obooooooooo 12060 20010 77-82

7

Simulation of One-Dimensional Cellular Automata by

Uniquely Parallel Parsable Grammars

¥ & (JiaLee)*
£# %M (Katsunobu Imai) |
#HEE— (Kenichi Morita) ?

LM KFE T EE

(Faculty of Engineering, Hiroshima University)

Abstract
A uniquely parsable grammar (UPG) introduced by Morita et al. (1997) is a special kind of
generative grammar where parsing can be performed without backtracking. By extending a UPG,
a uniquely parallel parsable grammar (UPPG) was proposed and its unique parallel parsability has
been investigated. In this paper, we show any one-dimensional cellular automaton (CA), as a parallel
language recognition device, can be simply simulated by a parallel reduction in an equivalent UPPG.

1 Introduction

A uniquely parsable grammar (UPG) [10] is a special kind of generative grammar where parsing can be
performed without backtracking. Rewriting rules of a UPG satisfy the following condition: If a suffix
of the righthand side of a rule matches with a prefix of that of some other rule, then the overlapping
portions remain unchanged by the reverse application of these rules. By this condition, UPGs have a
kind of confluence property, and thus parsing can be performed deterministically. By extending a UPG,
a uniquely parallel parsable unification grammar (UPPUG) [8] has been proposed. It is a unification
grammar (UG) version of a UPG in which parallel parsing is also possible.

A simplified version of a UPPUG is a uniquely parallel parsable grammar (UPPG) such that every
function symbol is of arity 0. In order to define parallel reduction (i.e., parallel parsing) properly, a
“context index” is associated to each rewriting rule in a UPPG, which explicitly specifies the left- and
right-context portions of a rewriting rule. Thus rewriting rules of a UPPG satisfy the following condition:
If a suffix of the righthand side of a rule matches with a prefix of that of some other rule, then each of
these portions is contained in the context portion of each rule. By this, unique parsability also holds
for UPPGs. Furthermore, any number of reverse applications of rules to a string can be performed in
parallel without interfering each other.

A cellular automaton is one of the fundamental models of parallel computation. Fast language recog-
nition by one-dimensional cellular automata (CA) in parallel has been widely studied so far [1, 2, 3, 6,
12, 13, 14]. In this paper, we show a parallel language recognition process in a one-dimensional cellular
automaton can be simply simulated by a parallel reduction in an equivalent UPPG in real time plus 3
steps in the case of a one-way CA (OCA) and in linear time in the case of a two-way CA.

2 Preliminaries

Note in this paper, we omit the definitions and known results on uniquely parsable grammars (UPG),
uniquely parallel parsable grammars (UPPG), and cellular automata that are needed in the following
sections. See (7, 8, 10] for the details of UPGs and UPPGs. See also [4, 11] for the basic notions of formal

languages.

3 Simulation of CAs by UPPGs

Definition 3.1 Let L C Q7 be a language and T : N — N be a function. We say L is a T(n)-time
recognizable CA (OCA) language if it can be recognized by some CA (OCA) C = (Q,Qo, Qs #, fc) in
*lijila@ke.sys.hiroshima-u.ac.jp
timai@ke.sys.hiroshima-u.ac.jp
Ymorita@ke.sys.hiroshima-u.ac.jp

78

time T(n). Moreover, L is said to be a real-time recognizable CA (OCA) language iff T(n) = n. Also L
is said to be a linear-time recognizable CA (OCA) language iff T(n) < kn for some positive integer k.

Theorem 3.1 Let L be a real-time OCA language. Then there ezists a UPPG G- such that L(G) = L,
and each string w € L can be parsed in exactly |w| + 3 steps by a mazimum parallel reduction in G.

Proof. Assume C = (Q,Qo,Qy,#, fc) be a one-way cellular automaton that recognizes L in real-time
(L € QF). Suppose Q = {a1,"-*,am} and Qo = {a1, -+, a1} (I < m). Let alal---al be a string in L,
and the space-time diagram of recognition of this string by C be as follows.

= . 940 0,0 0 .0
t=0 .a.ia%,---a{-_laq---a,ll_la.il
t=1 :alag---aﬁ-_la‘l;---a,;_lag
t=2 : Aaj---a5_jai---an_ga;
=4 : J.oo.al J
t=j :AA A aj-rap_qd)

=n—1: AA--- A A...q""gn1

n—1

t=n :AA--- A A.--- A ol

where aﬁ € Q (1 <14,l<n)andal} € Qs. Note A represents those cells whose states do not influence the
real-time recognition result any more, thus can be ignored.

Now, we construct a UPPG G that generates L, and show the language recognition process in C can
be easily simulated by a parallel reduction in G. Let G = (N, Qo, P, S,$) be a UPPG where

N={55,5"YU{As,- -, An} U {x}.
The set P of rules is as follows.
(i) For each a; € Qy include the following rule in P.
[S— S'A;S”, (0,0)]

(ii) For eac_h ai,aj,an € @ and fc(ai, a;) = ap, including the following rule in P.

[Ah * Ah — AiAj*, (0,0)]

(iii) For each a;,a;,an € Q and fc(#,a;) = aj, include the following rules in P.

[$S'Aj — $A,'*, (1,0)]
[S’ — S'Apx, (1,0)]

(iv) For each a; € Q — Qy include the following rules in P.

[8”8 — A8, (0,1)]
[8" - A8, (0,1)]

(v) For each a; € Qo include the following rule in P.

[Ai * A; — a4, (0,0)]

It is easy to verify that G is a UPPG. Consider the string afa3---al in L. Using rules in (v) we
obtain the following maximum parallel reduction.

0.0 0
$a1a2 aj

- $A9 x AQAY - AT % AY .. AD_ AD x ADS

0...,0
_18; - -an$

79

Note this sentential form exactly corresponds to the initial configuration in C, where the state a of j-th
cell is given by a substring A0 A° for each 1 < j < n. After that, by reversely applying rules in (ii) to
each substring of the form A Ajx 1n a sentential form simultaneously, state transition of C is properly
simulated in G. At the same time, by using rules in (iii) and (iv), we remove those substrings whose
corresponding cells in C' are not needed in the subsequent computation. Since a$a3--- a2 is recognized
by C in real time, after n + 2 steps of maximum parallel reduction, we obtain $S’ A"S" $ with a]; € Q¢
that can be reduced to S by reverse application of the rule in (i). The whole parallel parsing process
is as follows.

0 1a0 0$

$afal---ad_
o S Ao AL, o A A A A0 e ADS
SS'ALALx AL A1, x Al A1k Al... AL AL« ALS"S

$S'A5x A3 A7 1 x AT AZx AT AL A« AZS"S

L)

$S'ATx AL Al _ | AD x AL S"$

)

$SlAn—l*An 1An I*An ISII$
$S'An « ARS8
$S'ANS"$
« 8§58
By above a%a9 - --al € L(G), thus L C L(G).

Conversely, suppose aja3 - - - a® is an arbitrary string in L(G). According to a theorem and a corollary
shown in [8] (Theorem 3.2 and Corolla.ry 3.1), the following statement holds: a$a3---a8 € L(G) iff

T+ 1t

$aa3 .. ag 16 ---ad$, (1)
 SAD R ADADx - Ay w A ATk A LAY A8 2)
= $S
< 858 (3)

Note the sentential form (2) exactly corresponds to the initial configuration of C at time 0 with the
same input string. After that, the rules in (ii) can be used to reduce this sentential form. Reverse
application of these rules in parallel properly reflects the state transition of each cell in C by the local
transition function fc. Furthermore, the rules in (iii) and (iv) are always reversely applicable to the
sentential form during the process of maximum parallel reduction, which removes the leftmost substring
A;* and the rightmost A; at each step. Since $a%a3---al € L(G), the following maximum parallel

reduction exists.

$aJad---a)_ a9 -al$ (4)
« $A? x AQAD - -A?_l * AY_ A% AD L AD + A0S (5)
« $S'A™x AnS"S | (6)
G £13

where A7 € Q. Thus, the input string can be recognized by C in exactly n steps, i.e. afad---a € Lis
obtalned This derives L O L(G). Combining the above two arguments, we have L = L(G).

In the above UPPG G, each string w € L is parsed in |w| + 3 steps by a maximum parallel reduction.
Hence we have the theorem. a

Note the method used in Theorem 3.1 to construct a UPPG that generates a given real-time OCA
language can be easily extended to construct a UPPG to generate a linear-time OCA language. As shown
by Bucher and Culik (1984) [1], the class of linear-time OCA languages is equivalent to that of 2n-time
OCA languages, where n is the length of input. Thus we have the following theorem.

80

Theorem 3.2 For a linear-time OCA language L, there exists a UPPG G such that L(G) = L, and each
string w € L can be parsed in ezxactly 2|w| + 3 steps by a mazimum parallel reduction in G.

Moreover, according to Umeo et al. [15] (see also [1, 2]), each CA that recognizes a language L in real
time can be simulated by an equivalent OCA in 2n-time. Hence the next corollary holds.

Corollary 3.1 For a real-time CA language L, there exists a UPPG G that generates L, and each string
w € L can be parsed in exactly 2|w| + 3 steps by a mazimum parallel reduction in G.

Theorem 3.3 Let L be a T(n)-time CA language. Then there exists a UPPG that generates L, and each
string w € L can be parsed in 2(T(Jw|) + |w|) steps by a parallel reduction in G.

Proof. Assume a CA C = (Q, Qo, Qy, #, fc) recognizes L in time T'(n) where n is the length of an input
string. Suppose Q = {a1,"-*,am} and Qo = {a1,:--, a1} (I <m). Let G = (N,Qo, P, S,$) be a UPPG

where
N= {S’ [’]v (v)} U{Ala"'aAm}-
P is defined as follows.
(i) For each a;,a; € Q and a; € @y, include the following rules in P.

[S$ — [A; A8, (0 1
[§— (4;S, (0,1
[§ — [4:i4;S, (0,1
[$S — 8A; A S, (0,1
(ii) For each a;,aj,an,a1,ar € Q, fc(ai,a;,ax) = ap and fo(#, aj,ax) = ai, include the following rules

in P.
® [Ar)Ar(An — [AiA;Ax], (0,0)]
[SAi(A — $4;A, (1,0))

(iii) For each a;,a; € Q, aj € Q — Q¢ and fc(ai,aj, #) = ai, include the following rule in P.
[ANAS — [A,-Aj$, (0,1)]

(iv) For each a;,a; € Q, include the following rule in P.

[AJ][At - (A‘iAJ')’ (an)]

(v) For each a; € Qo, include the following rules in P.
[Ai)Ai(A; — a4, (0,0)]
[$A4; — $A,)A;, (1,1)]
[A;$ — A,‘(A,'$ (1, 1)]

The idea to prove L(G) = L is similar to that in Theorem 3.1. Let a9a3---al be a string in L. The
space-time diagram of recognition of this string in C is given below where an() € Qy.

t=0 : a ad e a,g_l afi? al_, a?
t = 1 : a% a% e ai._l ag e a}l_l a,l."
2 2

t = 2 : a% a% v a’j—l aj . e an_l an
; o i g i g

t= J : a{ a'; M aJ—l a] e an_l a-,’,‘

T(n)-1 T(n) 1 . T(n) -1 T(n) -1 T(n) 1 T(n) 1
ay

t= T(n) -1: a3 %‘
t =T(n) . T(n) ag'(’n) . 3’_(11) (n) . T(n) az(n)

81

where af €Q(1<i<n, 1<j<T(n)),and o™ ¢ Q7. On the other hand, parsing of the same string
by a maximum parallel reduction in G is shown below.

$aa3---a9_jalad,; ---al_;an$

$AQ)AY(A2A9) - - - (A)_1AD)AD(ADAD,1) - AD_1(AD_1 A)AR(ARS
$ALAJ)[ATASAS) - - - [A_1ADAT 4] - 1A 2A0 1A7][AR_1 A0S

$A}(A143)A3(--- (4‘1,1-_11‘11)141 (AjA41) - An_1(An 1 An)ALS

$ATA3][A1 AL A3] - - [A] 1 A Aj] [An—2Al—1A3z][Al—1A3t$

O §

SAJ(AJAD) AL (- (AI_ | ADAY(AT AL,)) - AL _ (AL, AD)ALS
$45AL|[A] ALA]) - [AD_ ATAD,) (A] zA’ (AL (A, ALS

T

)

ST (AT A7 ™) - (AT AT AT (AT AT - (4310 AT AT
n T(n n

847" A7) [ATD AT ALY AT AT

$AT(")+1(A'{(”)+1 . AT(ﬂ)+1)Ar(")+1(AT(n)+1 . (A:S.';)+IS$

(O N

$A‘{(n)+1Ag‘(n)+1] [AT(n)+1AT(n)+1AT(n)+1] S$

)

$A¥'(n)+n—1Ag‘(n)+n—ls$
858

)

Note the j-th configuration in C at tlme J (0 £ j £ T(n)) is expressed by the sentential form
$AI (A ADAL(--- (A AN AT (A] AL,) _,(A?_JAI)AJ$ in G, in which the state of the I-th cell

(1 < I < m) is represented by a substrmg A{)A{ (A] (the first and the last cells are $AJ(AJ and
A7)A7$). After that, the rules in (iv) are reversely applied in parallel, and then rules in (ii) and (iii). It

is easy to verify that such two steps of maximum parallel reduction exactly simulates the state transmon

of each cell in C from j-th to j + 1-st configuration. Since aJad ---al € L, the rightmost cell a,71
102 -

the T'(n)-th configuration in C' enters an accepting state. This recognition process is properly 51mulated
by a maximum parallel reduction in 2T'(n) steps 1n G. Then the rules in (i) can be used to reduce the
sentential form to S in 2n steps. Hence ada3 - - -al e L(G) is obtained. Thus, we have L C L(G).

Conversely, consider an arbitrary string ada3---a? in L(G). Then by using rules in (v) and (iv), we
have
a0 0 0o 0
$a9a9 - - 1a?a3+1 ‘a,_ 10,98

- $A°)A°(A°A) (A1 ADAY(AJA 1) -+ AD_1 (AR _1A) AR (ARS8

which exactly represents the initial configuration in C with the same input. After that, the rules in
(i), (iii) and (iv) can be used in the subsequent maximum parallel reduction steps. We can see this
parallel reduction process exactly simulates the language recognition process in C. Moreover, because
$a%a9 - - a8 «= $53, there must be some £ > 0 such that $afag-- .08 «=$At AL ... ALS and df € Q.
Thus the string a%a - - - a2 is accepted by C (and by the assumpt;lon t=T(n) holds) Hence we have
L D L(G).

Combining the above arguments, we obtain L = L(G), and each string w € L is parsed in 2(T(Jw]) +
lw|) steps by a maximum parallel reduction in G. Thus we have the theorem. O

82

4 Concluding Remarks

In this paper, we showed the parallel language recognition process in a one-dimensional cellular automaton
(CA) can be simply simulated by a parallel reduction in an equivalent uniquely parallel parsable grammar
(UPPG). The main result of our research is that for a CA that can recognize a language in time T'(n),
there exists a UPPG that generates the same language, where each string of length n can be parsed by a
maximum parallel reduction in kT'(n) steps (k > 0). In our previous researches, we have shown that there
are non-context-free languages that can be generated by UPPGs, and they are parsed by a maximum
parallel reduction in sublinear steps of the length of the input [7]. However, such efficiency in language
recognition can not be achieved by any CA, since at least n steps are needed to recognize a nontrivial
language in CA.

References

(1] W. Bucher and K. Culik II, On real time and linear time cellular automata, R.A.LR.O. Information
Theory, Vol. 18, pp. 307-325, 1984.

[2] C. Choffrut and K. Culik II, On real-time cellular automata and trellis automata, Acta Informatica,
Vol. 21, pp. 393-407, 1984.

[3] C. Dyer, One-way bounded cellular automata, Information and Control, Vol. 44, pp. 54-69, 1980.

[4] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, Massachusetts, 1979.

[5] O.H. Ibarra, M.P. Palis, and S.M. Kim, Fast parallel language recognition by cellular automata,
Theoret. Computer Science, Vol. 41, pp. 231-246, 1985.

(6] T. Kasami and M. Fujii, Some results on capabilities of one-demensional iterative logical networks,
Electrical and Communication, Vol. 51-C, pp. 167-176, 1968.

[7] J. Lee and K. Morita, Generation and parsing of the Fibonacci language by uniquely parallel parsable
grammars, Proc. of LA Summer Symposium, pp. 10.1-10.10, 2000.

[8] J. Lee and K. Morita, Uniquely parallel parsable unification grammars, IEICE Trans. on Information
and Systems, Vol. E84-D, No. 1, pp. 21-27, 2001.

[9] J. Lee, K. Morita, H. Asou, and K. Imai, Uniquely parsable unification grammars and their parser
implemented in Prolog, Grammars Vol. 3, No. 1, pp. 63-81, 2000.

[10] K. Morita, N. Nishihara, Y. Yamamoto, and Z. Zhang, A hierarchy of uniquely parsable grammar
classes and deterministic acceptors, Acta Informatica, Vol. 34, pp. 389-410, 1997.

[11] G. Rozenberg and A. Salomaa, (eds.), Handbook of Formal Languages, Vols. 1-3, Springer-Verlag,
Berlin, 1997.

[12] A.R. Smith III, Cellular automata and formal languages, Proc. 11th IEEE Annual Symp. on Switch-
ing and Automata Theory, pp. 216-224, 1970.

(13] A.R. Smith III, Real-time language recognition by one-dimensional cellular automata, J. Computer
and System Sciences, Vol. 6, pp. 233-253, 1972.

[14] V. Terrier, On real time one-way cellular array, Theoret. Computer Science, Vol. 141, pp. 331-335,
1995.

[15] H. Umeo, K. Morita, and K. Sugata, Deterministic one-way simulation of two-way real-time cellular
automata and its related problems, Information Process. Lett., Vol. 14, pp. 159-161, 1982.

