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1 Introduction

In this paper we are concerned with a maximum process generated through independent
and identically distributed random variables via its summation process. Both the i.i.d.
process and the summation process are Markov chains. The probabilistic behavior of both
is well known [12]. However, the maximum process is not Markov. We are interested
in how to make it Markov on suitable state spaces. Further we focus our attention on
a recursive computation of expected value, variance and probability distribution of the
maximum random variable. i

We present a new method “Markovization”, which is a stochastic realization of invari-
ant imbedding approach [2-7,9,11] —“dynamic programming without optimization” [1,
p.115], [2, p.72], [4, p-203], [8, p-23], [9,10], [13, Chap.14]. We show that the computation
is based upon the Markovization.

2 Profit Process

2.1 Random Walk
Let X;, Xo,..., X;,... be independent and identically distributed with

P(X;=1)=p, PXi=-1)=q (0<p<1, p+g=1).

In a game of flipping a coin — probability of head is p — infinitely, X; = 1 (—1) denotes
a win (loss) at i-th flipping. When a player wins (loses), he get (loses) one-unit.
Then we define the sum-to-date as follows :

Yo=0, Yi=) X (1)
j=1

The additive process {Y;, © > 0} is a random walk [12, p.143]. It is also called a profit
process. In the game of coin flipping, Y; denotes a net profit, which is equal to “the
number of wins — the number of losses” up to i flippings. It is a difference between wins
and losses.

Further we define the mazimum-to-date :

Z; = max Y.
1<5<e
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The mazimum process {Z;, i > 1} is called a mazimum profit process. In the game, Z;
denotes the maximum value of differences between wins and losses up to i flippings.

Let N be any positive integer. We are concerned with the maximum profit random
variable over the N-stage Zy. Our problem is to find its expected value, variance and
probability distribution :

E[ZN], V([Zn]), P(Zn=k).

2.2 Profit Process

Let us take an integer n(> 2). We consider a random variable U, which follows the
Binomial distribution Bi(n;p) :

PU=k)=,Cip*¢"* k=0,1,...,n.

It is easily shown that
E[U] =np, V[U]=npq.

We return to the random variable Y;, defined in (1). Let us consider the events
Yo=1-k+(-1)-(n—k), k=0,1,...,n. Then we have

P(Y, = 2k — n) = ,Cj p*q"*.

Thus we see that Y,, = 2U — n holds almost surely.
As a summary we obtain

Lemma 2.1.
(i) Ya=2U-n as.

(ii) P(Yo=2k—n)=,C: p*¢"* k=0,1,...,n
(iii)y E[Yn] =n(p—gq), VI[Ya]=4npq.

Thus Y, takes values —n, —n+2, —n+4, ..., n—2, n. Let us define state spaces
{Sn} as follows :
Sp={-n, -n+2, -n+4, ..., n—-2,n} n=0,1,... (2)
where
So = {0}.

Therefore, the profit process {Y,, n = 0,1,...} is a Markov chain on the state spaces
{S.} with the transition probability p = {p,(j | )} (Figure 1) :

p if j=i+1
p(fli)=¢ ¢ if j=i-1 n=0,1,.... (3)
0 otherwise

Then the recursion Y41 = Xp41+Y,, n=1,2,... together with i.i.d. property in {X,}
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Figure 1: Profit process Y = {Y,}

Lemma 2.2.

EYi]=p—gq.

(i) B2 =1+2(p—BY,]+E[¥Y n=12,...

E[Y7] =1.
Thus we have

ElY,=n(p—q), E[X}]=n+n(n—-1)(p-q>

This also implies V[Y,] = 4npq.

3 Maximum Process
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It is shown that expected value and variance of profit Y, has been calculated through
the Binomial distribution. In this section we consider expected value and variance of

maximum profit Z,.

Lemma 3.1. (i) Forn=1,2,...,

y'2n+1 > ZZn
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is equivalent to

Xo+ X+ Xg+Xs+ -+ Xon-a+ Xon-3+ Xon2+Xop120
Xe+ X5+ +Xon-a+Xop-3+ Xon2+ X210

Xon—4+ Xon-3+ Xon—2 + Xon-120
Xon—2+ Xon1 20
Xon = Xont1 = 1.
(ii) Forn=1,2,...,
Yoni2 > Zonta
is equivalent to

Xs+ Xy +Xs+Xe+ -+ Xon-s+ Xon—2+Xon1+Xon 20
Xs+Xe+ 4+ Xon-3+Xon—o+Xopn_1+ X2, 20

Xon-3+ Xon—2+ Xon—1 + X2 20 “
Xon—1+X;m 20
Xon41 = Xong2 = 1.
In particular,
Y. > 2,
is equivalent to
Xo=1
(iii) In esther case we have
Yoi1— 2, =1 (5)
Y2, -22=2Y,+1 =n=0,1,.... (6)

Proof. Since (i) is shown, we first show (ii). We note that the inequality
Yont2 > Zonta
=Y1VY2V°'°V},2n—1 VY2nVY2n+1
is equivalent to the system of inequalities
},2n+2 > Y2n+1 = X2n+2 >0
Y2n+2 > Y2n - X2n+2 + X2n+1 >0
Yons2 > Yono1 = Xons2 + Xony1 + Xon >0
Yony2a > Yona = Xonto + Xont1 + Xon + Xon-1 >0

Yonia > Y2 = Xons2 + Xonp1 ++--+ X3 >0
Yoni2 > 1 = Xonyo + Xont1+--+ Xz + X2 > 0.
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Xontz =1
Xont1 =1
Xop > -2
Xopn_1+ in > -2
Xonoz + Xan-1 + Xon > =2 (™

Xs+Xg+ -+ Xon1 + Xon > —2
X2+X3+X4+"'+X2n_1—|—X2n> -2.

Since each X, takes only two values —1, 1, we see that (7) is equivalent to (4). (iii) is
shown as follows. First we assume that Y,,; > Z,. Here

Yn - Yn—l + X'n
>Y,; (since X, =1)

Yn :}/11—2+X -1 +X'n
>Y, o

Yo=Y, s+ X, 2+ Xp1+Xn
>Y,.3 (since X, o+ X,_; >0)

Yo=Y,y +Xn 3+ Xno+ X+ X,
> Yo 4

Then we have Y,, > Y,,, m =1,2,... ,n, which implies
Yn+1 - Zn = Yn+1 - Yn = Xn+l =1
Furthermore, this implies
)/;12-'}"1 - Zﬁ = (Yn+1 + Zn)(Yn+1 - Zn)
= Yp41 + Zn
= 2Yn+1 -1
=2Y,+ 1.

Then we have the following recursion formulae :
Lemma 3.2.
(i) ElZpp1)=PYp41>Z,)+E[Z,)] n=12,...
ElZ)|=p-q
(i) E[Zi.]=ElQYa+1) 1y sz)] + E[ZY]  n=1,2,...
E(Z}] = 1.



Proof. First we note the equality

Lvny1>2a} + Livnu<zay =1
where 1, is the charasteristic function of set A :

La(w) = 1 fwed
A/ =1 0 otherwise.

It holds that

Zny1 = 2ZnVYop
= (Zn \ Yﬂ'l'l) : (I{Yn+1>zn} + l{Yn+1SZn})

=You1 Yyup>za} + Zn - Yivnpi<za})
= (Yn+1 - Zn) : 1{Y,,+1>Z,.} + Zn
Z21 = (ZaV Yoi1)?
= (ZaVYet1)® Mvi>2a} + Liviri<z0))

= YT?-}-I ' l{Yn+1>Zn} + Zf2l : l{Yn+1SZn})
= (Y:'f'l - Z12l) ' I{Yn+1>zn} + Z:'

From (5) we see that

E[(Yn+1 - Zn) : I{Yu+1>zﬂ}] = E[1{Yn+1>zn}]
= P(Yos1 > Z,).

Taking the expectation of both sides in (8), we have

E[Zn+1] = E[(K'H"l - Zn) . l{yn+1>zn}] + E[Zn]
= P(Yps1 > Z,) + E|Z,).

Similarly, a combination of (6) and (9) yields

E[Zfi“] = E[(yfﬂ - Zle.) : I{Yn+1>zn}] + E[Z?z]
= E[(z}fn + 1) : l{yn+1>zn}] + E[Z?l]'

4 Markovization
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(8)

The profit process {Y,, n > 0} is a Markov chain, where the state spaces {S,} and the
transition probability p = {p,(j|7)} are defined by (2) and (3), respectively. Now we
consider the maximum profit process {Z,, n > 1}, which is not necessarily Markov. We
are interested in some approach which makes the maximum process Markov on a suitable
state spaces. In the case, the state spaces are meaningful as far as it is small. We call this
problem a Markovization of process {Z,}. In this section the Markovization is performed

through an invariant imbedding method [1, p.82], [13, Chap.12].
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Let us define the past-value sets {Q2,} as follows :

Qo ={ | =) VuVypV---Viyp1, % €S;, 1<i<n-1}
n=23,....

In particular, we call §2,, the mazimum-value-set to date n. Then the past-value sets
satisfy the forward recursive formula :

Lemma 4.1.

Q2:{_1’1}
Qi ={AVy|lAeQ, yesS} n=23,....

In fact, we have

Q ={-1,1}
Q,={-1,0,1,..., n—2, n—1} n=34,....

Then Z, takes values on Q,4; for n =1,2,... (Figure 2).

Z4
Z3
4
Zy
3 3
A
2 2 72
1 1——317 1
0o--" 0 0
-1 -1 -1 -1
Q, Qs Q Qs

Figure 2: Maximum profit process Z = {Z,}.>1

Lemma 4.2. However, the mazimum profit process Z = {Z,, n > 1} is not Markov on
the state spaces {Qn+1}. In fact, both transition probabilities

P(Z4=2|Z2:0,Z3:1)=p

and
P(Z4:2|Z2:1,23:1)=p2

depend on the yesterday’s state and are not equal for 0 < p < 1.
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Proof. The following four equivalences are easily shown.
Zg"—‘O,Zg=1<=>X1=—_1,X2=1,X3:1
Z2=0,Z3= 1,Z4=2¢=:>X1=—1,X2= 1,X5=1,X,=1
Zg=1,Z3=1<$X1=1,X2=—1
Z2=1,Z3= 1,Z4=2<=>X1=1,X2=—1,X3= ].,X4=1.

The first two and the last two yield the former transition probability and the latter,
respectively. This completes the proof. a

V(YQ; )\4)
(Y3; A3)
(},2; )‘2) " (4, 3)

/p' (3;2) —  (2;3)

(2;1) ’
P T (12) T (22)
1 (0;2)

P . (1;1)
Yo / e oy > (1)

STy ©1)

\ _P . (10 (=%1)
3 p G-V~ (00
- T (-10) ____ (22:0)

S P (DT (0-1)

(=2;-1) o
(-3 ETY
T~ (—4;-1)

S'O ‘§1 5'2 S’3 54

Figure 3: Expanded profit process Y = {Y¥,, n > 0}

First, by attaching Q2,,, we expand the state space S, to augmented state spaces {S’n}
as follows :

S, =8, n=0,1

A= VYV Vi

Yi=T1+ T+ +z; CS,x n=23,...,N.
xie{—-l,l}, 1<i:<n

S'n :={ (yn; )\n)

Then the expanded state spaces {5’,,} are forwardly generated as follows.
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Lemma 4.3.

~—{@n 0;1), (0;-1), (-2;-1)}
Sor1={W+z;AVy) | (¥ €S, re{-1,1}} n=23,...,N.

Second we define a new transition law q = {g,} there by

p if j=1

q(710) == {

g if j=-1

iy =i
muwuw-{q £ i1

pa(jli) if AVi=p
= =2,3,....
@ (G5 ) | (X)) = { otherwise n=2,3,

Finally we define a sequence of random variables {Y,;n =0,1,...} by
V,=Y, n=0,1; Y,:= ul) n=23, ...

We call Y = {}7,1} an ezpanded profit process. Thus Y, represents today’s profit, which
behaves stochastically. And A, = (=1)Vy1VyaV---Vy,_1 = 2,_; denotes the mazimum-
to-yesterday, which has been already determined. Thus {),} is deterministic. Every time
Y, realizes a value y,, the resulting pair (y,; A.) yields the today’s mazimum-value

)\nvyn:ylv"’vyn—lvyn:zn

under mazimum operation V. In other words, the expanded profit process Y = {17;}
generates the maximum process Z = {Z,} under the binary operation. Furthermore, we
have the following desired property.

Lemma 4.4. The ezpanded profit process {Yn, n > 0} is a Markov chain on the state
spaces {S,} with the transition probability q = {g.} (Figure 3).

We define a mapping T}, : S, — R! by
Tn(@n) = A VY n=23,....

Then the sequence of mappings {T,,} transforms process {Y,} into {Z,} in the following
sense :

To(Y) = Zo VY =2Z, n=23,....

Thus the process {Y, } is a Markovization of {Z,}. Thus the Markovization is a stochastic
version of the final state model [1, p.82], [13, p.71]. ,
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4.1 Recursion for E[Zy]

Now let us take a positive integer N(> 2). We derive a recursive formula for the expected

value of the maximum random variable Zy. We define a terminal function T : Sy — R!
by

T(gn) :== AN V Yn.
Lemma 4.5. It holds that
E[Zy) = E5[T(Yn)]

where Ego is the expectation operator induced from the transition law q and the initial
state go =Y = 0.
Let us define the sequence of expected value functions {u,} as follows :
Un(@n) = E; [T(Yn)] n=0,1,... ,N—1
un(Jn) = An Vyn

where -E‘g" is the expectation operator induced from the transition law {gn, gn41,- .- ,qn}
and an initial state ¢, € S,. We remark that ¢, takes the following values :

D=%=0, fi=pr=-1lorl, o= (Yn;An) n=23,...,N.
Then we have the backward recursive formula :

Theorem 4.1.

up(0) = Z u1(5)go(7 ] 0)

JE€S1
w(@) =Y w(da(ld) €S
JES2
Un(5A) = D Ung1(i5AVi)G(ild)  (5A) € Gn, n=2,3,... ,N -1 (10)
JE€Sn+1

un(GA) =AVi  (i;)) € Sy.

Thus, successively solving (10), we have the desired expected value of the maximum
profit Zy over N-stage problem :

uo(0) = E[Zn].
Actually the recursive formula reduces as follows :
Corollary 4.1.

uo(0) = pua(1) + qua (1)

u1(2) = pus (i + 1;2) + quo(i — 1;7) i=-1,1
Un (25 A) = PUnt1( + 1AV E) + qupti1(E — 1; AV 7)

(0 €8, n=23,..., N-1

un(B;A) =AVi (5 )) € Sy.
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4.2 Recursion for E[Z%]

Now let us consider the expected value of the squared random variable Z7. Here in place
of the terminal function T" we introduce the squared terminal function T? : Sy — R! by

T*(gn) = (Av Vyn)>.
Then we have
Lemma 4.6. It holds that
E[Z}] = Eg[T*(Yw)].
Let us define {v,} as follows :
V(@) == B, [T*(Yy)] n=0,1,... ,N—1
un(Gn) == (Ax Vyn)*.
Then we have

Theorem 4.2.
v0(0) = pv1(1) + qu1(-1)
vi1(3) =pva(i + 1;4) + qua(i — 1;4) i=-1, 1

Un(3A) = PUns1(+ L, AV ) + quapa (i — 1; AV 35) (11)
(N €8y, n=2,3,... , N—1

un(GA) =(AVi)?  (i;)) € Sy.
Thus, the recursive computation of (11) yields the desired expected value.:

v(0) =E [Z,%,]

4.3 Recursion for P(Zy = k)

Now let us consider the probability distribution of Zy. For each fixed k € €, the
probability it takes value k is calculated through invariant imbedding. We define the
terminal function T : Sy — R! by

T(gn) = ¥(Anv Vyn)
where (- ) is the indicator function of a one-point set {k} :

1 if z=k
P(2) = Ly (2) == { 0 otherwise

Then
Lemma 4.7. It holds that
P(Zy = k) = Eg[T(Yy)].
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Further we define {w,} as follows :
wn(%n) = B3 [T(Yn)] n=0,1,...,N—1
wn(Fn) = P(An Vyn).
Then
Theorem 4.3.
wo(O) = p'wl(l) + qwl(—l)
wi(2) = pwa(t + 153) + quo (i — 1;2)  i=-1, 1

Wn(35A) = pwWat1 (G + LAV ) + qunya (i — 1AV Q) (12)
(M) € 8,y n=2,3,...,N-1

wy(i2) =Y(AVi)  (5A) € S.
Thus, the recursion (12) yields the desired probability :
wo(0) = P(Zn = k).
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