WHAT IF λ IS A STRONG LIMIT SINGULAR CARDINAL ?

名古屋大学·人間情報学研究科 松原 洋 (Yo MATSUBARA)

Nagoya University

1. BACKGROUND

Let κ denote a regular uncountable cardinal and λ a cardinal $\geq \kappa$. Let $\mathcal{P}_{\kappa}\lambda$ denote the set $\{x \subset \lambda | |x| < \kappa\}$. We refer the reader to Kanamori [6, Section 25] for basic facts about the combinatorics of $\mathcal{P}_{\kappa}\lambda$.

Suppose I is an ideal over $\mathcal{P}_{\kappa}\lambda$. Let $I^+=\{X\subseteq\mathcal{P}_{\kappa}\lambda\mid X\not\in I\}$. Let \mathbb{P}_I denote the p.o. of members of I^+ ordered by $X\leq_{\mathbb{P}_I}Y\Longleftrightarrow X\subseteq Y$.

Definition 1.1.

We say that an ideal I is precipitous if $\Vdash_{\mathbb{P}_I}$ "Ult(V; G) is wellfounded".

Let $NS_{\kappa\lambda} = \{ X \subseteq \mathcal{P}_{\kappa}\lambda \mid X \text{ is the non-stationary} \}$. $NS_{\kappa\lambda}$ is known as the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$. For a stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$, let $NS_{\kappa\lambda} \mid X$ denote the ideal over $\mathcal{P}_{\kappa\lambda}$ defined by $Y \in NS_{\kappa\lambda} \mid X \iff Y \cap X \in NS_{\kappa\lambda}$.

Can $NS_{\kappa\lambda}$ or $NS_{\kappa\lambda} \mid X$ be precipitous?

Answer. : Yes (sometimes assuming ...).

Note The existence of a precipitous ideal has the strength of some large cardinal because it provides us with a "generic" elementary embedding of V.

Theorem 1.2 (Foreman, Magidor, Shelah, Goldring) [3][6].

If λ is regular and δ is a Woodin cardinal $>\lambda$, then $\Vdash_{Coll(\lambda,<\delta)}$ " $NS_{\kappa\lambda}$ is precipitous". $(Coll(\lambda,<\delta)$ is the Levy collapse of δ to λ^+ .)

Question. What if λ is singular?

Burke and Matsubara [1] conjectured that $NS_{\kappa\lambda}$ cannot be precipitous if λ is singular.

Definition 1.3. Let δ be a cardinal. We say that an ideal I is δ -saturated if \mathbb{P}_I satisfies the δ chain condition .

Fact. If I is a λ^+ -saturated κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$, then I is precipitous.

Note. $NS_{\kappa\lambda}$ is the minimal κ -complete normal ideal over $\mathcal{P}_{\kappa}\lambda$.

Theorem 1.4 (Foreman-Magidor) [2].

Unless $\kappa = \lambda = \aleph_1$, $NS_{\kappa\lambda}$ cannot be λ^+ -saturated.

What about $NS_{\kappa\lambda} \mid X$?

Menas' Conjecture. Every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

It turned out that Menas' Conjecture is independent of **ZFC**.

Theorem 1.5. $L \models$ "Menas' Conjecture holds".

Theorem 1.6(Gitik) [5]. Suppose that κ is supercompact and $\lambda > \kappa$. Then \exists p.o. \mathbb{P} that preserves cardinals $\geq \kappa$ such that $\Vdash_{\mathbb{P}}$ " κ is inaccessible and \exists stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$ such that X cannot be partitioned into κ^+ disjoint stationary sets".

2. MAIN RESULTS

Theorem 2.1 (Matsubara-Shelah)[9]. If λ is a strong limit singular cardinal then $NS_{\kappa\lambda}$ is nowhere precipitous (i.e. $NS_{\kappa\lambda} \mid X$ is not precipitous for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$).

Theorem 2.2 [9]. If λ is a strong limit singular cardinal then every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets.

One of the ingredients of the proof is the following lemma.

Lemma 2.3. If $2^{<\kappa} < \lambda^{<\kappa} = 2^{\lambda}$, then

- (i) every stationary subset of $\mathcal{P}_{\kappa}\lambda$ can be partitioned into $\lambda^{<\kappa}$ disjoint stationary sets and
- (ii) $NS_{\kappa\lambda}$ is nowhere precipitous. (Matsubara-Shioya).

Remark.

- (1) The hypothesis of Lemma 2.3 is satisfied if λ is a strong limit cardinal with $cf(\lambda) < \kappa$.
- (2) Under the hypothesis of Lemma 2.3, if $X \subseteq \mathcal{P}_{\kappa}\lambda$ has size $\langle 2^{\lambda} \rangle$ then X is bounded and therefore non-stationary.

For the proof of (i) see page 345 of Kanamori [8].

proof of (ii).

Consider the following game G_{ω} between two players, Nonempty and Empty.

Nonempty and **Empty** alternately choose stationary sets $X_n, Y_n \subseteq \mathcal{P}_{\kappa}\lambda$ respectively so that $X_n \supseteq Y_n \supseteq X_n$ for $n=1,2,3,\ldots$

After ω moves, Empty wins G_{ω} if $\bigcap_{n=0}^{\infty} X_n = \emptyset$

Fact. $NS_{\kappa\lambda}$ is nowhere precipitous iff **Empty** has a winning strategy in G_{ω} .

For the proof of this fact, see [4]. Let $\langle f_{\alpha} \mid \alpha < 2^{\lambda} \rangle$ enumerate functions from $\lambda^{<\omega}$ into $\mathcal{P}_{\kappa}\lambda$.

For a function $f: \lambda^{<\omega} \to \mathcal{P}_{\kappa}\lambda$, let

$$C(f)$$
 = $\{s \in \mathcal{P}_{\kappa} \lambda \mid \bigcup f"s^{<\omega} \subseteq s\}$

Fact. $X \subseteq \mathcal{P}_{\kappa}\lambda$ is stationary iff $\forall \alpha < 2^{\lambda} \ C(f_{\alpha}) \cap X \neq \emptyset$.

We now describe **Empty**'s strategy. Suppose **Nonempty** plays X_1 . Choose a sequence $\langle s^1_{\alpha} \mid \alpha < 2^{\lambda} \rangle$ from X_1 by induction on α as follow: Pick an element from

 $X_1 \cap C(f_0)$ and call it s_0^* . Given $\langle s_\alpha^1 \mid \alpha < \beta \rangle$ for some $\beta < 2^\lambda$, pick $s_\beta^1 \in X_1 \cap C(f_\beta) \setminus \underbrace{\{s_\alpha^1 \mid \alpha < \beta\}}_{\text{non-stationary}}$.

Let **Empty** play $Y_1 = \{s_{\alpha}^1 \mid \alpha < 2^{\lambda}\}$. Now suppose **Nonempty** plays X_n immediately following **Empty**'s move $Y_{n-1} = \{s_{\alpha}^{n-1} \mid \alpha < 2^{\lambda}\}.$

Choose $\langle s_{\alpha}^n \mid \alpha < 2^{\lambda} \rangle$ a sequence from X_n as follows:

Pick
$$s_0^n \in (X \cap C(f_{\beta})) \setminus \underbrace{(\{s_{\alpha}^{n-1} \mid \alpha \leq \beta\} \cup \{s_{\alpha}^n \mid \alpha < \beta\})}_{\text{non-stationary}}$$
.

Let **Empty** play $Y_n = \{s_\alpha^n \mid \alpha < 2^\lambda\}$.

Claim. This is a winning strategy for Empty

proof: We want to show that $\bigcap_{n=1}^{\infty} Y_n = \emptyset$.

Suppose otherwise, say $t \in \bigcap_{n=1}^{\infty} Y_n$. For each $n < \omega$, $\exists ! \alpha_n < 2^{\lambda}$ such that $t = s_{\alpha_n}^n$.

It is easy to see that $\alpha_n > \alpha_{n+1}$ for each n. $(s_{\beta}^n \notin \{s_{\alpha}^n \mid \alpha \leq \beta\} \text{ etc } \dots)$

We now prove Theorem 2.2 assuming Theorem 2.1 and Lemma 2.3 (i).

proof of Theorem 2.2. : Let λ be a strong limit singular cardinal . If $\mathrm{cf}(\lambda) < \kappa$ then by Lemma 2.3 (i) we are done.

Assume $cf(\lambda) \geq \kappa$. In this case $\lambda^{<\kappa} = \lambda$. So it is enough to show that $NS_{\kappa\lambda} \mid X$ is not λ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa} \lambda$.

But this is a consequence of $NS_{\kappa\lambda}$ being nowhere precipitous. In fact we know that $NS_{\kappa\lambda} \mid X$ cannot be λ^+ -saturated for every stationary $X \subseteq \mathcal{P}_{\kappa}\lambda$.

proof of Theorem 2.1. : We now tamper with the definition of $\mathcal{P}_{\kappa}\lambda$.

From now on we let $\mathcal{P}_{\kappa}\lambda = \{s \subseteq \lambda \mid |s| < \kappa, s \cap \kappa \in \kappa\}$. This set is club in $\{s \subseteq \lambda \mid |s| < \kappa\}$. The following is the advantage of this change:

 $X \subseteq \mathcal{P}_{\kappa} \lambda$ is stationary iff $\forall f : \lambda^{<\omega} \to \lambda \quad C[f] \cap X \neq \emptyset$

where $C[f] = \{s \in \mathcal{P}_{\kappa} \lambda \mid s \text{ is closed under } f\}.$

Let λ be a strong limit singular cardinal. By Lemma 2.3 (ii) we may assume that $cf(\lambda) \geq \kappa$. Let $\langle \lambda_i \mid i < cf(\lambda) \rangle$ be a continuous increasing sequence of strong limit singular cardinals converging to λ . Let $T = \{i < \text{cf}(\lambda) \mid \text{cf}(i) < \kappa\}$.

For each $i \in T$, let $E_i = \{s \in \mathcal{P}_{\kappa} \lambda \mid \sup(s) = \lambda_i, \lambda_i \notin s\}$

Note.

- (i) $|E_i| = 2^{\lambda_i}$ (ii) $\bigcup_{i \in T} E_i$ is club in $\mathcal{P}_{\kappa} \lambda$.

For each $i \in T$, let $\langle f^i_\epsilon \mid \epsilon < 2^{\lambda_i} \rangle$ enumerate all of the functions whose domain $\subseteq \lambda_i^{<\omega}$ and range $\subseteq \lambda_i$.

名古屋大学・人間情報学研究科 松原 洋 (YO MATSUBA

Definition 2.4. $C^{i}[f_{\epsilon}^{i}] = \{s \in E_{i} \mid s^{<\omega} \subseteq dom(f_{\epsilon}^{i}) \text{ and } s \text{ is close}\}$

To show $NS_{\kappa\lambda}$ is nowhere precipitous we will present a wind **Empty** in G_{ω} .

Suppose W_1 is **Nonempty**'s first move in G_{ω} . For each $i \in T$, we a "local game" where each player altenately chooses subsets of E_i **Nonempty**'s first move is $W_1 \cap E_i$.

Local game G(i)

For each $i \in T$, define a game G(i) as follows:

Nonempty and **Empty** alternately choose $X_n, Y_n \subseteq E_i$ responses $1, 2, \ldots$, so that $X_n \supseteq Y_n \supseteq X_{n+1}$ and $\forall \epsilon < 2^{\lambda_i}$ ($|C^i[f_{\epsilon}^i] \cap C^i[f_{\epsilon}^i] \cap Y_n \neq \emptyset$).

Empty wins G(i) iff $\bigcap_{n=1}^{\infty} X_n = \emptyset$.

Just as in the proof of Lemma 2.3 (ii) we can show that **Empt** strategy, say τ_i in G_i .

The following lemma tells us that we can combine τ_i 's for $i \in T$ for G_{ω} .

Lemma 2.5. Suppose $W \subseteq \mathcal{P}_{\kappa}\lambda$ is stationary. If $U \subseteq \mathcal{P}_{\kappa}\lambda$ satisficantion (#) then U is stationary.

$$(\sharp) \ For \ each \ i \in T, \ \forall \epsilon < 2^{\lambda_i} (\ |C^i[f^i_\epsilon] \cap W| = 2^{\lambda_i} \longrightarrow C^i[f^i_\epsilon] \cap U \neq$$

Now we describe **Empty**'s (combined) strategy σ in G_{ω} . Supply W_1 .

Let **Empty** play
$$\bigcup_{i \in T} \tau_i(\langle W_1 \cap E_i \rangle) \stackrel{def}{=} \sigma(\langle W_1 \rangle).$$

Suppose

$$W_1$$
 W_2 ... W_n $\sigma(\langle W_1 \rangle)$ $\sigma(\langle W_1, W_2 \rangle)$...

is the run of the game G_{ω} so far. Let

$$\sigma(\langle W_1, W_2, \ldots, W_n \rangle) \stackrel{def}{=} \bigcup_{i \in T} \tau_i(\langle W_1 \cap E_i, W_2 \cap E_i, \ldots, W_n \rangle)$$

Lemma 2.5 guarantees that σ provides **Empty** a legal move i.e. st of **Nonempty**'s last move. This σ is a winning strategy for **Emp**. The proof of Lemma 2.5 depends upon the following lemma whos theory.

Lemma 2.6. Suppose $U \subseteq \mathcal{P}_{\kappa}\lambda$. If $\forall i \in T |U \cap E_i| < 2^{\lambda_i}$, then U is To prove the last lemma, we need the following fact from pcf theo

pcf Fact. $\exists \ club \ C \subseteq cf(\lambda) \ such \ that \ pp(\lambda_i) = 2^{\lambda_i} \ for \ every \ i \in C.$

See Shelah "Cardinal Arithmetic" [12] Conclusion 5.13 page 414 and Hotz, Steffens, Weitz "Introduction to Cardinal Arithmetic" [7] Theorem 9.1.3 page 271.

REFERENCES

- 1. D. Burke and Y. Matsubara, The extent of strength of the club filters, Israel Journal of Mathematics 114 (1999), 253-263.
- 2. M. Foreman, and M. Magidor, Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on $\mathcal{P}_{\kappa}\lambda$.
- 3. M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals, and non-regular ultrafilters. Part I, Annals of Mathematics 127 (1988), 1-47.
- 4. F. Galvin, T. Jech and M. Magidor, An ideal game, Journal of Symbolic Logic 43 (1978), 284-292
- 5. M. Gitik, Nonsplitting subset of $\mathcal{P}_{\kappa}(\kappa^{+})$, Journal of Symbolic Logic 50 (1985), 881-894.
- 6. N. Goldring, The entire NS ideal on $\mathcal{P}_{\gamma}(\mu)$ can be precipitous, Journal of Symbolic Logic 62 (1997), 1162–1172.
- 7. M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser, 1999.
- 8. A. Kanamori, The Higner Infinite, Springer-Verlag, 1994.
- 9. Y. Matsubara, and S. Shelah, Nowhere precipitousness of the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$.
- 10. Y. Matsubara and M. Shioya, Nowhere precipitousness of some ideals, Journal of Symbolic Logic 63 (1998), 1003-1006.
- 11. T. Menas, On strong compactness and supercompactness, Annals of Mathematical Logic 7 (1974), 327-359.
- 12. S. Shelah, Cardinal Arithmetic, Oxford Science Publications, 1994.