by using Lemma
3.4(a) and (b) with $f=uu_{x}^{2}$ and $g=\overline{u}$ .

For $m\geq 4$ and $T>0$ , we define

$||u||_{m,T}= \sup_{t\in[0,T]}(||u(t)||_{H^{m}}+(1+t)^{\frac{1}{2}}||u(t)||_{W^{[\frac{m+1}{2}],\infty}})$ .

Lemma 3.5 (a priori energy estimate) Let $m\geq 4$ and let $u_{0}\in H^{m}$ . Assume that the
initial value problem (1.1)-(1.2) with $F=c\overline{u}\overline{u}_{x}^{2}$ has a solution $u\in C([0, T];H^{m})\cap$

$C^{1}([0, T];H^{m-2})$ . Then the following inequality holds for any $t\in[0, T]$ :

$||u(t)||_{H^{m}}\leq C(||u_{0}||_{H^{m}}+||u_{0}||_{H^{\mathrm{m}}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5})$ ,

where $C$ is independent of $T$ and $u_{0}$ .

Lemma 3.6 (a priori decay estimate) Let $m\geq 4$ and let $u_{0}\in H^{m}\cap W^{[(m+5)/2],1}$ . Assume
that the Cauchy problem (1.1)-(1.2) with $F=c\overline{u}\overline{u}_{x}^{2}$ has a solution 116 $C([0, T];H^{m})$ .
Then the following inequality holds for any $t\in[0, T]$ :

$(1+t)^{1/2}||u(t)||_{W^{[(m+1)/2],\infty}}\leq C(||u_{0}||_{W^{[(m+1)/2]+2,1}}+||u_{0}||_{H^{m}}^{3}+||u||_{m,T}^{3}+||u||_{m,T}^{5})$,

where $C$ is independent of $T$ and $u_{0}$ .

Combining the local existence of solutions and the apriori estimates, we obtain the
global existence of solutions to (1.1)-(1.2) with $F=c\overline{u}\overline{u}_{x}^{2}$ and the existence of afree
profile by the standard argument.
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