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Abstract

Suppose that there are players in two hierarchical groups and acomputationally unlim-
ited eavesdropper. Using arandom deal of cards, aplayer in the higher group wishes to send
aone-bit message information-theoretically securely either to all the players in her group
or to all the players in the two groups. This can be done by the s0-called 2-level key set
protocol. In this paper we give anecessary and sufficient condition for the 2-level key set
protocol to succeed.

1 Introduction

Suppose that there are $k(\geq 2)$ players $P_{1}$ , $P_{2}$ , $\cdots$ , $P_{k}$ and apassive eavesdropper, Eve, whose
computational power is unlimited. Consider agraph called akey exchange graph, in which each
vertex $i$ represents aplayer $P_{i}$ and each edge $(i,j)$ joining vertices $i$ and $j$ represents apair of
players $P_{i}$ and $Pj$ sharing aone-bit secret key $r_{ij}\in\{0,1\}$ that is information-theoretically secure
against the eavesdropper Eve. Refer to [6] for the graph-theoretic terminology. Aconnected
graph having no cycle is called atree. If the key exchange graph is atree, then an arbitrary
player can send aone-bit message $m\in\{0,1\}$ to all the players information-theoretically securely
as follows: the player sends the message $m$ to the rest of the players along the tree; when player
$P_{i}$ sends $m$ to player $Pj$ along an edge $(i,j)$ of the tree, $P_{i}$ computes the exclusive-0r $m\oplus r_{ij}$ of
$m$ and $r_{ij}$ and sends it to $Pj$ , and $Pj$ obtains $m$ by computing $(m\oplus r_{ij})\oplus r_{ij}$ .

For $k=2$ , Fischer et al. give aprotocol using arandom deal of cards to connect the two
players $P_{1}$ and $P_{2}$ with an edge, that is, to form atree on the two players [1]. (A random deal
of cards will be formally described in Section 2.1.) Fischer and Wright extend this protocol
to form atree for any $k\geq 2$ ;they formalize aclass of protocols called the “key set protocol,”
the definition of which will be given in Section 2.2 $[2, 5]$ . They also give asufficient condition
on the numbers of cards for the “key set protocol” to always form atree. Mizuki et al. give a
simple necessary and sufficient condition on the numbers of cards for the “key set protocol” to
always form atree [8].

On the other hand, Yoshikawa et al. consider the following more general problem [9]. Sup-
pose that the $k$ players are partitioned into two hierarchical groups, which are represented as $V_{1}$

and $V_{2}$ , where $V_{1}\cup V_{2}=\{1,2, \cdots, k\}$ and $V_{1}\cap V_{2}=\emptyset$ . In the hierarchy, the group $V_{1}$ is assumed
to be higher than the group $V_{2}$ . Yoshikawa et al. wish to form, as akey exchange graph, atree
$T$ such that the subgraph $T_{1}$ of $T$ induced by $V_{1}$ is also atree. Such atree is called a2-level
tree (for the hierarchy). Once a2-level tree $T$ is formed, any player in the higher group $V_{1}$

can send aone-bit message $m$ either to all the players in $V_{1}$ or to all the players in $V_{1}\cup V_{2}$ ,
because both $T_{1}$ and $T$ are connected. Yoshikawa et al. modify the “key set protocol” in $[2, 5]$ so
that their protocol, called a“2-level protocol,” forms a2-level tree; the formal definition of the
((

$2$-level protocol” will be given in Section 2.3. They give asufficient condition on the numbers
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of cards for the “2-level protocol” to always form a2-level tree. However, their condition is not
anecessary one, and hence it has been an open problem to obtain anecessary and sufficient
condition.

In this paper, we give anecessary and sufficient condition on the numbers of cards for the
“2-level protocol” to always form a2-level tree, and hence close the open problem. Using our
necessary and sufficient condition, one can easily know the minimum number of cards needed
to form a2-level tree.

2Preliminaries

We first formally describe arandom deal of cards in Section 2.1, then explain the “key set
protocol” in Section 2.2, and finally explain the “2-level protocol” in Section 2.3.

2.1 Random Deal of Cards

In this subsection we formally describe arandom deal of cards [4].
Let $C$ be a set of $d$ distinct cards which are numbered from 1to $d$ . All cards in $C$ are

randomly dealt to players $P_{1}$ , $P_{2}$ , $\cdots$ , $P_{k}$ and an eavesdropper Eve. We call aset of cards dealt
to aplayer or Eve ahand. Let $C_{i}\subseteq C$ be $P_{i}’ \mathrm{s}$ hand for each $1\leq i\leq k$ , and let $C_{e}\subseteq C$ be
Eve’s hand. We denote this deal by $\mathrm{C}$ $=$ $(C_{1}, C_{2}, \cdots, C_{k;}C_{e})$ . Clearly $\{C_{1}, C_{2}, \cdots, C_{k}, C‘’ \}$ is a
partition of set $C$ . We write $c_{i}=|C_{i}|$ for each $1\leq i\leq k$ and $c_{e}=|C_{e}|$ , where $|A|$ denotes tht1
cardinality of aset $A$ . Note that $c_{1}$ , $c_{2}$ , $\cdots$ , $c_{k}$ and $c_{e}$,are the sizes of hands held by $P_{1}$ , $P_{2}$ , $\cdots$ , $P_{k}$

and Eve respectively, and that $d= \sum_{i=1}^{k}c_{i}+c_{e}$ . We call $\gamma=$ $(c_{1}, c_{2}, \cdots, ck;c_{e})$ the signature of
deal C. The set $C$ and the signature 7are public to all the players and even to Eve, but the
cards in the hand of aplayer or Eve are private to herself, as in the case of usual card games.

Using arandom deal of cards, aprotocol can make several pairs of players share aone-bit
secret key, as we will explain in the succeeding subsection. Areasonable situation in which such
aprotocol is practically required is discussed in $[3, 5]$ , and also the reason why we deal cards
even to Eve is found there.

2.2 Key Set Protocol

In this subsection we explain the “key set protocol” formalized in $[2, 5]$ .
We first define some terms. Akey set $K=\{x, y\}$ consists of two cards $x$ and $y$ , one in

$C_{i}$ , the other in $C_{j}$ with $i\neq j$ , say $x\in C_{i}$ and $y\in C_{j}$ . We say that akey set $K=\{x, y\}$ is
opaque if $1\leq i,j\leq k$ and Eve cannot determine whether $x\in C_{i}$ or $x\in C_{j}$ with prot)at)ility
greater than 1/2. Note that both players $P_{i}$ and $Pj$ know that $x\in C_{i}$ and $y\in C_{j}$ . If $K$ is an
opaque key set, then $P_{i}$ and $P_{j}$ can share aone-bit secret key $rij\in\{0,1\}$ , using the following
rule agreed on before starting aprotocol: $Tij=0$ if $x>y;r_{ij}=1$ , otherwise. Since Eve cannot
determine whether $r_{ij}=0$ or $rij=1$ with probability greater than 1/2, the secret key $rij$ is
information-theoretically secure. We say that acard $x$ is discarded if all the players agree that
$x$ has been removed from someone’s hand, that is, $x \not\in(\bigcup_{i=1}^{k}C_{i})\cup C_{e}$ . We say that aplayer $P_{i}$

drops out of the protocol if she no longer participates in the protocol. We denote by $V$ the set
of indices $i$ of all the players $P_{i}$ remaining in the protocol. Note that $V=\{1,2, \cdots, k\}$ before
starting aprotocol.

The “key set protocol” has the following four steps
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1. Choose aplayer $P_{s}$ , $s\in V$ , as aproposer by acertain procedure.

2. The proposer $P_{s}$ determines in mind two cards $x,y$ . The cards are randomly picked so
that $x$ is in her hand and $y$ is not in her hand, i.e. $x\in C_{s}$ and $y \in(\bigcup_{i\in V-\{s\}}C_{i})\cup C_{e}$ .
Then $P_{s}$ proposes $K=\{x, y\}$ as akey set to all the players. (The key set is proposed
just as aset. Actually it is sorted in some order, for example in ascending order, so Eve
learns nothing about which card belongs to $C_{s}$ unless Eve holds $y.$ )

3. If there exists aplayer $P_{t}$ holding $y$ , then $P_{t}$ accepts $K$ . Since $K$ is an opaque key set,
$P_{s}$ and $P_{t}$ can share aone-bit secret key $r_{st}$ that is information-theoretically secure from
Eve. (In this case an edge ( $s$ , $t$ ) is added to the key exchange graph.) Both cards $x$ and
$y$ are discarded. Let $P_{i}$ be either $P_{s}$ or $P_{t}$ that holds the smaller hand; if $P_{s}$ and $P_{t}$ hold
hands of the same size, let $P_{i}$ be the proposer $P_{s}$ . $P_{i}$ discards all her cards and drops out
of the protocol. Set $V:=V-\{i\}$ . Return to step 1.

4. If there exists no player holding $y$ , that is, Eve holds $y$ , then both cards $x$ and $y$ are
discarded. Return to step 1. (In this case no new edge is added to the key exchange
graph.)

These steps 1-4 are repeated until either exactly one player remains in the protocol or there
are not enough cards left to complete step 2even if two or more players remain. In the first
case the key exchange graph becomes atree. In the second case the key exchange graph does
not become aconnected graph and hence does not become atree.

Considering various procedures for choosing aproposer $P_{s}$ in step 1, we obtain the class of
key set protocols.

We say that akey set protocol works for a signature $\gamma$ if the protocol always forms atree
as akey exchange graph for any deal $\mathrm{C}$ having the signature $\gamma$ and for any random selection of
cards $x$ and $y$ in step 2. Let $k\geq 2$ and $\gamma=$ $(c_{1}, c_{2}, \cdots, c_{k}; c_{e})$ . Let $W$ be the set of all signatures
for each of which there is akey set protocol working, and let $L$ be the set of all signatures for
each of which there is no key set protocol working. Asimple necessary and sufficient condition
for $\gamma$ $\in W$ has been known $[2, 8]$ . Furthermore, acharacterization of “optimal” key set protocols
is given in [7].

2.3 2-Level Protocol

In this subsection we explain the “2-level protocol” given in [9].
Suppose that there are two hierarchical groups $V_{1}$ and $V_{2}$ . The “2-level protocol” forms a

2-level tree, whose subgraph induced by $V_{1}$ is connected. The “2-level protocol” forms a2-1even
tree in which every vertex in $V_{2}$ has degree one, that is, every vertex in $V_{2}$ is aleaf. The “2-1evel
protocol” is obtained by slightly modifying steps 1and 3in the key set protocol, as follows:
in step 1aplayer in $V_{1}$ is always chosen as aproposer $P_{s}$ ; and in step 3, whenever card $y$ is
held by aplayer $P_{t}$ in V2, $P_{t}$ drops out of the protocol even if $P_{t}$ holds the larger hand than $P_{s}$ .
Thus the (

$‘ 2$-level protocol” has the following four steps.

1. Choose aplayer $P_{s}$ , $s\in V_{1}$ , as aproposer by acertain procedure.

2. The proposer $P_{s}$ randomly determines in mind two cards $x$ , $y$ so that $x$ is in her hand and
$y$ is not in her hand. Then $P_{s}$ proposes $K=\{x, y\}$ as akey set to all the players.
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3. If there exists aplayer $P_{I}$ holding y, then $P_{s}$ and $P\ovalbox{\tt\small REJECT}$ can share aone-bit secret key $r_{st}$ .
Both cards $ and y are discarded.

(a) If $t\in V_{1}$ , then let $P_{i}$ be either $P_{s}$ or $P_{t}$ that holds the smaller hand; when $P_{s}$ and $P_{t}$

hold hands of the same size, let $P_{i}$ be the proposer $P_{s}$ . $P_{i}$ discards all her cards and
drops out of the protocol. Set $V_{1}:=V_{1}-\{i\}$ . Return to step 1.

(b) If $t\in V_{2}$ , then $P_{t}$ discards all her cards and drops out of the protocol. Set $V_{2}:=$

$V_{2}-\{t\}$ . Return to step 1.

4. If there exists no player holding $y$ , that is, Eve holds $y$ , then both cards $x$ and $y$ are
discarded. Return to step 1.

These steps 14 are repeated until either exactly one player in $V_{1}$ remains in the protocol
or there are not enough cards left to complete step 2even if two or more players remain. In the
first case the key exchange graph becomes a2-level tree, in which every vertex in $V_{2}$ has degree
one. In the second case the key exchange graph does not become a2-level tree.

Considering various procedures for choosing aproposer $P_{s}$ in step 1, we obtain the class of
2-level protocols.

Without loss of generality one may assume that $V_{1}=\{1,2, \cdots, k_{1}\}$ and $V_{2}=\{k_{1}+$

$1$ , $k_{1}+2$ , $\cdots$ , $k_{1}+k_{2}$ } where $k=k_{1}+k_{2}$ . One may assume that all the players in $V_{2}$ hold
at least one card, i.e. $\mathrm{q}$

. $\geq 1$ for all $i$ , $k_{1}+1\leq i\leq k_{1}+k_{2}$ . Once an edge is con-
nected to aplayer in $V_{2}$ during the execution of any 2-level protocol, the player in $V_{2}$ nec-
essarily drops out of the protocol. Therefore any player in $V_{2}$ does not need two or more
cards. More precisely, there is a2-level protocol which always forms a2-level tree for $\gamma=$

$(c_{1}, c_{2}, \cdots, \mathrm{C}k_{1}, \mathrm{C}k_{1}+1, \mathrm{C}k_{1}+2, \cdots, ck_{1}+k_{2} ; c_{?}.)$ if and only if there is a2-level protocol which always
forms a2-level tree for $\gamma=$ $(c_{1}, c_{2}, \cdots, ck_{1},1,1, \cdots, 1; c_{e})$ . We thus use a2-level signature $\alpha=$

$(\mathrm{C}1, \mathrm{C}2, \cdots, ck_{1} ; k_{2};c_{e})$ to represent a signature $\gamma=(\mathrm{C}1, \mathrm{C}2, \cdots, ck_{1}, ck_{1}+1, ck_{1}+2, \cdots, ck_{1}+k_{2} ; c_{e})$ .
Remember that $k_{2}$ is the number of players in $V_{2}$ .

We say that a2-level protocol works for a 2-level signature $\alpha$ if the protocol always $\mathrm{f}\mathrm{o}$ rms a
2-level tree as akey exchange graph for any deal $\mathrm{C}$ having the 2-level signature $\alpha$ and for any ran-
dom selection of cards $x$ and $y$ in step 2. Let $k_{1}\geq 1$ , $k_{1}+k_{2}\geq 2$ , and $\alpha=$ $(c_{1}, c_{2}, \cdots, ck_{1} ; k_{2}; c_{e})$ .
One may assume without loss of generality that $c_{1}\geq c_{2}\geq\cdots\geq ck_{1}$ . Let $W^{2}$ be the set of all
2-level signatures for each of which there is a2-level protocol working, and let $L^{2}$ be thc set of
all 2-level signatures for each of which there is no 2-level protocol working.

We say that aplayer $P_{i}$ , $i\in V_{1}$ , is feasible in a 2-level signature $\alpha=(c_{1}, c_{2}, \cdots, ck_{1} ; k_{2}; c_{e})$

if the following condition (1), (2) or (3) holds.

(1) $c_{i}\geq 2$ .

(2) $k_{2}=0$ , $c_{e}=0$ , $\mathrm{q}$
. $=1$ with $i=k_{1}$ , and $c_{k_{1}-1}\geq 2$ .

(3) $k_{1}=k_{2}=1$ , $c_{e}=0$ , and $c_{i}=1$ with $i=1$ .
We define amapping $g$ from the set of all 2-level signatures to $\{$ 0, 1, 2, $\cdots$ , $k_{1}\}$ , as follows:

$g(\alpha)=i$ if $P_{i}$ is the feasible player in $\alpha$ with the smallest hand (ties are broken by selecting
the player having the largest index); and $g(\alpha)=0$ if there is no feasible player. For example,
if $\alpha=(9,9,8,6,5,3,2,2,1,1;2;2)$ as illustrated in Figure 1, then $g(\alpha)=8$ . We denote $g(\alpha)$

simply by $g$ .
Yoshikawa et al. give asufficient condition for $\alpha\in W^{2}$ as in the following Theorem 1.
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$V_{2}$ Eve

83

Figure 1: An illustration of $\alpha=(9,$ 9, 8, 6, 5, 3, 2, 2, 1, 1; 2; 2 $)$ .

Theorem 1([9]) Let $k_{1}\geq 1$ , $k_{2}\geq 1$ , and $ck_{1}\geq 1$ . If there exists $k_{0}$ such that $0\leq k_{0}\leq k_{1}-1$

and $c_{k_{1}-k_{0}}\geq c_{e}+\lfloor\log_{2}(k_{1}-k_{0})\rfloor+k_{0}+k_{2}$ , then $\alpha\in W^{2}$ .

They prove Theorem 1by showing that the 2-level protocol choosing the player $P_{g}$ as a pro-
poser works for any 2-level signature satisfying the condition in Theorem 1. However, their

sufficient condition in Theorem 1is not anecessary one. For example, the 2-1evel signature
a $=(9,9,8,6,5,3,2,2,1,1;2;2)$ above does not satisfy their sufficient condition in Theorem 1,

while it is actually in $W^{2}$ as we will see in Section 3. Thus it has been an open problem to

obtain anecessary and sufficient condition for $\alpha\in W^{2}$ . This paper closes the open problem in

Section 3, that is, provides anecessary and sufficient condition for $\alpha\in W^{2}$ .

3Main Results

In this section we give anecessary and sufficient condition for $\alpha\in W^{2}$ .
Our main result is the following Theorem 2. Hereafter we define $B=\{i|c_{i}=2,1\leq i\leq k_{1}\}$

and $b=\lfloor|B|/2\rfloor$ for a2-level signature $\alpha$ .

Theorem 2Let $k_{1}\geq 1$ , $k_{2}\geq 1$ , $ck_{1}\geq 1$ , and $g\geq 1$ . Then $\alpha=(c_{1}, c_{2}, \cdots, c_{k_{1}} ; k_{2}; c_{e})\in W^{2}$ if
and only if

$c_{1}-(u+ \mu)+\sum_{i=2}^{k_{1}}\max\{c_{i}-(u+\mu), 0\}\geq g-2\mu-1$ , (1)

where
$u=c_{e}+k_{1}+k_{2}-g$ (2)

and
$\mu=\max\{\min\{c_{3}-u, b\}, 0\}$ . (3)

Note that the third term in the left side of Eq. (1) is defined to be 0when $k_{1}=1$ , and that

$\mu$ is defined to be 0when $k_{1}\leq 2$ .
Consider again $\alpha=(9,9,8,6,5,3,2,2,1,1;2;2)$ as an example. The 2-1evel signature $\alpha$

satisfies $k_{1}=10$ , $k_{2}=2$ , $c_{e}=2$ and $g=8$ . Thus by Eq. (2) $u=6$ . Note that $u$ is equal to

the number of shaded rectangles in Figure 1. Since $B=\{7,8\}$ , $b=1$ . Since $c_{3}=8$ , $u=6$

and $b=1$ , we have $\mu=1$ by Eq. (3). Thus $c_{1}-(u+ \mu)+\sum_{i=2}^{k_{1}}\max\{c_{i}-(u+\mu),0\}=$

$c_{1}-7+ \sum_{i=2}^{10}\max\{c_{i}-7,0\}=5=g-2\mu-1$ . Therefore the 2-level signature $\alpha$ satisfies the

condition (1) in Theorem 2, and hence $\alpha\in W^{2}$ . Note that the left side of Eq. (1) is equal to

the number of cards above the dotted line in Figure 1.
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Prom Theorem 2we have the following Corollary 3, which provides anecessary and sufficient
condition for a E $\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}}\mathrm{j}/^{\ovalbox{\tt\small REJECT} 2}$ under anatural assumption that all players in y hold hands of the same
size.

Corollary 3Let $k_{1}\geq 1$ , $k_{2}\geq 1$ , $ck_{1}\geq 1$ , $g\geq 1$ , and $c_{1}=c2=\cdots=ck_{1}$ . Then $\alpha\in W^{2}$ if and
only if

$c_{1}\geq\{$

3if$k_{1}\geq 4$ , $k_{2}=1$ and $c_{e}=0$ ;
$c_{e}+k_{2}$ if $k_{1}=1$ ;and
$c_{e}+k_{2}+1$ otherwise.

(4)

Theorem 1obtained by Yoshikawa et al. [9] implies that asufficient condition for $\mathrm{a}\in W^{2}$ i $\mathrm{s}$

$c_{1}\geq c_{e}+k_{2}+\lfloor\log_{2}k_{1}\rfloor$ when ci $=c_{2}=\cdots=c_{k_{1}}$ . Thus our necessary and sufficient condition
in Theorem 2is much better than the sufficient condition in [9].

Due to the page limitation, we omit aproof of Theorem 2in this extended abstract.
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