obooo0o0oooOooo 120560 20010 59-64

59

Lockout Avoidance Algorithms without Using Time-Stamps for
the k-Exclusion Problem

Michiko Omori, Kumiko Obokata, and Yoshihide Igarashi

(k% BF) (MEF AET) (E+HE EH)

Department of Computer Science, Gunma University, Kiryu, Japan 376-8515

(BB KFLEFE)

E-mail:igarashi@comp.cs.gunma-u.ac.jp

Abstract

We propose two lockout avoidance algorithms for the k-exclusion problem without using
time-stamps on asynchronous multi-writer /reader shared memory model. The first algorithm
is a modification of the n-process algorithm for the mutual exclusion problem by Peterson or
its variation. The second algorithms is a combination of the first algorithm and the tourna-
ment algorithm for the mutual exclusion problem by Peterson and Fisher. The correctness
and efficiencies of these algorithms are shown.
key words: asynchronous processes, concurrent computation, k-exclusion, lockout avoid-
ance, shared memory

1 Introduction

The k-exclusion problem is a natural extension of the mutual exclusion problem. In k-exclusion,
some number of processes. specified by the parameter k. are allowed to be concurrently inside
the critical region. where corresponding users can use the resource. The solution by Fischer et
al.[5] can tolerate the slowdown or even the crash (i.e., stopping failure) of up to k& — 1 processes,
but it was based on the use of a powerful primitive. read-modify-write. It is a first-in, first-
enable solution to the k-exclusion problem. Afek et al.[1] gave another solution to the first-in,
first-enable k-exclusion problem. Unlike the solution by Fischer et al. this solution does not use
a powerful read-modified-write primitive. By use of a concurrent time-stamp system [2, 3, 4]. it
requires only bounded read/write shared memory [1].

In this paper we propose two algorithms without using concurrent time-stamps for the &-
exclusion problem on the asynchronous multi-writer /reader shared memory model [8]. The first
algorithmm is a modification of the n-process algorithm for the mutual exclusion problem by
Pcterson [11] or a variation of the algorithm accelerated by Igarashi and Nishitani [7]. The
second algorithm is a combination of the first algorithm and the tournament algorithm for the
mutual exclusion problem by Peterson and Fisher [12]. We only consider the simplest type
of process failures: stopping failure, whereby a process just stops without warning. Both the
algorithms are immune to stopping failures of fewer than k processes. These algorithms are
simple and lucid, but not first-in, first-enable. All logarithms in this paper are to the base 2.
The shared memory size for the first algorithm is (n — k)[log n] + nflog(n — k + 1)] bits. We
describe our algorithms in terms of I/O automata [8, 10]. In order to estimate upper bounds
on the running times of the algorithms, we impose an upper bound of / on the time between

60

successive atomic steps of each faultless process in the trying region and the exit region. and
an upper bound of ¢ on the time that any user spends in its critical region. The running time
by the first algorithm and the running time by the second algorithin for the trying regions arc
bounded by (n — k)c + O(n(n — k)?)! and (%)"'c + O((%)k"'lk)l. respectively.

2 Preliminary

The computation model used in this paper is the asynchronous multi-writer /reader shared me-
ory model. It is a collection of processes and shared variables. Interactions between a process
and its corresponding user are by input actions from the user to the process and by output
actions from the process to the user. The model is called an I/O automaton [9].

A user with access to the resource is modeled as being in a critical region. When a user is
not involved in the resource, it is said to be in remainder region. In order to gain admittance to
its critical region, a process executes a trying protocol. The duration from the start of cxccuting
the trying protocol to the entrance of the critical region is called the trying region. After the
end of the use of the resource by a user, the corresponding process executes an exit protocol.
The duration of executing the exit protocol is called the exit region. These procedures can be
repeated in cyclic order, from its remainder region to its trying region. then to its critical region.
then to its exit region, and then back again to its remainder region. The k-exclusion problem is
to devise protocols for at most k processes to be concurrently in the critical region.

We assume that the n processes are numbered 1,:--,n. Each process 7 corresponds to uscr
Ui (1 £ 1 < n). The inputs to process ¢ from user U; are try; which means a request by uscr
U; for access to the resource, and exits; which means an announcement of the end of the usc of
the resource by U;. The output from process i to user U; are crit; which means the grant of the
resource to U;. and remn; which tells U; that it can continue with the rest of its work. These are
external actions of the shared memory system.

The system to solve the A-exclusion problem should satisfy the following conditions.

(1) There is no reachable system state in which more than k processes are in the critical region.

(2) If at least one faultless process is in the trying region and less than & processes arc in the
critical region, then at some later point some process enters the critical regiou.

(3) If a faultless process is in the exit region, then at some later point the process euters the
remainder region.

(4) If all users always return the resource and if the number of faulty processes of the stopping
type is at most f < k. then any faultless process wishing to enter the critical region
eventually does so.

Conditions (1), (2), (3) and (4) above are called A-exclusion. progress for the trying region,
progress for the exit region, and k-lockout avoidance, respectively.

3 A lockout avoidance algorithm with n — k levels

Previous algorithms on the shared memory model for the k-exclusion problem use concurrcnt
time-stamp systems [1, 5, 6]. We propose a lockout avoidance algorithm without using tinic-
stamps on the multi-writer/reader share memory model. In the n-process algorithm by Pecterson
[7, 11] for the mutual exclusion problem, to move process z from level s to level s+1 the condition
[Vj # ¢ : flag(j) < s] or [turn(s) # i] should be satisfied. We modify the first part of the
condition in the waitfor statement.

61

procedure (n,k)-EXCL
shared variables
for every s € {1,...,n — k}:
turn(s) € {1,...,n}, initially arbitrary, writable and readable by all processes;
for cvery i € {1,...,n}:
flag(i) € {0, ...,n — k}, initially 0, writable by ¢ and readable by all 5 # i;

process i
input actions {inputs to process i from user U;}:
try;, exit;;
output actions {outputs from process i to user U;}:
crit;, remy;

** Remainder region **

try;:
for s=1ton—k do
begin
flag(i) := s;
turn(s) :=1;
waitfor [[{jl7 # i : flag(j) > s}| < n—s— 1] or [turn(s) # i]
end;
crit;;
** Critical region **
exit;:
flag(i) == 0;
e,

For cach level s (1 < s < n — k). statement waitfor[|[{j|j # ¢ : flag(j) > s}| < n—s—1]
or [turn(s) # i] in (n.k)-EXCL is not atomic step. It consists of a number of atomic steps for
checking the condition by process ¢ at level s. This means that for cach s, the contents of the
local variable count docs not nccessarily represent the number of other processes that locate
at level s or above. Since the shared memory used in this paper is not the read-modified-write
model. this uncertainty cannot be avoided. Nevertheless the uncertain information about the
number of processes at level s or above in the local variable count together with the contents of
shared mewmory turn(s) is good enough to guarantee A-cxclusion as shown in Section 4.

4 Correctness for (n,k)-EXCL

For a faultless process, either it takes an infinite number of steps or it ends in the remainder
region. We assuuic that the number of process failures is always at most & — 1. In an execution
by (n,k)-EXCL, process ¢ is said to be a winner at level s if it has left the waitfor statcment
in the sth loop of the for statement. Note that if a process is a winner at level s then for any
1 <t < s, the process is also a winner at level ¢. For each 2 (1 < ¢ < n), when process ¢ has
cntered its exit region, the qualification for the winner of process 4 is cancelled. The proofs of
the lennas and the theorems in this section are omitted due to the page limit.

Lemma 1 In any reachable system state of (n.k)-EXCL, the number of winners at level 1 is
less than n.

Lemma 2 In any reachable system state of (n.k)-EXCL, for any 1 < s < n — k there are at
most n — s winners at level s.

62

Theorem 3 (n,k)-EXCL guarantees k-exclusion even if any number of process failures of the
stopping type exist.

In order to prove progress for the trying region and A-lockout avoidance. it is cnough to give
a time bound for the trying region in the casc where at most & — 1 stopping failures of processes
exist.

Theorem 4 Suppose that the number of stopping failures of processes is always at most k — 1.
In (n,k)-EXCL, the time from when a fauh‘l(’es‘ process enters its trying region until the process
enters its critical region is at most (n — k)e+ O(n(n — k)?)1.

The following theorem is from Theorem 3 and Theorem 4.
Theorem 5 (n.k)-EXCL solves the k-exclusion problem, and it is k-lockout avoidance.

The running time of (n, k)-EXC L in the trying region for a process is (n—k)e+O(n(n—k)?)l.

It is possible to construct a scenario of process behavior that leads the running tine of a process

in the trying region as slow as the running time bound given in Theorem 4. The running time

of (n,k)-EXCL is not good compared with other methods. However. for a large & such as
— k= 0(1) or n — k = o(n), the algorithi is fast.

5 A group tournament algorithm

In this scction, for the technical reason we number the processes as 0.---.n — 1 rather than
1,---,n. We denote the null secquence by A. For a sct of processes G, thc lower half of G is
the sct of [|G|/2] lower numbered processes of G. and the upper half of G is the sct of ||G|/2]
higher numbered processes of G.

Let T("* be the complete binary tree with depth [log(n/(k +1))]. Such a tree is called a
tournament trec. Each node of T(™*) is labeled by the following rule:

(1) The root of the tree is labeled by A.
(2) The left son and the right son of a node with label x arc labeled by 20 and 1. respectively.

Let bl(n,k) = |log(n/(k + 1))]. For each binary scquence x with a length not longer than
bl(n, k). G, is a set of processes defined as follows: Gy = {0,---,n—1}. If z = 2'0 then G,
is the lower half of G,. and if z = 21 then G, is the upper half of G,.. For cach node x of
T the node z is associated with the sct of processes G,.. For integer pairs, (2,)’s. we usc
the lexicographic order. For each pair of 0 <i <n—1and 0 <t < bl(n, k). g(i.t) is defined
to be z if |z| = ¢ and ¢ belongs to G,. From the definitions of G, and bl(n, k), ¢(i.t) is a well
defined function on {(,2)[0 <i<n—1,0<t < bl(n.k)}.

For a leaf z of T(™*), a process ¢ in G, joins the competition for G, whenever i cnters its
trying region. We apply the technique used in procedure (n,k)-EXCL to the competitions.
Each process engages iu a series of & - bl(n., k) + |G yi pi(n.k))| — F competitions. Then the number
of final winners of the competitions for G, is at most &. For an inner node z of T(**), final
winners from G,¢ and G, can join the competitions for G,. Then for these winners from the
competitions for G, and G,; we apply again the technique used in procedure (n.k)-EXCL
to the competitions for G,. Repeating this way, we can choose at most & final winners of the
competition for G). These final winners are allowed to enter their critical regions.

Hereafter, for simplicity we assume that n = 2¢(2k) for a nonnegative integer t. For a general
value for n, we neced only minor modifications. The following procedure (n.k)-GTEX is the
group tournament algorithm for the k-exclusion problem, where n = 20/"¥)(2k).

63

procedure (n.k)-GTEX
shared variables
for cvery (2, s) such that 0 < |z| < bl(n. k), 1 <s< k:
turn(z, s) € G, initially arbitrary, writable and readable by all processes in G, ;
for cvery ¢ € Gy:
flag(i) € {(a,b)|0 < a < bl(n,k),1 < b <k},
initially (0,0), writable by ¢ and readable by all j # ¢;

process i '
input actions {inputs to process i from user U;}:
try;. exit;;
output actions {outputs from process ¢ to user U;}:
crit;, rem;;

** Remainder region **
try;:
for p =0 to bl(n, k) do
forg=1to k do
begin
flag(d) :== (p.q);
turn(g(z, bl(n, k) — p).q) :==1;
waitfor [l{]lj # ‘L.j € Gg('i.,bl(n,k)—p) : fla‘g(]) 2> (p;(I)}l <2k - g—1 or
turn(g(i. bl(n, k) — p).q) # 1]
end;
crit;;
** Critical region **
exit;:
flag(i) :== (0, 0);
rems;

6 Correctness for (n,k)-GTEX

In an exccution of (n. k)-GTEX, process i is said to be a winner at (p, q) for Gy(; pi(n,k)—p) if the
process has left the waitfor statetnent in the gqth inner for loop of the pth outer for loop. If a
process ¢ is a winner at (p, q) for Gy(; pi(n.k)—p)- then for any (p'.¢') < (p, q) the process is also a
winner at (p', ¢') for G y(; pi(n.k)—py- For cachi (0 <4 < n—1), when process ¢ has entered its exit
region, the qualification as a winner for process 7 is cancelled. In an execution by (n, k)-GTEX,
if we say a competition at (p.q), it means a competition at level ¢ of a group competition in
G, associated with a node in depth bl(n. k) — p of T(**) The proofs of the lemmas and the
theorems in this section are omitted due to the page limit.

Lemma 6 In any reachable system state of (n,k)-GTEX, for any (p,q) (0 < p < bl(n,k)) and
any binary sequence x of length bl(n,k) — p, the number of winners in G, at (p,q) is at most
2k —q.

Theorem 7 (n.k)-GTEX guarantees k-exclusion even if any number of process failures of the
stopping type exist.

Theorem 8 Suppose that the number of stopping failures of processes is always ot most k — 1.
In (n.k)-GTEX. the time from when a faultless process enters its trying region until the process
enters its critical region is at most (%)""c + O((%)k“k)l.

Theorem 9 (n.k)-GTEX solves the k-exclusion problem, and it is k-lockout avoidance.

64

7 Concluding remarks

We hLave proposed a lockout avoidance algorithms for the k-cxclusion problem without using
concurrent time-stamps on asynchronous multi-writer/reader shared memory model. In a ex-
ecution by (n,k)-EXCL or (n,k)-GTEX, each process observes the number of winners at a
level, but its observation is somewhat uncertain. We showed that such uncertain information
is still useful to guarantee k-exclusion and k-lockout avoidance. Each of two algorithms given
in this paper, (n,k)-EXCL and (n,k)-GTEX has a simple structure and can be easily imple-
mented although its performance in time and space is not best. We are interested in a problem
whether some modification of these algorithms can reduce the shared memory size. We arc also
interested in a problem whether we can speed up our algorithm by some modification. The
k-assignment problem is closely related to the k-exclusion problem. These problems would be
worthy of further investigation.

References

(1] Y.Afek, D.Dolev. E.Gafni, M.Merritt, and N.Shavit, “A bounded first-in, first-cnable solution
to the l-exclusion problem”, ACM Transactions on Programming Languages and Systems.
vol.16, pp.939-953, 1994.

[2] H.Attiya and J.Welch, “Distributed Computing: Fundamentals, Simulations and Advanced
Topics”, McGraw-Hill, New York, 1998.

[3] D.Dolev and N.Shavit. “Bounded concurrent time-stamp systems are constructible”. 21st
Annual ACM Symposium on the Theory of Computing, New York, pp.454-465. 1989.

[4] C.Dwork and O.Waarts. “Simple and efficient bounded concurrent timestamping or bounded
concurrent timestamp systems are comprehensible”, 24th Annual ACM Symposium on the
Theory of Computing, Victoria. British Columbia. pp.655-666, 1992.

[5] M.J.Fischer, N.A.Lynch, J.E.Burns. and A.Borodin, “Resource allocation with inununity to
limited process failure”. 20th Annual Symposium on Foundations of Computer Science. San
Juan, Puerto Rico, pp.234-254, 1979.

[6] M.J.Fischer, N.A.Lynch, J.E.Burns. and A.Borodin, “Distributed FIFO allocation of identi-
cal resources using small shared space”, ACM Transactions on Programming Languages and
Systems, vol.11, pp.90-114, 1989.

[7] Y.Igarashi and Y.Nishitani, “Speedup of the n-process mutual exclusion algorithi™. Parallel
Processing Letters, vol.9, pp.475-485, 1999.

[8] N.A.Lynch, “Distributed Algorithms”, Morgan Kaufinann, San Francisco., California. 1996.

[9] N.A.Lynch and M.J.Fischer, “On describing the behavior and implementation of distributed
systems”, Theoretical Computer Science, vol.13, pp.17-43. 1981.

[10] N.A.Lynch and M.R.Tuttle, “Hierarchical correctness proofs for distributed algorithis™,
6th Annual ACM Symposium on Principle of Distributed Computing, Vancouver. British
Columbia, pp.137-151, 1987.

[11] G.L.Peterson, “Myths about the mutual exclusion problem”. Information Processing Let-
ters, vol.12, pp.115-116, 1981.

[12] G.L.Peterson and M.J.Fischer, “Economical solutions for the critical section problewm in a
distributed system”, Proceedings of the 9th Annual ACM Symposium on Theory of Com-
puting, Boulder, Colorado. pp.91-97, 1977.

