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Stopped Markov Decision Processes
with Multiple Constraints

FHAS - BABEHAS  HWOEZ (Masayuki HORIGUCHI)

Abstract '
In this paper, a optimization problem for stopped Markov decision processes with

vector-valued terminal reward and multiple running cost constraints is considered.
Applying the idea of occupation measures and using the scalarization technique for
vector maximization problems we obtain the equivalent Mathematical Programming
problem and show the existence of a Pareto optimal pair of stationary policy and
stopping time requiring randomization in at most k states, where k is the number of
constraints. Moreover Lagrange multiplier approaches are considered. The saddle-
point statements are given, whose results are applied to obtain a related parametric
Mathematical Programming, by which the problem is solved. Numerical examples
are given.

Key words: Stopped Markov decision process, multi-objective, multiple con-
straints, Mathematical Programming formulation, Lagrange multiplier.

1 Introduction

The aim of this paper is to establish a Mathematical Programming method for finite
state stopped Markov decision processes(MDPs) with vector-valued terminal reward and
multiple running cost constraints. In the preceding paper Horiguchi [9], we consider a
optimization problem for stopped Markov decision processes with a constrained stopping
time. The problem is solved through randomization of stopping times and Mathematical
Programming formulation by occupation measures. Here, we consider the vectorevalued
and multiple constrained case. The optimality is defined by the concept of efficiency,
based on a pseudo-order preference relation <k induced by a closed convex cone K in
RP. Then a Pareto optimization with respect to the pseudo-order < is considered(cf. [6,
18]). Applying the idea of Horiguchi[9], we derive a related Mathematical Programming
to solve the problem treated in this paper and show the existence of a Pareto optimal
pair of stationary policy and stopping time requiring randomization in at most k states,
where k is the number of constraints. Also, introducing a corresponding Lagrange
function, the saddle-point statements for our constrained problem are given, whose
results are applied to obtain a related parametric Mathematical Programming, by which
the problem is solved. Numerical examples are given to illustrate the results. For the
unconstrained case, refer to Furukawa and Iwamoto(7], Hordijk[8] and Rieder[16]. A
Lagrangian approach to a constrained optimal stopping problem has been discussed
originally by Nachman[15] and Kennedy[12]. For the dynamic programming approach
to the constrained Markov decision processes, see Horiguchi et al[10].

In the reminder of this section, we shall establish some notation that will be used
throughout this paper referring to the preceding work[9] and define the vector-valued
optimization problem with multiple constraints. Also, a Pareto optimal pair of policy
and randomized stopping time is defined.
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Let S and A be finite sets denoted by S = {1,2,... N} and A = {1,2,...,K}. The
stopped Markov decision model consists of five objects:

(S, A, {pij(a) : 4,5 € S,a € A}, {cl,l =1,2,...,k},7)

where S and A denote the state and action spaces respectively and {p;;(a)} is the law
of motion, i.e., for each (i,a) € S x 4,p;;(a) 2 0 and ), spij(a) = 1, and c = c(i,a),
l=1,2,...,k, are running cost functions on S x A, which will be related to k constraints,
and r = (i) = (r!(@),...,rP(i)) is a vector-valued terminal reward function on S when
selecting “stop” in state 1.

When the system is in state ¢ € S, if we select “stop” the process terminates with the
terminal reward 7(¢). If we select “continue” and take a € A, we move to a new state
J € S selected according to the probability distribution p;.(a) and the costs ¢(i,a),l =
1,2,...,k are incurred. This process is repeated from the new state j € S. Let x;, a;
be the state and action at time t and h; = (z1,4a1,...,2;) € (S x A)*"! x S the history
up to time ¢(t 2 1). A policy for controlling the system is a sequence m = (m,m,...)
such that, for each t 2 1, m; is a conditional probability measure on A given history h;
with m(A|(z1,a1,...,2:)) = 1 for each (z1,a1,...,2;) € (S X A1 x S. Let II denotes
the set of all policies. A policy m = (m,mg,...) is a Markov policy if m; is a function
of only z, i.e., m(:|z1,@1,...,2:) = m(-|z) for all (z1,a,...,2:) € (S x A1 x S.
A Markov policy m = (m, ms,...) is stationary if there exists a conditional probability
on A, w(-|¢), given i € S such that m(-]z;) = w(:|z;) for all z; € S and ¢t 2 1, and
denoted simply by w. A stationary policy w is called deterministic if there exists a map
g:S — A with w(g(s)|¢) = 1 for all i € S and such a policy is identified by g. The sets
of all Markov, stationary and deterministic policies will be denoted by Il IIs and IIp
respectively. Note that IIp C IIg C Iy C II. The sample spaces is the product space
Q= (9 x A)™®. Let X;, A; be random quantities such that X;(w) = z; and A;(w) = a;
for all w = (z;,a,,z2,as,...) € Q. For any given policy 7 € II and initial distribution 3
on S we can specify the probability measure P; on (2 in a usual way.

Let Hy = (X1, Ay, ..., X}). Let 7y = B(H;),t 2 1, where B(H,) is the o-field induced
by H; and F,, the smallest o-field containing each F;,t = 1. Let N = {1,2,...}U{oo}.
In order to solve our constrained decision problem described in the sequel, we need to
introduce randomized stopping time (cf. [2, 5, 12])). To this purpose, enlarging Q to
Q= Q x [0,1], we can embed (2, Fo,) to (Q, Foo x B,), where B, is Borel subsets of
[0,1]. For a filtration F* = {F},t € N} with F} = F, x B, we can assume without loss
of generality that for each t € N

Fit C F;. (1.1)

We call a map 7 : @ — N a randomized stopping time (hereafter called RST) w.r.t.
F* if {T =t} € F; for each t € N. For simplicity, the upper bar of RST 7 will be
omitted and written by 7 with some abuse of notation. The class of RSTs w.r.t. F* will
be denoted by S. For each initial distribution 8 and each policy 7 € II, we denote the
probability measure on Q by ]I_”;, where T"; = IP5 X\ and ) is Lebesgue measure on B;.

Let RP be the set of real p-dimensional row vectors and K C R? a nontrivial closed
and pointed convex cone(cf. [17]). We introduce a pseudo-order relation <x on R? by
z gk y iff y — x € K. For a nonempty subset U C RP, a point z € U is called efficient
with respect to the order <x on R? if £ <k y for some y € U implies x = y. Let e(U)
denote the set of all efficient points of U with respect to <k.
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For any o = (a!,...,a*) € R* and initial distribution $ on S, let -
7—-1 ’
A, B) = {(m,7) €I x S | By Y Xy, A) Lol fori=1,2,...,k}  (1.2)
t=1

where ]E is the expectation with respect to ]P’
We shall consider the vector-valued constralned optlmlzatlon problem(VCOP):

VCOP : Maximize E;"‘(XT) = (E-;TI(XT), e ,@_E-;r"(X.,.))
subject to (m,7) € A¥(a, B).

A pair (7*,7*) € A*(a, B) is called Pareto optimal if

Eg 7(X,-) € e({Egr(X:)|(m,7) € A¥(a, B)}). (1.3)
Note that if ¢ = 1for l = 1,2,...,k, the running cost constraints are reduced to

]Eﬁr < d, where d = min; ;< ' + 1, whose case have been studied in [9], so that works
in this paper are thought of as a generalization of those in [9].

Now, we define F-representation of a RST (cf. [9, 11]). For any RST 7 € S and
t €N, let
gw) =A({r=tl,) (we),

where {r = t}, is the w-section defined by {r = t}, = {z € [0,1]|(w, ) € {T =t}}.
Note that g, is F;-measurable for ¢ =2 1. From this g; (¢ € N), we define the set
f = (ft)iew as follows: '

9
ft = teN (1.4)
1- Zk 19k
where if the denominator is 0 in (2.1) let f; = 1.
Let F={a=(a;);en: 0= a; £1,a00 =1, andif aj =1 a; = 1 for i > j}. Then
it is shown in Lemma 2.1 of [9] that f : Q@ — F, each f; is F;-measurable and for any
initial distribution 8 and pair (7, 7) € II x S it holds

FZ (r =t|Hy)

fo= ot
" Py(r 2 t|Hy)

P%-a.s. AN (1.5)

The set f = (fi);en constructed from 7 € S is called F-representation of 7, denoted
by /™ = (D )iew-

Conversely, letting f = (fi);cy be any function f : @ — F such that for each
t € N f, is F-measurable, we can construct the RST from f (see Lemma 2.2 of [9]),
denoted by 7. Hence, there is one-to-one correspondence between S and the set of
F-representations f = (f;),cn. Using this fact, we define several types of RSTs.

Since the corresponding F-representation f] is Fi-measurable (¢t 2 1), f] is a func-
tion of Hy = (X1,4Aq,...,Xt).
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Definition 1.1. If f] is depending only on X, that is, f7(H;) = f{(X:) forallt 2 1, the
RST 7 is called Markov. A Markov RST is called stationary if there ezists a function
d: S — [0,1] such that fJ(X:) = 0(X:) for allt 2 1, denoted simply by 6. When
0(3) € {0,1} for alli € S, the stationary RST § is called deterministic.

We denote the sets of all Markov RSTs, all stationary RSTs and all deterministic
RSTs by Sar, Sg and Sp respectively. With some abuse of notation, we often use for a
stationary RST 7 € Sg the F-representation § with § = (f) such as § € Ss.

It is easily shown(cf. [9]) that the running costs and terminal reward under a 7 € S
and 7 € II are represented using F-representation f7 = (f/),cx as follows.

-1

Eg Y (X, Ar) (1.6)

t=1

00 t—1
=Y Ej(1- f)(1 - fo) - (1= ) (D (X An)), 1=1,2,.. 0k
t=1 n=1

Egr™(X,) (1.7)
=Y "Ej(1- )= fo) (1= fra) fir™(Xe, Ar), m=1,2,...,p.

t=1

Let K* denote the dual cone of a convex cone K C RP, ie., K*={beRP: (bz) >
0 for all £ € K'} where (-, -) means inner product in R?.
The following result is well known(cf. [3])

Lemma 1.1. Let B C RP be compact and convex set. Then z € e(B) if and only if
there erists b € K*(b # 0) such that (b,z) > (b,y) for ally € B.

In Section 2, the running and stopped occupation measures are introduced, by which
VCOP is reduced equivalently to multi-objective Mathematical Programming problem.
In Section 3, studying the properties of the set of running occupation measures we can
prove the existence of a Pareto optimal pair of stationary policy and stopping time
requiring randomization in at most % states. Section 4 is devoted to Lagrange approaches
for VCOP. Finally, the proof of key Lemma used in Section 3 is given in Section 5.

2 Occupation measures in Stopped MDPs
In this section, we introduce two types of occupation measures in stopped MDPs and
consider the properties of them.

Definition 2.1. For any initial distribution 8 and a pair (7, T) with E;[T] < 00, we
define the measure (B, m,7) on S x A, called the running occupation measure, by

z (8,7, 1;1,a) == Py (X, =14,As=a,7>t) for i€ S,a€ A 2.1
B

t=1
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Definition 2.2. For any initial distribution B and a pair (7, 7) with EZ[’T] < 00, we
define the measure y(B,m,7) on S x A, called the stopped occupation measure, by

y (8,7, 7;1,a) :=ZFZ(Xt=i,At =a,7=t) for i€ S,a€A. (2.2)

=1

o

The state running and stopped occupation measures will be defined by

o(B,7,7;8) =Y (B, 7, 754,0) and

a€A

y(B,m,T;1) :=Zy(,3,7r,1’;z', a) forallieS.

ac€A

For any § : S — [0,1] and conditional distribution w(-|[¢) on A given i € S5,
we define by P®(w) the N x N matrix where (i,j)th element is P;(w)(1 — 6(5)) :=
> seaPij(@)w(ali)(1 — 8(5)) or simply (P°(w));;. With some abuse of notation, for any
initial distribution B and (m,7) € I1 x S, the row vector z(8,w,7) € RY is defined by

x(ﬂ? 7r’ T) = (x(ﬂ7 Tr, T; ]')’ b ‘,x(ﬁ7ﬂ-’ T; N))'

Then, in the following lemma, the state stopped occupation measure is proved to
be represented by the running one and for each (w,7) € IIg x Sg, the state running
occupation measure is determined uniquely as a solution of the corresponding equations
below.

Lemma 2.1. ([9]) For any initial distribution 8 and pair (7, 7) € IIXS with EZ[T] < 00
we have the following:

(i) z(8,m,7;i) < oo and y(B,m,7;i) < oo for alli € S.
(ii) EZ[T] =Y s (B, m, T;1) + 1.
(111) y(ﬂa , T;i) = B(Z) + Ejes,aeA x(IB’ WaT;ja a)pji(a) - .’12(,6,71', T;i)'

Moreover, if (w,7) € Ilg X Sg, then the state running occupation measure (83, w,T) is
the unique solution to
z=p(1-06)+zP°(w), zeRY (2.3)

where B(1 — 8) is in RN whose i-th component is 3(3)(1 — 6(¢)) and 6 := f7: .S — [0,1]
is F-representation of T.

Let RV*K be the set of real N x K matrices. For any subset U C II x S, denote
XHU) == {z(B,7,7;4,0)ics0ea : (7,7) € UN A*(a, §)}. (2.4)

Note that X¥(U) c RVN*X,
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Here, we define the multi-objective Mathematical Programming problem(MMP (I))
related to VCOP as follows:

MMP(I): Maximize Y r(i)y(i):=(>_r'@)y@),..., Y rP()y())
ieS ieS i€S
subject to z € X¥(II x S), y € RY and
y(@) =BG+ Y z(j,a)pula) —z(3), i€ S,

j€S,acA

where z(i) = Zx(z, a).

acA

Then, we have the following theorem, which is proved from Lemma 1.1 by the use
of (Theorem 3.1 of [9)).

Theorem 2.1. VCOP is equivalent to MMP(I), i.e., a pair (7*,7*) is Pareto optimal
for VCOP if and only if the corresponding {x(3,7*,7%;4,a)} € X*¥(II x S) is Pareto
optimal for MMP(I).

Proof. From Lemma 1.1, an efficient point for VCOP is given by solving the following
maximization problem for some b € K*:

Maximize (b, EZT(XT)) (2.5)
subject to (m,7) € A¥(a, B).

Applying (Theorem 3.1 of [9]) will complete the proof of Theorem 2.1. g

3 Mathematical Programming approach and Pareto
optimal pair

In this section, we present another Mathematical Programming formulation by which
VCOP is explicitly solved.

To this end, we define several basic sets below. For simplicity, we put (z,) =
{Ti}icsaca € R¥*¥ and § = {6(¢)}ics € RV. For any initial distribution 8 on S and
a=(a,...,oF) € R¥, let

( ((zia),8) € RV*K x RV : \
1) Y 7w =B@)1-8G)+ Y ziapu(a)(l —6(3), (i€ S)
acA JES,a€A
Q:={ (i)0Ls(E) L1, (i€8) S, (3.1)
i) > di,a)masad, (1=1,2...,k)
i€S,acA
. (iv) 2,20, (i€ S,a€A) )
QF := {(x,-a) € RVK : ((z,),0) € QF for some 6}. (3.2)

We introduce the following assumption.
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Assumption (x). For any w € llg and I(1 £ | £ k),

max c'(ilw) > 0 foreach i€ S (3.3)
1818k

where ¢t (ilw) = Y, 4 ¢ (3, a)w(als).

We have the following theorem, whose proof is similar to ( Theorem 4.1, Lemma 4.1
and Theorem 4.2 in [9]) and omitted.

Theorem 3.1. Suppose that Assumption (x) holds. Then
(i) XK(II x S) = Xk(Ipr x Sp) = Xk(Ilg x Ss).
(i) QF = X*¥(Ils x Ss).

(iii) QF is compact and convez.

The following corollary holds clearly from Theorem 3.1 and observing (3.2).

Corollary 3.1. X*(IIs x Ss) is compact and convez.

Remark. For any ((zi,),8) € QF, we define a stationary policy w as follows:
For eacha € Aand i€ S,

%, if x; > 0,
w(ali) = z; (3.4)
any probability distribution on A, if z; =0,

where z; = Y, 4 Tia. Then, z = (z;) with z; = z(68,w, d;4),i € S is given as a unique
solution of (2.3).
Also, (i) and (iii) in (3.1) are rewritten as follows:

(i) 2i=P0)(1 ~0() + XjeszPii(w)(1-6(1),i € S (3.5)
(ili) Yiesdlw)z Sall=1,2,...,k ‘

where (i, w) = ¥, 4 ¢ (3, a)w(ald). :
Now, we define another multi-objective Mathematical Programmmg problem (MMP(II))
for VCOP:

MMP(II) : Maximize »_7(i)y

i€esS

subject to (zi) € QF, ui = B() + Z Tiapji(a me, i€S

jES,a€eA a€eS

Here we get the following corollary which is obviously given from Theorem 2.1 and 3.1
and Corollary 3.1.

Corollary 3.2. It holds that
(i) VCOP and MMP(II) are equivalent.
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(ii) A Pareto optimal pair exists on IIg x Sg.
For any stationary policy w € IIg, let n(w) be the total number of randomization
under w, that is,
n(w) = Z(m(z, ’U)) - l)a
ies
where m(i, w) is the number of elements in {a € A|lw(a|i) > 0}. Define
Ik .= {w € IIs : n(w) £ k},

and

St .= {1 € Ss|f7(3) € {0,1} except at most k states}.
For (z:,) € QF, Z((zi)) C {1,2, ...k} is defined as follows:

I((zi)) = {l € {1,2,...,k} : Z d(i,a)zi, = o'}.

i€S,acA

For any {l1,l,...,ln} C {1,2,...,k}, let

Quy,...tn} = {(Zia)|((zia), 6) € @{11,12,...,1;.} for some § € R"},
where Qq,,..;,} == {((zi), ) € Q* : T((zia)) = {ls ba, - -, ln}}-

For any compact convex set D we denote by ext(D) the set of extreme points of D.
Then, we have the following, whose proof is done in Section 5.

Lemma 3.1. Under Assumption (x), it holds that for any {l;,...,ln} C {1,...,k},

ext (Qq....3) C {2(8,w,8) : (w,8) € IT§ x S§}, (3.6)
where k is the number of constraints.

The existence of a Pareto optimal pair of stationary policy and stopping time re-
quiring randomization in at most k states is given in the following.

Theorem 3.2. Suppose Assumption (*) holds. Then a Pareto optimal pair (7*,7*) for
VCOP ezists in 11 x SE, that is,

e({Ej r(z.)|(m, ™) € A¥(@, B))) C e({Ef r(zs)|(w,8) € (IT§ x 85) N A*(e, B)}). (3.7)

Proof. Let (n*,7*) € e({Efr(z,)|(m,7) € A*(c,B)}). Then, by Theorem 2.1, there
sexists b* € K* such that (7*,7*) is a optimal solution for (2.5) with b = b*. Here, from
Theorem 3.1 and Corollary 3.2, we can assume that (7*,7*) € IIg X Sg, so that there
exists {ly,la,...,ln} C {1,2,...h} with z(B,7*,7*) € Qq, 1,,...1,}- APPlying Lemma 3.1,
there exists (w*, 7*) € II& x S which is a solution of (2.5) with b = b*. This means that
(w*, 7*) is a Pareto optimal for VCOP, as required. g

Example 3.1
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Consider the following numerical example with p = 1.
S =1{1,2,3,4}, A= {1}, (a1, a2) = (0.5,0.4), 3 = (0.25, 0.25, 0.25, 0.25),

0.3 04 0.1 0.2
0.4 0.1 02 0.3

i) = {02 03 04 01]"
0.3 0.3 0.1 0.3

c(1,1) = 0.6, c}(2,1) = 0.1, c!(3.1) = 0.5, c'(4,1) = 0.4,
c*(1,1) = 0.6, c%(2,1) = 0.05, c*(3.1) = 0.1, c*(4,1) = 0.8,
r(1) = 4, r(2) = 3, r(3) =2, r(4)=2.

Letting z; = z;; (¢ € S), the mathematical programming problem (MMP(II)) for the
corresponding constrained optimization problem is given as follows:

Maximize —z1 —0.1z9 + 0.723 + 0.924 4+ 2.75

subject to z1 = (0.25 4+ 0.3z1 + 0.4z2 + 0.2z3 + 0.3z4)(1 — 6(1)),
T2 = (0.25 + 0.4z, + 0.1z + 0.323 + 0.3z4)(1 — 8(2)), ., .-
x5 = (0.25 + 0.1z + 0.2z + 0.4x3 + 0.1z4)(1 — 6(3)),
x4 = (0.25 + 0.2z1 + 0.3z + 0.1z3 + 0.3z4)(1 — §(4)),
0.6z, + 0.1z5 + 0.523 + 0.4z4 < 0.5,
0.6z; + 0.05z4 + 0.1z3 + 0.8z4 < 0.4,
z; 20,056(:) £1,:=1,2,3,4.

After a simple calculation, we find the optimal solution of the above is z} = 0,z} =
26/71, x5 = 43/71,x; = 57/142, 6*(1) = 1,6*(2) = 79/209,46*(3) = 0,6*(4) = 33/128
and the optimal value is 1242/355(= 3.49859). Note that the value is 285/82(= 3.47561)
for 6(1) = 6(2) = 1 and §(3) = 6(4) = 0.

Thus, by Corollary 3.2, the pair (w*,7*) € % x S% with w*(z) = 1 for all i €
S and f7(1) = (1) = 1,17(2) = 6*(2) = 79/209, f'(3) = &°(3) = 0,17 (4) =
0*(4) = 33/128 is optimal for the corresponding constrained optimization problem and
the optimal reward 1242/355. Note that 7* € S2.

4 Lagrange multiplier approaches

In this section, we define the Lagrangian associated with VCOP and the saddle-point
statement is given(cf. [13]). Consequently, by solving a parametric Mathematical Pro-
gramming problem defined in the sequel, a Pareto optimal pair is obtained.

Let b = (by,...,by) € K*. The Lagrangian, L®, associated with VCOP is defined as

p k 7—1
L¥((m,7),0) =D BE(r'(X:) + ) Mo —E5(D_ (X, Ar)) (4.1)
i=1 =1 t=1

for any (m,7) € I x S and A = (A1,..., M) € R%, where R® is the positive orthant of
RE.
Hereafter A = (A, Mg, ..., Ax) € RE will be written simply by A 2 0.
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For the Lagrangian approach we shall refer to ([14]). We have the following saddle-
point statement, whose proof is similar to (Theorem 2, p.221 in [14]) combined with the
use of the scalarization technique and omitted.

Theorem 4.1. (cf. [14]) For some b € K*, suppose that the Lagrangian L® has a saddle-
point at (1*,7*) € I x S and X\* € Rk, i.e,,

Lb((m,7), X)) £ L¥((7*,7*),A*) S Lb((7*,7*), ) (4.2)
for all (m,7) €1 x S and XA € RX. Then, (7*,7*) is a Pareto optimal for VCOP.

In order to have the existence of a saddle-point of the Lagrangian L®(b € K*) we
introduce the set of N x K matrices as follows:
For M > 0, let

( (x,-a)eRNxRK- )

i) Yz =BE1L-8@)+ Y ziapi(a)(1-8() (i €5)

acA JES,a€A

QM) =14 (i) 0S80 <1 (i€S) . (4.3)

(i) > zuSM-

i€S,acA

| (iv) Zi, 20 (i€ S,a€A) )

Note that Q(M) is identical with the set of feasible solutions of the Mathematical
Programming problem introduced in [9] to solve stopped MDPs with a constrained
stopping time and condition (iii) of (4.3) means IE 78 £ M, where w € Il is constructed
from (z;,) through (3.4). Under Assumption (*) it clearly holds that for a sufficient
large M > 0
Q* c Q(M). (4.4)

Henceforth, M > 0 will be fixed such that (4.4) holds.

By using occupation measures defined in Section 2, the Lagrangian L°(b € K*) can
be rewritten as follows:

Lb((z,-,,),x):=zzb,r z)y,+ZA, - Y d(,a)z) (4.5)

i€S =1 jESaGA
= Z (Zp,,(a)r .7) _,’,b(z) - Z’\lc i, a :Cw (4'6)
i€S,acA JGS
+ Z)\;a + Zr (2)B(),
i€S

where y; := (i) + 3 jc5,0ea ZiaPsi(@) = 3sca Tia a0d rb(j) := ZLI birt(j), for (zi,) €
Q(M) and X € RE.

We need the following condition.
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Assumption (xx). (Slater condition) There ezists (zi) € Q(M) such that

> A a)mie < o (4.7)

i€S,acA
foralll=1,... k.

Then, applying (Theorem 1, p.217 in [14]) we have the following Lemma under Slater
condition.

Lemma 4.1. Under Assumption () and (**) for any b € K*, the Lagrangian L® has
a saddle-point at (z},) € Q(M) and \* € Rk, i.e,,

L¥((zia), X) S LP((272), A7) S L((250), A)
for all (zi,) € Q(M), X € RE.

If we construct a stationary policy w* from (z},) € Q(M) in Lemma 4.1 through
(3.4), (w*, \*) satisfies (4.2). Thus, we have the following from Lemma 4.1.

Corollary 4.1. Under Assumption (x) and (x*), for any b € K*, the Lagrangian L®(-,")
has a saddle-point (w*,\*) € IIg x RE.

Applying the results above, we can present a parametric Mathematical Programming
approach to obtain a Pareto optimal pair for VCOP. For any b € K* and A € Rﬁ, let

k

ri,alb, A) =Y pi(a)r(4) — r°() = D _ M (i, a). (4.8)
jes =1

For b € K* and A € RX, a parametric Mathematical Programming problem MP (b, })

will be given as follows:

MP (b, )\) : Maximize Z (%, alb, A\)Ziq
i€S,a€A
subject to (zis) € Q(M).

Then, by using a result in [9], for each A 2 0 we have the optimal value v(b, A) for
MP(b, A). By (4.6) and Lemma 4.1, there exists \* € RE such that

v(b, ") + Zx\,a = mln('v(b A)+ Z hat). (4.9)
=1

From this multiplier A*, we solve MP(b, X*). Let ((x,),0*) be a solution of MP(b, A*).
Then, from the discussion above, (w*,8*) and A\* is a saddle-point satisfying (4.2), and
we can say that (w*, 6*) is a Pareto optimal pair for VCOP and the value of MP (b, A*)
is the expected rewards corresponding the Pareto optimal pair (w*,§*), where w* is a
stationary policy determined by z}, through (3.4).
Example 4.1

This is Example 3.1. By solving (4.9) with b = 1, we get \* = (29/213, 248/213) and
the value of the saddle-point is 1242/355. In order to obtain a optimal pair for VCOP,
we solve MP(1, \*) and get the optimal pair (w*, 7*) € I1% x S% as follows: w*(z) = 1 for
all i € S and f7(1) = 6*(1) = 1, f7(2) = 6*(2) = 79/209, £ (3) = 6*(3) = 0, f7"(4) =
8*(4) = 33/128 and the corresponding optimal reward 1242/355, which is equal to the
numerical results in Example 3.1.
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5 Proof of Lemma 3.1

In this section, we prove Lemma 3.1.
By argument similar to those used in (Theorem 3.8, p.34, in [1]) we can show that

ext (Q{ll,,_,,lh}) c {z(B,w,d) : (w,d) € Ik x Ss}. (5.1)

exists jp(n=1,...,h + 1) with

0<6(Jn) <1 for n=1,2,...h+1. (5.2)
For simplicity, put z* = z(8, w*, §*) suppressing 3, w* and 6*.
Let
L2={l1,l2,...,lh}, .EI={1,2,...,]€}—L,
J = {j]_,j2,...,jh+1} and 7Z=S—J.
For any row vector z = (1, Zs,...,Zn) € R®, we can write = (2, z75), where z,

and z7 are subvectors of z and z; = {z; : 4 € J} and z7 = {z; : i € J}. Also, P*(w*)
will be partitioned into submatrices as follows:

o Pa(’w')JJ P&(w-)_
P = (PG(W‘)W PJ(w*)%) ’

where P(w*);; = (Pij(w*)(1 — 6(j))),% € J;j € J and other submatrices are similarly

defined.
For simplicity, we write
s o _ (P P2

P(w*) = ( P, Q)
Let c(w*) = (cij(w*)), where ¢;j(w*) = (i, w*) fori € S and j € {1,2,...,k}. C(w*)
will be partitioned as done in the above:

Ci C -)
Cw*) = JL)
() (Cn Cir

suppressing w*.
Here we consider the following inequality system (cf. (3.5)).

(1) z;=LBs(1-106;)+z;P + z5P5

(ii) :L‘7=ﬂ7(1—57)+x1P2+1‘7Q, (5.3)
(iii) z;CyL + 25C5, = ay, '
(iv) zjC ;1 + 25051 < of,

where §;(1—8;) = (B(i)(1 - 8());i € J), B7(1— &) = (B(2)(1 - 8(4));i € J) and = and
< mean componentwise relations.
We note that z* = (2%, 2%) and é* = (3, 63) satisfy (5.3) obviously.
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From Assumption (%), it clearly holds that lim,_ .., @™ = 0, so that (I — Q)~! exists
and by (ii) in (5.3) we get

z3 = (B7(1 = &5) + 2, P)(I - Q)7 (5-4)

where I is an identity matrix with the same dimensions as Q.

Also, since (i) in (5.3) includes only §; with respect to 4, it uniquely determines J;
if z; and &7 are given. Thus (i) and (ii) in (5.3) determine uniquely =5 and d; if z; and
8 are given. Inserting from (5.4) into (iii) in (5.3), we have that

z;(Ci+ P(I—Q)™") = ap — B5(1 - &5)(I — Q) 'egy. (5.5)

Now, we denote by D the set of all pairs (zz,85) satisfying (5.3).
Let D be the set of all z;, (z; 2 0) satisfying (5.5) with &7 = &3, that is,

D = {z4|(z4,6%) € D and z; 2 0}. (5.6)

Observing that (5.5) with &7 = &5 has h equations and h+ 1 unknown elements, we find
that D is a polyhedral convex set with at least one dimension. Since (5.2) means that
z* € D is a relative interior point in D, there exists 0 < v < 1 and z},z% € D with

zy =25+ (1-7)z} (5.7)
Let 1,6} and 22, 63 be those determined uniquely thorough (i)—(ii) in (5.3) with z; =
z},65 = 0% and z; = 27,87 = 0% respectively. Let z' = (z},zL),2° = (27,22),0' =

(85,6%) and 8% = (83,6%). We can assume that z' and z? satisfying (iv) in (5.3) by
choosing z} and z? sufficiently near to z%. Applying Lemma 2.1 we get

tt = z(8,w*,8") and 22 = z(B3, w*, 62).
Thus, we have that
z(B, w*,6%) = vz(B, w*, ") + (1 — 7)z (8, w*, 6%),

which implies z(8, w*, 6*) ¢ ext(Qq, 1,,...1,})- This completes the proof. g
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