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Abstract
Auniquely parsable grammar (UPG) introduced by Morita et al. (1997) is aspecial kind of

generative grammar where parsing can be performed without backtracking. By extending aUPG,
auniquely parallel parsable grammar (UPPG) was proposed and its unique parallel parsability has
been investigated. In this paper, we show any one dimensional cellular automaton (CA), as aparallel
language recognition device, can be simply simulated by aparallel reduction in an equivalent UPPG.

1Introduction
Auniquely parsable grammar (UPG) [10] is aspecial kind of generative grammar where parsing can be
performed without backtracking. Rewriting rules of aUPG satisfy the following condition: If asuffix
of the righthand side of arule matches with aprefix of that of some other rule, then the overlapping
portions remain unchanged by the reverse application of these rules. By this condition, UPGs have a
kind of confluence property, and thus parsing can be performed deterministically. By extending aUPG,
auniquely parallel parsable unification grammar (UPPUG) [8] has been proposed. It is aunification
grammar (UG) version of aUPG in which parallel parsing is also possible.

Asimplified version of aUPPUG is auniquely parallel parsable grammar (UPPG) such that every
function symbol is of arity 0. In order to define parallel reduction (i.e., parallel parsing) properly, a
“context index” is associated to each rewriting rule in aUPPG, which explicitly specifies the left- and
right-context portions of arewriting rule. Thus rewriting rules of aUPPG satisfy the following condition:
If asuffix of the righthand side of arule matches with aprefix of that of some other rule, then each of
these portions is contained in the context portion of each rule. By this, unique parsability also holds
for UPPGs. Furthermore, any number of reverse applications of rules to astring can be performed in
parallel without interfering each other.

Acellular automaton is one of the fundamental models of parallel computation. Fast language recog-
nition by one-dimensional cellular automata (CA) in parallel has been widely studied so far [1, 2, 3, 6,
12, 13, 14]. In this paper, we show aparallel language recognition process in aone-dimensional cellular
automaton can be simply simulated by aparallel reduction in an equivalent UPPG in real time plus 3
steps in the case of aone-way CA (OCA) and in linear time in the case of atwo way $\mathrm{C}\mathrm{A}$ .

2Preliminaries
Note in this paper, we omit the definitions and known results on uniquely parsable grammars (UPG),
uniquely parallel parsable grammars (UPPG), and cellular automata that are needed in the following
sections. See [7, 8, 10] for the details of UPGs and UPPGs. See also $[4, 11]$ for the basic notions of formal
languages.

3Simulation of CAs by UPPGs
Definition 3.1 Let $L\subseteq Q_{0}^{+}$ be a language and $T:\mathrm{N}arrow \mathrm{N}$ be a function. We say $L$ is a $T(n)$ time
recognizable $CA(OCA)$ language if it can be recognized by some $CA(OCA)C=(Q, Q\circ, Qf, \#, fc)$ in
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time $T^{\ovalbox{\tt\small REJECT}}(77_{\ovalbox{\tt\small REJECT}})$ . Moreover, L is said to be a real-time recognizable CA(OCA) language iff $T(\mathrm{n})\ovalbox{\tt\small REJECT}$ n. Also $L$

is said to be a linear-time recognizable CA(OCA) language iff $T^{\ovalbox{\tt\small REJECT}}(\mathrm{r}\mathrm{r})\ovalbox{\tt\small REJECT}$ kn for some positive integer k.

Theorem 3.1 Let $L$ be a real-time $OCA$ language. Then there exists a UPPG $G$. such that $\mathrm{L}\{\mathrm{G})=L$ ,
and each string $w\in L$ can be parsed in exactly $|w|+3$ steps by a maximum parallel reduction in $G$ .

Proof. Assume $C=(Q, Q\mathrm{o}, Qf, \#, fc)$ be aone-way cellular automaton that recognizes $L$ in real-time
$(L\subseteq Q_{0}^{+})$ . Suppose $Q=\{a_{1}, \cdots, a_{m}\}$ and $Q\mathrm{o}=\{a_{1}, \cdots, a\iota\}$ $(l<m)$ . Let $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ be astring in $L$ ,
and the space time diagram of recognition of this string by $C$ be as follows.

$t=0$ : $a_{1}^{0}a_{2}^{0}\cdots a_{\{^{-1}}^{0}a_{\{}^{0}\cdots a_{n-1}^{0}a_{n}^{0}$

$t=1$ : $a_{1}^{1}a_{2}^{1}\cdots a_{9^{-1}}a_{\dot{9}}\cdots a_{n-1}^{1}a_{n}^{1}$

$t=2$ : $\Delta a_{2}^{2}\cdots$
$a_{j-1}a_{j}\cdots$ $a_{n-1}^{2}a_{n}^{2}$

.$\cdot$.
$t=j$ : $\Delta\Delta\cdots$ $\Delta$ $a_{j}^{j}\cdots a_{n-1}^{j}a_{n}^{j}$

.$\cdot$.
$t=n-1$ : $\Delta\Delta\cdots$ $\Delta$ $\Delta\cdots a_{n-1}^{n-1}a_{n}^{n-1}$

$t=n$ : $\Delta\Delta\cdots$ $\Delta$ $\Delta\cdots$ $\Delta$
$a_{n}^{n}$

where $a_{\dot{l}}^{l}\in Q(1\leq i, l\leq n)$ and $a_{n}^{n}\in Q_{f}$ . Note $\Delta$ represents those cells whose states do not influence the
real-time recognition result any more, thus can be ignored.

Now, we construct aUPPG $G$ that generates $L$ , and show the language recognition process in $C$ can
be easily simulated by aparallel reduction in $G$ . Let $G=$ $(N, Q\mathrm{o}, P, S,$ be aUPPG where

$N=\{S, S’, S’\}\cup\{A_{1}, \cdots, A_{m}\}\cup\{*\}$ .

The set $P$ of rules is as follows.

(i) For each $a:\in Qf$ include the following rule in $P$ .

$[Sarrow S’A:S’, (0,0) ]$

(ii) For each $a_{i}$ , $a_{j}$ , $a_{h}\in Q$ and $fc(a:, aj)=a_{h}$ , including the following rule in $P$ .

$[A_{h}*A_{h}arrow A:A_{j^{*}}, (0,0)]$

(iii) For each $a:$ , $a_{j,h}a\in Q$ and $fc(\#, a:)=aj$ , include the following rules in $P$ .

[[ $S’ A_{j}$ $arrow$ $A$:*$ , (1, 0)]
$S’arrow S’A_{h^{*}}$ , $(1, 0)]$

(iv) For each $a:\in Q-Qf$ include the following rules in $P$ .
$[ S”\arrow A_{:}\, (0, 1)]$

$[ S’arrow A_{i}S’, (0,1)]$

(v) For each $a_{\dot{|}}\in Q\mathrm{o}$ include the following rule in $P$ .
$[A:*A:arrow a:, (0,0)]$

It is easy to verify that $G$ is aUPPG. Consider the string $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ in $L$ . Using rules in (v) we
obtain the following maximum parallel reduction.

$a_{1}^{0}a_{2}^{0}\cdots a_{j-1}^{0}a_{j}^{0}\cdots a_{n}^{0}$

$\hat{G}$

$A_{1}^{0}*A_{1}^{0}A_{2}^{0}*\cdots A_{j}^{0}*A_{j}^{0}\cdots A_{n-1}^{0}A_{n}^{0}*A_{n}^{0}$
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Note this sentential form exactly corresponds to the initial configuration in $C$ , where the state $a_{j}^{0}$ of j-th
cell is given by asubstring $A_{j}^{0}*A_{j}^{0}$ for each $1\leq j\leq n$ . After that, by reversely aPPlying rules in (ii) to
each substring of the form $AiAj^{*}$ in asentential form simultaneously, state transition of $C$ is properly
simulated in $G$ . At the same time, by using rules in (iii) and (iv), we remove those substrings whose
corresponding cells in $C$ are not needed in the subsequent computation. Since $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ is recognized
by $C$ in real time, after $n+2$ steps of maximum parallel reduction, we obtain $S’A_{n}^{n}S"$ with $a_{n}^{n}\in Q_{f}$

that can be reduced to $5$ by reverse application of the rule in (i). The whole parallel parsing process
is as follows.

$a_{1}^{0}a_{2}^{0}\cdots a_{j-1}^{0}a_{j}^{0}\cdots a_{n}^{0}$

$\Leftarrow$ $A_{1}^{0}*A_{1}^{0}A_{2}^{0}*\cdots A_{j-1}^{0}*A_{j-1}^{0}A_{j}^{0}*\cdots A_{n-1}^{0}A_{n}^{0}*A_{n}^{0}$

$\Leftarrow$ $S’A_{1}^{1}A_{2}^{1}*A_{2}^{1}\cdots$ $A_{j-1}^{1}*A_{j-1}^{1}A_{j}^{1}*A_{j}^{1}\cdots$ $A_{n-1}^{1}A_{n}^{1}*A_{n}^{1}$ S”$
$\Leftarrow$ $S’A_{2}^{2}*A_{2}^{2}\cdots$ $A_{j-1}^{2}*A_{j-1}^{2}A_{j}^{2}*A_{j}^{2}\cdots$ $A_{n-1}^{2}A_{n}^{2}*A_{n}^{2}$ S”$

.$\cdot$

.

$\Leftarrow$ $S’A_{j}^{j}*A_{j}^{j}\cdots$ $A_{n-1}^{j}A_{n}^{j}*A_{n}^{j}S’$

.$\cdot$

.

$\Leftarrow$ $S’A_{n-1}^{n-1}*A_{n-1}A_{n}^{n-1}*A_{n}^{n-1}S’$

$\Leftarrow$ $S’A: *A:S”$
$\Leftarrow$ $S’A:S’’$
$\Leftarrow$ $S$

By above $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}\in L(G)$ , thus $L\subseteq L(G)$ .
Conversely, suppose $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ is an arbitrary string in $L(G)$ . According to atheorem and acorollary

shown in [8] (Theorem 3.2 and Corollary 3.1), the following statement holds: $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}\in L(G)$ iff

$a_{1}^{0}a_{2}^{0}\cdots$ $a_{j-1}^{0}a_{j}^{0}\cdots$ $a_{n}^{0}$ (1)

$\Leftarrow G$

$A_{1}^{0}*A_{1}^{0}A_{2}^{0}*\cdots A_{j-1}^{0}*A_{j-1}^{0}A_{j}^{0}*\cdots A_{n-1}^{0}A_{n}^{0}*A_{n}^{0}$ (2)

$\Leftarrow G*$ $S$ (3)

Note the sentential form (2) exactly corresponds to the initial configuration of $C$ at time 0with the
same input string. After that, the rules in (ii) can be used to reduce this sentential form. Reverse
application of these rules in parallel properly reflects the state transition of each cell in $C$ by the local
transition function $fc$ . Furthermore, the rules in (iii) and (iv) are always reversely applicable to the
sentential form during the process of maximum parallel reduction, which removes the leftmost substring
$A_{i}*\mathrm{a}\mathrm{n}\mathrm{d}$ the rightmost $A_{i}$ at each step. Since $a a $\cdots$ $a_{n}^{0}\in L(G)$ , the following maximum parallel
reduction exists.

$a_{1}^{0}a_{2}^{0}\cdots a_{j-1}^{0}a_{j}^{0}\cdots a_{n}^{0}$ (4)

$\Leftarrow G$

$ $A_{1}^{0}*A_{1}^{0}A_{2}^{0}*\cdots A_{j-1}^{0}*A_{j-1}^{0}A_{j}^{0}*\cdots A_{n-1}^{0}A_{n}^{0}*A_{n}^{0}$ (5)

$\Leftarrow Gn$ $S’A: $*A_{n}^{n}S"$ (6)

where $A_{n}^{n}\in Qf$ . Thus, the input string can be recognized by $C$ in exactly $n$ steps, i.e. $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}\in L$ is
obtained. This derives $L\supseteq L(G)$ . Combining the above two arguments, we have $L=L(G)$ .

In the above UPPG $G$ , each string $w\in L$ is parsed in $|w|+3$ steps by amaximum parallel reduction.
Hence we have the theorem. $\square$

Note the method used in Theorem 3.1 to construct aUPPG that generates agiven real-time OCA
language can be easily extended to construct aUPPG to generate alinear-time OCA language. As shown
by Bucher and Culik (1984) [1], the class of linear-time OCA languages is equivalent to that of $2n$ time
OCA languages, where $n$ is the length of input. Thus we have the following theorem.
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Theorem 3.2 For a linear-time OCA language L there exists a UPPG G such that $L(G|\ovalbox{\tt\small REJECT}$ L, and each
string exyE L can be parsed in exactly $2|\mathrm{u}|+3$ steps by a maximum parallel reduction in G.

Moreover, according to Umeo et al. [15] (see also [1, 2]), each CA that recognizes alanguage $L$ in real
time can be simulated by an equivalent OCA in $2n$-time. Hence the next corollary holds.

Corollary 3.1 For a real-time $CA$ language $L$ , there exists a UPPG $G$ that generates $L$ , and each string
$w\in L$ can be parsed in exactly $2|w|+3$ steps by a rreaxirnum parallel reduction in $G$ .
Theorem 3.3 Let $L$ be a $T(n)$ time $CA$ language. Then there eists a UPPG that generates $L$ , and each
string $w\in L$ can be parsed in $2(T(|w|)+|w|)$ steps by a parallel reduction in $G$ .

Proof. Assume a $\mathrm{C}\mathrm{A}C=(Q, Q\mathrm{o}, Qf, \#, fc)$ recognizes $L$ in time $T(n)$ where $n$ is the length of an input
string. Suppose $Q=\{a_{1}, \cdots, a_{m}\}$ and $Q\mathrm{o}=\{a_{1}, \cdots, a\iota\}$ $(l<m)$ . Let $G=(N, Q\mathrm{o}, P, S,$ be aUPPG
where

$N=\{S, [, ], (, )\}\cup\{A_{1}, \cdots, A_{m}\}$ .
$P$ is defined as follows,

(i) For each $a:$ , $a_{j}\in Q$ and $a\iota$ $\in Qf$ , include the following rules in $P$ .
$[S\mathit{8}arrow[A:A\iota\, (0, 1)]$

$[ Sarrow(A_{j}S, (0, 1)]$

$[Sarrow[A:A_{j}S, (0,1)]$

[ $S\rightarrow [AiAjS, (0, 1)]

(ii) For each $a:$ , $a_{j}$ , $a_{h}$ , $a\iota$ , $a_{k}\in Q$ , $fc(a:, aj , ak)=a_{h}$ and $fc(\#, a_{j’ k}a)=a\iota$ , include the following rules
in $P$ .

$[A_{h})A_{h}(A_{h}arrow[A_{\dot{\iota}}A_{j}A_{k}], (0,0)]$

$[ A\iota(A\iotaarrow A_{j}A_{k}]$ , $(1, 0)]$

(iii) For each $a:$ , $a\iota$ $\in Q$ , $a_{j}\in Q-Qf$ and $fc(a_{\dot{1}}, aj, \#)=\mathrm{a}/$ , include the following rule in $P$ .

[A\iota )A\iota $\rightarrow [A:Aj$, (0, 1)]

(i)For each $a:$ , $a_{j}\in Q$ , include the following rule in $P$ .

$[A_{j}]1^{A}:arrow(A:A_{j})$ , $(0, 0)]$

(v) For each $a_{\dot{\iota}}\in Q_{0}$ , include the following rules in $P$ .

$[[[A_{:})A:(A:arrow a:, )A, (0,0)]$$A:arrow SA:)A:$ , $(1, 1)]$

$A.\arrow A_{:}(A:\,$ $(1,1)]$

The idea to prove $L(G)=L$ is similar to that in Theorem 3.1. Let $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ be astring in $L$ . The

space time diagram of recognition of this string in $C$ is given below where $a_{n}^{T(n)}\in Qf$ .

$t=1t=0$
$.\cdot.\cdot.\cdot$

$a_{1}^{1}a_{1}^{2}a_{1}^{0}$ $a_{2}^{2}a_{2}^{1}a_{2}^{0}$ .
$\cdot$

$\cdot..\cdot$

$a_{\dot{f}^{-1}}a_{\dot{\mathrm{f}}^{-1}}^{0}$ $a_{\dot{9}}^{\dot{\{}}a^{0}$

$....\cdot..\cdot$

.
$a_{n-1}^{1}a_{n-1}^{2}a_{n-1}^{0}a_{n}^{0}a_{n}^{1}a_{n}^{2}$

$t=2$ ... $a_{j-1}$ $a_{j}$

.$\cdot$.
$t=j$ : $a_{1}^{j}$ $a_{2}^{j}$ ... $a_{j-1}^{j}$ $a_{j}^{j}$ . .. $a_{n-1}^{j}a_{n}^{j}$..$\cdot$

$t=T(n)-1:a_{1}^{T(n)-1}a_{2}^{T(n)-1}\cdots a_{j\frac{(}{T}1,(n)}^{Tn)-1},a^{T(n)-1}\cdots a_{n\frac{(}{T}1}^{Tn)-1}a_{n}^{T(n)-1}b_{(n)(n)T(n)}$

$t=T(n)$ : $a_{1}^{T(n)}a_{2}^{T(n)}$ ...
$a_{j-1}$ $a_{j}$

... $a_{n-1}$ $a_{n}$
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where a? , Q (1$\ovalbox{\tt\small REJECT} \mathrm{y}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ n, 1 $\ovalbox{\tt\small REJECT}|:t$ S$T(n))_{\mathrm{t}}$ and aT E Qf On the other hand, parsing of the same string
by amaximum parallel reduction in G is shown below.

$a_{1}^{0}a_{2}^{0}\cdots a_{j-1}^{0}a_{j}^{0}a_{j+1}^{0}\cdots$ $a_{n-1}^{0}a_{n}^{0}$

$\Leftarrow$ $A_{1}^{0})A_{1}^{0}(A_{1}^{0}A_{2}^{0})\cdots(A_{j-1}^{0}A_{j}^{0})A_{j}^{0}(A_{j}^{0}A_{j+1}^{0})\cdots$ $A_{n-1}^{0}(A_{n-1}^{0}A_{n}^{0})A_{n}^{0}(A_{n}^{0}$

$\Leftarrow$ $A_{1}^{0}A_{2}^{0}][A_{1}^{0}A_{2}^{0}A_{3}^{0}]\cdots[A_{j-1}^{0}A_{j}^{0}A_{j+1}^{0}]\cdots$ $[A_{n-2}^{0}A_{n-1}^{0}A_{n}^{0}][A_{n-1}^{0}A_{n}^{0}$

$\Leftarrow$ $A_{1}^{1}(A_{1}^{1}A_{2}^{1})A_{2}^{1}(\cdots(A_{j-1}^{1}A_{j}^{1})A_{j}^{1}(A_{j}^{1}A_{j+1}^{1})\cdots$ $A_{n-1}^{1}(A_{n-1}^{1}A_{n}^{1})A_{n}^{1}$

$\Leftarrow$ $A_{1}^{1}A_{2}^{1}][A_{1}^{1}A_{2}^{1}A_{3}^{1}]\cdots$ $[A_{j-1}^{1}A_{j}^{1}A_{j+1}^{1}]\cdots$ $[A_{n-2}^{1}A_{n-1}^{1}A_{n}^{1}][A_{n-1}^{1}A_{n}^{1}$..$\cdot$

$\Leftarrow$ $A_{1}^{j}(A_{1}^{j}A_{2}^{j})A_{2}^{j}(\cdots(A_{j-1}^{j}A_{j}^{j})A_{j}^{j}(A_{j}^{j}A_{j\dagger 1}^{j})\cdots$$A_{n-1}^{j}(A_{n-1}^{j}A_{n}^{j})A_{n}^{j}$

$\Leftarrow$ $A_{1}^{j}A_{2}^{j}][A_{1}^{j}A_{2}^{j}A_{3}^{j}]\cdots[A_{j-1}^{j}A_{j}^{j}A_{j+1}^{j}]\cdots$ $[A_{n-2}^{j}A_{n-1}^{j}A_{n}^{j}][A_{n-1}^{j}A_{n}^{j}$

.$\cdot$

.

$\Leftarrow$
$A_{1}^{T(n)}(A_{1}^{T(n)}A_{2}^{T(n)})\cdots(A_{j-1}^{T(n)}A_{j}^{T(n\rangle})A_{j}^{T(n)}(A_{j}^{T(n)}A_{j+1}^{T(n)})\cdots(A_{n-1}^{T(n)}A_{n}^{T(n)})A_{n}^{T(n)}$$

$\Leftarrow$ $A_{1}^{T(n)}A_{2}^{T(n)}]\cdots[A_{j-1}^{T(n)}A_{j}^{T(n)}A_{j+1}^{T(n)}]\cdots A_{n}^{T(n)}][A_{n-1}^{T(n)}A_{n}^{T(n)}$ $

$\Leftarrow$ $A_{1}^{T(n)+1}(A_{1}^{T(n)+1}\cdots A_{j}^{T(n)+1})A_{j}^{T(n)+1}(A_{j}^{T(n)+1}\cdots(A_{n-1}^{T(n)+1}$S$

$\Leftarrow$ $A_{1}^{T(n)+1}A_{2}^{T(n)+1}]\cdots[A_{j-1}^{T(n)+1}A_{j}^{T(n)+1}A_{j+1}^{T(n)+1}]\cdots$ S$..$\cdot$

$\Leftarrow$ $A$T(n)+n-1T(nA_{2})+n-11S$

$\Leftarrow$ $S$

Note the $j$-th configuration in $C$ at time $j(0\leq j\leq T(n))$ is expressed by the sentential form
$A_{1}^{j}(A_{1}^{j}A_{2}^{j})A_{2}^{j}$ (. . . $(A_{l-1}^{j}A_{l}^{j})A_{l}^{j}(A_{l}^{j}A_{l+1}^{j})\cdots A_{n-1}^{j}(A_{n-1}^{j}A_{n}^{j})A_{n}^{j}$ in $G$ , in which the state of the $l$-th cell
$(1 <l<m)$ is represented by asubstring $A_{l}^{j}$ ) $A_{l}^{j}(A_{l}^{j}$ (the first and the last cells are $A_{1}^{j}(A_{1}^{j}$ and
$A_{n}^{j})A_{n}^{j}$ . After that, the rules in (iv) are reversely applied in parallel, and then rules in (ii) and (iii). It
is easy to verify that such two steps of maximum parallel reduction exactly simulates the state transition
of each cell in $C$ from $j$-th to $j+1$-st configuration. Since $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}\in L$ , the rightmost cell $a_{n}^{T(n)}$ in
the $T(n)$ -th configuration in $C$ enters an accepting state. This recognition process is properly simulated
by amaximum parallel reduction in $2T(n)$ steps in $G$ . Then the rules in (i) can be used to reduce the
sentential form to $5$ in $2n$ steps. Hence $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}\in L(G)$ is obtained. Thus, we have $L\subseteq L(G)$ .

Conversely, consider an arbitrary string $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}$ in $L(G)$ . Then by using rules in (v) and (iv), we
have

$a_{1}^{0}a_{2}^{0}\cdots a_{j-1}^{0}a_{j}^{0}a_{j+1}^{0}\cdots a_{n-1}^{0}a_{n}^{0}$

$\Leftarrow$
$A_{1}^{0})A_{1}^{0}(A_{1}^{0}A_{2}^{0})\cdots(A_{j-1}^{0}A_{j}^{0})A_{j}^{0}(A_{j}^{0}A_{j+1}^{0})\cdots A_{n-1}^{0}(A_{n-1}^{0}A_{n}^{0})A_{n}^{0}(A_{n}^{0}$

which exactly represents the initial configuration in $C$ with the same input. After that, the rules in
(ii), (iii) and (iv) can be used in the subsequent maximum parallel reduction steps. We can see this

parallel reduction process exactly simulates the language recognition process in $C$ . Moreover, because

$a_{1}^{0}a_{2}^{0}\cdots a_{n}^{0}Leftarrow S$ , there must be some $\hat{t}>0$ such that $a_{1}^{0}a_{2}^{0}\cdots$ $a_{n}^{0}Leftarrow A_{1}^{\hat{t}}A_{2}^{i}\cdots$ $A_{n}^{i}$ and $a_{n}^{\hat{t}}\in Qf$ .
Thus the string $a_{1}^{0}a_{2}^{0}\cdots a_{n}^{0}$ is accepted by $C$ (and by the assumption, $\hat{t}=T(n)$ holds). Hence we have
$L\supseteq L(G)$ .

Combining the above arguments, we obtain $L=L(G)$ , and each string $w\in L$ is parsed in $2(T(|w|)+\square$

$|w|)$ steps by amaximum parallel reduction in $G$ . Thus we have the theorem.
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4Concluding Remarks
In this paper, we showed the parallel language recognition process in aone-dimensional cellular automaton
(CA) can be simply simulated by aparallel reduction in an equivalent uniquely parallel parsable grammar
(UPPG). The main result of our research is that for a CA that can recognize alanguage in time $T(n)$ ,
there exists aUPPG that generates the same language, where each string of length $n$ can be parsed by a
maximum parallel reduction in $kT(n)$ steps $(k>0)$ . In our previous researches, we have shown that there
are non-context-free languages that can be generated by UPPGs, and they are parsed by amaximum
parallel reduction in sublinear steps of the length of the input [7]. However, such efficiency in language
recognition can not be achieved by any $\mathrm{C}\mathrm{A}$ , since at least $n$ steps are needed to recognize anontrivial
language in $\mathrm{C}\mathrm{A}$ .
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