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ABSTRACT. Cardinal invariants related to sequential separability of generalized Can-
tor cubes $2^{\kappa}$ , introduced by M. Matveev, are studied here. In particular, it is shown
that the following assertions are relatively consistent with ZFC:

(1) $2^{\omega_{1}}$ is sequentially separable, yet there is acountable dense subset of $2\mathrm{W}1$

containing no non-trivial convergent subsequence,
(2) $2^{\omega_{1}}$ is not sequentially separable, yet it is sequentially compact.

The work contained in this paper is devoted to studying combinatorial properties
of independent families and their relationship with sequential separability of gener-
alized Cantor cubes. Connections with $\mathrm{Q}$-sets and hence the existence of separable
non-metrizable Moore spaces is also mentioned.

Atopological space $X$ is sequentially separable if there is acountable $D\subseteq X$

such that for every $x\in X$ there is asequence $\{x_{n} : n\in\omega\}\subseteq D$ converging to
$x$ ;such a $D\subseteq X$ will be called sequentially dense in $X$ . Aspace $X$ is strongly
sequentially separable if it is separable and every countable dense subset of $X$ is
sequentially dense. Here we consider sequential separability of $2^{\kappa}$ equipped with
the product topology.

Recall that aset $A$ is apseudO-intersection of afamily $\mathcal{F}\subseteq[\omega]^{\omega}$ if $A\subseteq*F$

for every $F\in \mathcal{F}$ and, $\mathcal{F}$ is centered if every non-empty finite subfamily of $\mathcal{F}$ has
an infinite intersection. Afamily $S\subseteq[\omega]^{\omega}$ is splitting if $\forall A\in[\omega]^{\omega}\exists S\in S$

$|A\cap S|=|A\backslash S|=\omega$ . A family $\mathrm{I}$
$\subseteq[\omega]^{\omega}$ is independent provided that for every

nonempty disjoint $\mathcal{F}_{1}$ , $\mathcal{F}_{2}\in$ $[1]^{<\omega}\cap \mathcal{F}_{1}\backslash \cup \mathcal{F}_{2}\neq\emptyset$ . $\mathrm{I}\subseteq[\omega]^{\omega}$ is independent
splitting if it is both independent and splitting. The following cardinal invariants
are standard.

$\mathfrak{p}$ $= \min\{|\mathcal{F}|$ : $\mathcal{F}\subseteq[\omega]^{\omega}$ acentered system which has no infinite pseud0-
intersection}
$5= \min${ $|S|$ : $S$ is asplitting family}

F. Tall in [Ta] showed that 2’ is strongly sequentially separable for every $\kappa<\mathfrak{p}$ .
M. V. Matveev in [Ma] defined the following cardinal invariants (using different
notation)

$\mathfrak{p}_{1}=\min$ { $\kappa$ : $2^{\kappa}$ is not strongly sequentially separable},
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CARDINAL INVARIANTS RELATED TO SEQUENTIAL SEPARABILITY

$gg= \min${ $\kappa$ : $2^{\kappa}$ is not sequentially separable} and
is $= \min${ $\kappa$ : $\exists D\subseteq 2^{\kappa}$ with no non-trivial convergent sequences}

and observed that
$\mathfrak{p}_{1}=\min${ $|\mathrm{I}|$ : Iis an independent family without apseud0-intersection} and
$i\epsilon$ $= \min${ $|\mathrm{I}|$ : Iis an independent splitting family}.

He also noted that $\mathfrak{p}$ $\leq \mathfrak{p}_{1}\leq\epsilon\epsilon\leq \mathrm{c}$ and $\mathfrak{p}_{1}\leq \mathrm{i}\mathrm{s}$ $\leq \mathrm{c}$ . He asked which of the
inequalities are consistently strict and what is the relationship between $z\epsilon$ and $\mathrm{i}\epsilon$ .
The main aim of this note is to provide answers to these questions.

We assume familiarity with the method of forcing and basic theory of cardinal
invariants of the continuum. For reference consult e.g. [BJ], [B1], $[\mathrm{v}\mathrm{D}]$ or [Va]. Set
theoretic notation is standard and follows [Ku].

I. ZFC results

The proof of the following proposition can be extracted from aconstruction
contained in [DN].

Proposition I.I (Dow-Nyikos). $\mathfrak{p}_{1}=\mathfrak{p}$ .

Proof. Using Matveev’s observation it is sufficient to find an independent family
of size $\mathfrak{p}$ without apseud0-intersection. To do this fix an independent family I $=$

$\{I_{\alpha} : \alpha<\mathfrak{p}\}$ of size $\mathfrak{p}$ and acentered system $\mathcal{F}=\{F_{\alpha} : \alpha<\mathfrak{p}\}$ without apseud0-
intersection. Let A $=\{(n, m)\in\omega\cross\omega : m\leq n\}$ and let

$J_{\alpha}=(F_{\alpha}\cross I_{\alpha})\cap \mathrm{A}$ .

It is easy to see that that $\{J_{\alpha} : \alpha<\mathfrak{p}\}$ is an independent family of subsets of
$\triangle$ without infinite pseud0-intersection as if $\mathrm{Y}\subseteq\Delta$ were apseud0-intersection for
$\{J_{\alpha} : \alpha<\mathfrak{p}\}$ then $X=proj(Y)$ $=\{n : \exists m(n, m)\in \mathrm{Y}\}$ would be apseud0-
intersection of $\{F_{\alpha} : \alpha<\mathfrak{p}\}$ which is absurd. $\square$

We will use the following characterization of $\epsilon\epsilon$ . We attribute it to folklore as
we do not know how to credit it appropriately. It definitely owes to work of Tall,
Przymuszynski, Fleissner and others. For $A\subseteq\omega$ let $A^{0}=A$ and $A^{1}=\omega$ $\backslash A$ .

Proposition 1.2 (Folklore). The following are equivalent:

(1) $\kappa<\epsilon\epsilon$

(2) There is an independent family Iof size $\kappa$ such that {I : $I\in \mathrm{I}$} has an
infinite pseudO-intersection for every $f\in 2^{\mathrm{I}}$ ,

(3) There is a $Q$-set of size $\kappa$ ,
(4) There is a separable norrmal Moore space with closed discrete subset of size

$\kappa$ ,
(5) There is a nomal $\Psi$ -space of size $\kappa$ .

For proof of the non-trivial implications see e.g. [GKL]. We will need the follow-
ing easy fact in the next section
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Proposition 1.3. If $\kappa<\epsilon\epsilon$ then $2^{\kappa}=2^{\omega}$ .

Proof. As $\kappa<\epsilon\epsilon$ there is countable $D$ sequentially dense subset of $2^{\kappa}$ . Now, for
every $f\in 2^{\kappa}$ fix asubset $Df$ of $D$ which converges to $f$ . This obviously defines a
one-t0-0ne map from $2^{\kappa}$ into $\mathcal{P}(D)$ . $\square$

Corollary 1.4. $2^{\omega}<2^{\omega_{1}}$ implies $\epsilon\epsilon=\omega_{1}$ .

It is not quite obvious that the cardinal invariant $\mathrm{i}\epsilon$ is well defined. In fact, the
question of existence of an independent splitting family appeared on A. Miller’s
problem list, where he attributes it to K. Kunen. As it turns out the question was
answered along time ago by P. Simon. We include asimple construction of an
independent splitting family here.

Proposition 1.5. (P. Simon). There is an independent splitting family in $ZFC$.

Proof. Let $\{U_{n} : n\in\omega\}$ be an enumeration of abasis for the topology of the
rationals Q. Let $\{D_{n} : n\in\omega\}$ be adisjoint refinement of the family $\{U_{n} : n\in\omega\}$

and let, for each $n\in\omega$ , $\{I_{\alpha}^{n} : \alpha<\mathrm{c}\}$ be an independent family of subsets of $D_{n}$ .
Let for $\alpha<\mathrm{c}$

$J_{\alpha}’=\cup I_{\alpha}^{n}n\in\omega$
.

It is easy to see that the family $\{J_{\alpha}’ : \alpha<c\}$ is independent family of subsets of $\mathbb{Q}$

and, moreover, all combinations of its elements are dense subsets of Q.
Enumerate all infinite nowhere dense subsets of $\mathbb{Q}$ as $\{K_{\alpha} : \alpha<c\}$ and split

each $K_{\alpha}$ into two infinite subsets $M_{\alpha}$ and $N_{\alpha}$ . Finally let
$J_{\alpha}=(J_{\alpha}’\backslash M_{\alpha})\cup N_{\alpha}$

It is obvious that $\{J_{\alpha} : \alpha<c\}$ is still independent as we have made only nowhere
dense changes to dense sets and it is splitting as every infinite subset of $\mathbb{Q}$ contains
$K_{\alpha}$ for some $\alpha<\mathrm{c}$ . $\square$

While 5 is anatural lower bound on the minimal size of an independent split-
ting family, as of now, there seems to be adefinite lack of upper bounds. In an
unpublished note [Ny], P. Nyikos proved that assuming the existence of ascale
$(\mathrm{b} =\not\supset)$ , the dominating number 0is an upper bound. Anatural question arises
as to whether the assumption $\mathrm{b}$ $=V$ is necessary. However, we do not even know,
whether $5<i\epsilon$ is relatively consistent with ZFC.

Next we will point out some of the obstacles one would face trying to prove the
above consistency result. According to [KW] call afamily $S\subseteq[\omega]^{\omega}\aleph_{0}$ splitting if
for every sequence $\{A: : i\in\omega\}$ of infinite subsets of $\omega$ there is a $S\in S$ such that
$|S\cap A:|=|A:\backslash S|=\aleph_{0}$ for every $i\in\omega$ , and denote by $\aleph_{0}-\epsilon$ the minimal cardinality
of an $\aleph_{0}$ splitting familyl. Note that $\aleph_{0}-\epsilon$ is the uniformity (non(J)) for the $\sigma-$

ideal $J$ on $P(\omega)$ generated by the sets $I_{A}=$ { $B\subseteq\omega:B\subset A$ or $B\cap A=\emptyset$ }, where
$A$ is an infinite $\mathrm{c}\mathrm{o}$-infinite subset of $\omega$ . Recall that aset $X\subseteq P(\omega)$ is ageneralized
$J$-Luzin set if $X$ is uncountable and for every $A\in J$ $|X\cap A|<|X|$ .

lThe consistency of $5<\aleph 0-\epsilon$ is another open problem (see [KW] and [Br2]
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Proposition 1.5. If there is a generalized $J$-Luzin set of size $\mathfrak{p}$ then $\mathrm{i}\epsilon$ $=\epsilon$ .

Proof. We will show that given a $J$-Luzin set $X$ of size $\mathfrak{p}$ one can find $\mathrm{Y}\subseteq X$ of
the same cardinality which forms an independent family. It should be obvious then
that $\mathrm{Y}$ is indeed an independent splitting family (a subset of ageneralized J-Luzin
set of the same cardinality is itself ageneralized $J$-Luzin set). Fix ageneralized
$J$-Luzin set $X$ of size $\mathfrak{p}$ and construct afamily $\{I_{\alpha} : \alpha<\mathfrak{p}\}$ by induction as follows:
Let $I_{0}$ be any infinite $\mathrm{c}\mathrm{o}$-infinite element of $X$ . At stage $\alpha<\mathfrak{p}$ let $\{f_{\dot{1}} : i\in\omega\}$ be
a(sequentially) dense subset of 2’ and let $A_{:}$ be an infinite pseud0-intersection of

the family $\{I_{\beta}^{f\dot{\cdot}(\beta)} : \beta<\alpha\}$ for every $i\in\omega$ . Such an $A_{:}$ exists, as $\alpha<\mathfrak{p}$ $=\mathfrak{p}_{1}$ . Now,

pick $I_{\alpha}\in X$ such that $|I_{\alpha}\cap A_{:}|=|A:\backslash I_{\alpha}|=\aleph_{0}$ for every $i\in\omega$ .
It is easy to verify that the family thus constructed is indeed independent. $\square$

Corollary 1.6. If there is a Luzin or Sierpiriski set then $i\epsilon$

$=\omega_{1}$ .

Proof. It suffices to note that the ideal J defined above is $\mathrm{c}\mathrm{r}$-generated closed sets
of Haar measure zero. $\square$

II. Consistency results

Here we will include the main results of this paper. Let us first start with some
easy observations.

Theorem II.1. $Con(\epsilon\epsilon=i\epsilon =\omega_{1}<\mathrm{c})$ .

Proof. Let $V\models CH$ and let $G$ be $\mathbb{C}_{\omega_{2}}$ -generic over $V$ , where $\mathbb{C}_{\omega_{2}}$ denotes the
standard c.c.c. poset for adding $\aleph_{2}$-many Cohen reals. Let $\mathrm{I}$ $=\langle C_{\alpha} : \alpha<\omega_{1}\rangle$

be the generic sequence of Cohen reals added by $G\cap \mathbb{C}_{\omega_{1}}$ . The fact that Iis an
independent splitting family follows easily from the fact that aCohen real splits
every infinite subset from the ground model and the fact that the Cohen reals added
are mutually generic. So $i\epsilon.=\omega_{1}$ .

To see that $\epsilon\epsilon=\omega_{1}$ let $\mathrm{X}$ be aname for an independent family $\{I_{\alpha} : \alpha<\omega_{1}\}$ .
Then there is an $\alpha<\omega_{2}$ such that $\mathrm{I}\in V[G\cap \mathbb{C}_{\alpha}]$ . Let $g:\omega_{1}arrow 2$ be the generic
function added by the next $\aleph_{1}$ -many Cohen reals. Assume towards contradiction
that there is an $A\in V[G]$ which is an infinite pseud0-intersection of { $I_{\alpha}^{g(\alpha)}$ : $\alpha<$

$\omega_{1}\}$ . There is $\xi\in\omega_{2}$ such that

$A\in V[G\cap(\mathbb{C}_{\alpha+\xi}\cross \mathbb{C}_{\omega_{2}\backslash (\alpha+\omega_{1})})]$

and hence genericity implies that there is some integer $k$ such that $A\not\subset^{*}I_{\alpha+\xi+k}^{g(\alpha+\xi+k)}$ .
$\square$

It is clear that random reals would do just as well, so asimilar proof gives a
consistency of $i\epsilon$ $<\mathfrak{y}$ (just start with amodel of $MA\ 2^{\aleph_{\mathrm{O}}}>\aleph_{1}$ and add $\aleph_{2}$-many
random reals
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Theorem II.2. Con($s $<i\epsilon$).

Proof. Let $V\models$
“

$5=\omega_{2}$ and $2^{\omega_{1}}>\omega_{2}=\mathrm{c}"$ . Then $\mathrm{i}\epsilon$

$=\omega_{2}$ and by Corollary 1.3
$\epsilon\epsilon$ $=\omega_{1}$ . Such models were constructed along time ago (see e.g. $[\mathrm{v}\mathrm{D}]$ , Theorem
5.4). $\square$

Consistency of $\mathfrak{p}_{1}<\epsilon\epsilon$ follows directly from results in [D] as pointed out by J.
Brendle in [Br] (see Section III.). We will produce another model for this inequality
where moreover $i\epsilon$ $<\epsilon\epsilon$ and amodel where $\epsilon\epsilon<add(N)$ $=\epsilon$ $=\mathrm{i}\epsilon$ .

Before doing so, recall the definition of astandard forcing for adding apseud0-
intersection to agiven filter base $\mathcal{F}$. The forcing, denoted by $\mathrm{M}(\mathcal{F})$ consists of pairs
$(s, F)$ , where $s$ is a finite subset of $\omega$ and $F\in[\mathcal{F}]^{<\omega}$ , ordered by $(s, F)\leq(t, G)$

if $t$ is an initial segment of $s(s \backslash t\cap\max(t)+1=\emptyset)$ and $s\backslash t\subseteq\cap G$ . It is easy
to see that $\mathrm{M}(\mathcal{F})$ is c.c.c. (in fact $\sigma$-centered)and that forcing with $\mathrm{M}(\mathcal{F})$ indeed
produces apseud0-intersection to the filter base $\mathcal{F}$ .

As shown in Proposition II.1 the standard forcing for adding $\aleph_{1}$-many Cohen
reals adds an independent splitting family. Our strategy for proving $Con(i\epsilon <\epsilon\epsilon)$

is to first add two such families and then diagonalize all “paths” through one of
them producing awitness to $\epsilon\epsilon>\omega_{1}$ and then show that the other one remains
splitting in the extension, witnessing $\mathrm{i}\epsilon$

$=\omega_{1}$ .

Theorem II.2. $Con(\mathrm{i}\epsilon <\epsilon\epsilon)$ .

Proof. Let $V\models GCH$ . Let $\mathrm{P}$

$=\mathbb{C}_{\omega_{1}}*\mathrm{P}_{\omega_{2}}$ , where (working in $\mathrm{V}[\mathrm{H}]$ , where $H$ is
$\mathbb{C}_{\omega_{1}}$ -generic over $V$)

$\mathrm{P}_{\omega_{2}}=\langle \mathrm{P}_{\alpha},\dot{\mathbb{Q}} : \alpha<\omega_{2}\rangle$

is afinite support iteration such that $\mathrm{P}_{0}=\mathbb{C}_{\omega_{1}}$ and $1\vdash_{\mathrm{P}_{\alpha}}" \mathbb{Q}$

.
: $\alpha=\mathrm{M}(\{\dot{A}_{\beta}^{j(\beta)}$ : $\beta<$

$\omega_{1}\})"$ . Here $\dot{A}\rho$ denotes the $\beta \mathrm{t}\mathrm{h}$ Cohen real added by $\mathrm{P}_{0}$ and $j$ is a $\mathrm{P}_{\alpha}$ -name for a
function from $\omega_{1}$ to 2. By astandard bookkeeping argument one can ensure that
(somewhat loosely speaking) for every $\mathrm{P}_{\omega_{2}}$ -name $f$ for afunction from $\omega_{1}$ to 2there
is an $\alpha<\omega_{2}$ such that $|\vdash_{\mathrm{P}_{\alpha}}"\dot{\mathbb{Q}}_{\alpha}=\mathrm{M}(\{\dot{A}_{\beta}^{j(\beta)} : \beta<\omega_{1}\})"$ .

The forcing $\mathrm{P}$ satisfies the countable chain condition and has (a dense set of) size
$\omega_{2}$ so, in the extension $\mathrm{c}$ $=2^{\omega_{1}}=\omega_{2}$ . Let $G$ be $\mathrm{P}_{\omega_{2}}$ -generic over $V[H]$ . It follows
immediately from the construction, that the family $\{A_{\beta} : \beta<\omega_{1}\}$ is independent
and that the family $\{A_{\beta}^{f(\beta)} : \beta<\omega_{1}\}$ has an infinite pseud0-intersection for every
$f$ : $\omega_{1}arrow 2$ , hence by Proposition 1.2:

Claim II.3.1. $\epsilon s$ $=\omega_{2}$ in $V[H][G]$ .
The rest of the proof is devoted to showing that the independent splitting family

added by $H$ remains splitting in the extension. This will be done by showing that,
in $V[H]$ , the Boolean algebra generated by $\mathrm{P}_{\omega_{2}}$ is semi-Cohen i.e. has aclosed
unbounded set of regularly embedded countable subalgebras. Note that this implies
that every real added by $G$ is Cohen over $V[H]$ and hence, indeed, preserves that
the independent family added by $H$ remains splitting. Note that this is actuall
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quite subtle, as if we denote by $K$ the filter $G\cap \mathrm{P}_{0}$ ( $\mathbb{C}_{\omega_{1}}$ -generic over $V[H]$ ) then
there are many reals in $V[H][G]$ which are NOT Cohen over $V[H][K]$ .

So in order to finish the proof it is sufficient to prove (working in $V[H]$ ) the
following

Claim II.3.2. Let $M\prec H(\omega_{3})$ be (in $V[H]$) an elementary submodel containing
$\mathrm{P}_{\omega_{2}}$ and let $\beta<\omega_{2}$ . If $V[H][K\cap(\mathrm{P}_{0}\cap \mathrm{A}\mathrm{t})]$ $\models$

“$D\subseteq M\cap(\mathrm{P}\beta/\mathrm{P}_{0})$ is a maximal
antichain in $M\cap(\mathrm{P}\beta/\mathrm{P}_{0})"$, then $\mathrm{V}[\mathrm{H}][\mathrm{K}\models" D$ is a maximal antichain in $\mathrm{P}\beta/\mathrm{P}0$ ”.

$p|\vdash$
“

$\langle$

$q$ , $(s, \{\dot{A}_{\xi}^{\dot{f}_{\beta}(\xi)} : \xi\in\Lambda_{0}\cup \mathrm{A}\mathrm{x}\}))\in \mathrm{P}_{\beta+1}$”and $p|\vdash$
“ $j\beta \mathrm{r}$ $\Lambda_{0}\cup\Lambda_{1}=F$

”

where $\Lambda_{0}\subseteq\delta$ and $\Lambda_{1}\cap\delta=\emptyset(\Lambda_{1}\cap M=\emptyset)$ and $F:\Lambda_{0}\cup\Lambda_{1}arrow 2$ .
Without loss of generality we can assume that $\max(s)=\max(dom(p(\gamma)))$ for

every $\gamma\in\Lambda_{1}$ . (If necessary, find $n>dom(p(\gamma))$ for $\gamma\in\Lambda_{1}$ and extend $p$ to a $p-$ so
that, for $m\leq n$ and $\gamma\in\Lambda_{1}$

$\overline{p}(\gamma)(m)=\{\begin{array}{l}p(\gamma)(m)\mathrm{i}\mathrm{f}m\in dom(p(\gamma))1\mathrm{i}\mathrm{f}m=n\mathrm{a}\mathrm{n}\mathrm{d}F(\gamma)=00\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\end{array}$

and let $\overline{s}=s\cup\{n\}.)$

Denote by $\overline{D}$ the downward closure of $D$ and let

$D^{*}=$ { $q\in(\mathrm{P}_{\beta}/\mathrm{P}_{0})\cap M$ : $\{\dot{q}’\in\dot{\mathbb{Q}}_{\beta}$ : $\langle q,\dot{q}’\rangle\in\overline{D}\}$ is dense}.

The set $D^{*}$ is adense subset of $(\mathrm{P}_{\beta}/\mathrm{P}_{0})\cap M$ so, by the inductive hypothesis,
$D^{*}$ is pre-dense in $\mathrm{P}_{\beta}/\mathrm{P}_{0}$ . Choose $\overline{q}\leq q$ such that $\overline{q}\leq r$ for some $r\in D^{*}$ and
$(b, \Gamma)\in\dot{\mathbb{Q}}_{\beta}$ such that $p|\vdash$

“ $\langle\overline{q}, (b, \Gamma)\rangle\leq\langle q, (s, \Lambda_{0})\rangle"$ . Now, using that $\max(s)=$

$\max(dom(p(\gamma)))$ for every $\gamma$
$\in\Lambda_{1}$ , extend $p$ to a $p-$ so that

$\overline{p}|\vdash$
“

$b\backslash s\subseteq\cap\gamma\in\Lambda_{1}\dot{A}_{\gamma}^{F(\gamma)}$

”

by letting

$\overline{p}(\gamma)(m)=\{\begin{array}{l}p(\gamma)(m)\mathrm{i}\mathrm{f}m\in dom(p(\gamma))1\mathrm{i}\mathrm{f}m\in b\backslash s\mathrm{a}\mathrm{n}\mathrm{d}F(\gamma)=00\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\end{array}$

for $\gamma$
$\in\Lambda_{0}\cup\Lambda_{1}$ and $m \leq\max(b)$ . Then

$\overline{p}\mathrm{I}\vdash$

“ $\langle\overline{q}, (b, \Gamma)\rangle\leq\langle q, (s, \Lambda_{0}\cup\Lambda_{1})\rangle$
”
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which is what we needed to prove.
$\beta$ limit. Fix $D$ and let $p\mathrm{I}\vdash"\dot{q}\in \mathrm{P}\beta/\mathrm{P}_{0}"$ . Then there is a $p’$ and $\gamma<\beta$ such

that $p’|\vdash" q$
.

$\in \mathrm{P}_{\gamma}’$ . The conclusion then follows easily as the set $D^{*}=\{q\in$

$(\mathrm{P}_{\gamma}/\mathrm{P}_{0})\cap M$ : $\{\dot{q}’\in M\cap(P\beta/\mathrm{P}_{\gamma}) : \langle q,\dot{q}’\rangle\in\overline{D}\}$ is dense} is dense in $M\cap(\mathrm{P}7/\mathrm{P}\mathrm{o})$ ,
hence by the induction hypothesis pre-dense in $\mathrm{P}_{\gamma}/\mathrm{P}_{0}$ . $\square$

The same conclusion probably also holds in amodel constructed in [FM]. Note
that the model constructed in Theorem II.3 shares many of the properties of the
Cohen model (model used in Theorem II.1). For instance, $cov(\mathcal{M})=\mathrm{c}$ , and
non(M) $=\omega_{1}$ in fact there is aLuzin set, in both models.

Next we will show, that not only $\mathit{5}S$
$<\mathrm{i}\epsilon$ is consistent (as shown by Theorem II.2)

but it is possible to lower $\epsilon\epsilon$ while leaving “most” cardinal invariants large. Recall
that an $\omega_{1}$ tree $T$ is aSuslin tree if it has no uncountable chains or antichains.
When used as aforcing notion $T$ (turned up-side-down) is ac.c.c partial order
which is does not add any new reals. We will show that if $V\models$

“$MA_{\sigma-centered}+$

There is aSuslin tree $T$”and if $G$ is $T$-generic over $V$ then $V[G]\models gg$ $=\omega_{1}$ . Note
that such amodel can be obtained e.g. by adding asingle Cohen real to amodel of
MA (see [BJ]). In this model, however, add(N) $=cov(N)$ $=\omega_{1}$ (see [BJ]). There
is away, however, to construct amodel of $MA_{\sigma-centered}+\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ is aSuslin tree
where, moreover, add$(Af)=\mathrm{c}$ .

Theorem II.4. Cm$(\epsilon\epsilon<add(N)=5=\mathrm{c})$ .

Proof. Let $V\models MA_{\sigma-centered}$ , add(N) $=\mathrm{c}$ $+\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ is aSuslin tree $T$ . Let $G$ be
$T$-generic over $V$ .

First note that as $T$ is c.c.c. all cardinalities and cofinalities of ordinals are
preserved. Moreover, as $.|T|=\omega_{1}$ , $V[G]\models \mathrm{c}$ $=\mathrm{c}^{V}$ . To see that $5=\mathrm{c}$ note that,
since $T$ adds no reals, if $S$ were aname for asplitting family of size less than $c$ then
the family

$\{S\in[\omega]^{\omega} : \exists t\in T t|\vdash" S\in\dot{S}"\}$

would be asplitting family of size less than $\mathrm{c}$ in $V$ , which contradicts $MA_{\sigma-centered}$ .
Asimilar proof gives $V[G]\models add(N)=\mathrm{c}$.

So the only thing left to prove is that $\epsilon\epsilon$ $=\omega_{1}$ , in other words, no countable
dense subset of $2^{\omega_{1}}$ is sequentially dense. Without loss of generality we can assume
that $T\subseteq 2^{<\omega_{1}}$ and that it is well-pruned and everywhere branching (i.e. $\forall t\in T$

$t^{\wedge}\mathrm{O}$ , $t^{\wedge}1\in T)$ . While $T$ adds no new reals it does add new elements of $2^{\omega_{1}}$ . Aiming
towards acontradiction let 4be a $T$-name for afunction ffom $\omega$ to $2^{\omega_{1}}$ and assume
that $|\vdash_{T}$

“$rng(\dot{\Phi})$ is sequentially dense. Let 0be aregular cardinal such that
$T\in H(\theta)$ . Put

$C$ $=\{M\cap\omega_{1} : M\prec H(\theta)\ \dot{\Phi}, T\in M\}$

and increasingly enumerate $C$ as $\{\delta_{\alpha} : \alpha<\omega_{1}\}$ . Now let $j$ be a $T$ name for an
element of $2^{\omega_{1}}$ defined by $p|\vdash"\dot{f}(\alpha)=i$” if and only if $\delta_{\alpha}\in dom(p)$ and $\mathrm{p}(\mathrm{S}\mathrm{a})=i$ .
To finish the proof it is sufficient to show that
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Claim. $|\vdash_{T}$ “There is no sequence in $rng(\dot{\Phi})$ conveyying to j”.

Assume the contrary, i.e. there is a $p\in T$ and an $h\in\omega^{\omega}$ such that $p|\vdash"\Phi$

.
$\circ harrow$

$j”$ . Note that this is without loss of generality as $T$ does not add any new reals.
Now, however, pick $M\prec H(\theta)$ such that $p$ , $T$, $\Phi\in M$ and let $\rho=M\cap\omega_{1}$ . Then
$\rho=\delta_{\alpha}$ for some $\alpha\leq\rho$ and without loss of generality $\alpha<\rho$ . Let $q\in T_{\rho}$ , $q\supset p$ .
Then $q$ decides the value of $\Phi$

.
$(n)(\alpha)$ for every $n\in\omega$ , yet it does not decide the

value of $j(\alpha)$ as $q^{\wedge}i\mathrm{I}\vdash$
“$j(\alpha)=\mathrm{i}\mathrm{n}$ . Now, it is easy to reach acontradiction; If there

are infinitely many $n’ \mathrm{s}$ such that $q|\vdash"\dot{\Phi}(n)(\alpha)=0$”let $q’=q^{\wedge}1$ otherwise let
$q’=q^{\wedge}\mathrm{O}$ . In either case $q’|\vdash"\dot{\Phi}\circ h\star j$ ” which is absurd. $\square$

Let us point out the curious nature of the cardinal invariant $\epsilon\epsilon$ . It is proved
(though not stated) in [JS] that it is consistent that $\epsilon\epsilon=\omega_{2}$ yet all invariants
from the Cichon diagram are small. On the other hand, Theorem II.4 shows that
consistently $gg<add(N)$ , so there is no relation between $\epsilon\epsilon$ and most “standard”
cardinal invariants of the continuum.
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