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Absence of eigenvalues of the Maxwell operators

SR KRB HFAA KBTS ) (Takeshi Okaji)

1 Introduction
F. Rellich (1943) has shown that if u € L*(U) is a solution to the eigenvalue problem
(1.1) » —Au=ku, k>0

in an exterior domain U of R?, then u is 1dent1ca,lly zero. T. Kato (1959) extended
this result to the Schrodinger equation

(1.2) —Au+tgq(z)u=ku, z€U, k>0

where , :
g(z) = olz|™"), || = oo.

In addition, there are many works on a class of second order elliptic equations.

On the other hand, an analogue to Rellich’s theorem for symmetric elliptic sys-
tems is well known (cf. P.D.Lax - R.S. Phllhps and N. Iwasakl) Our major concern
is whether an analogue to Kato’s result holds for such systems or not. As for Dirac
operators, many works are devoted to the study of this problem ([4], [13], [12] and
[5])-

In this paper, we focus our attention to optical systems in general inhomogeneous
media. In order to attack this problem, we shall take the first order approach instead
of the usual second order approach. It is an improved version of Vogelsang’s strategy,
which is to show a series of weighted L? estimates based on the virial theorem.

2 Maxwell operators

Let € and g be 3 x 3 real symmetric matrices defined in an exterior domain U of R®.
They are supposed to be uniformly positive definite in U: There exists a positive
constant 8¢ such that

(2.1) (e(@)¢:€) 2 bolCl®,  (w(2)C,€) 2 dol¢l?, V(€ C® Yz eU.
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Let us define two 6 x 6 matrices as follows:

(5 ) = (9,0)

The eigenvalue problem we shall discuss is as follows:

(2.2) Au = 1ATu.

3 Isotropic media

First of all, we consider the case that ¢ and u are scalar matrices, called isotropic
media. Let I, be an interval [a,00) for a > 0. We denote the positive part and the
negative part of a real-valued function f defined in I, by [f]+ and [f]-, respectively:

[fl+ = max(0, f(r)), [f]- = max(0, —f(r)).

In what follows, f' denotes the derivative of f(r). For a positive number § and
k = 1,2, we define the subset m§(I,) of C*(I,) as

(3-1) m§(L) = {q(r) € C*(L;R); inf g(r) = geo > 0,

(3Va(r) = o(r7g™+%), 1 <Vj < k, [q)- = o(r'q)}.

In addition, define m&(I,) = m%(1,) N L>(I,), which is independent of 4.

For a > 0, define D, = {z € R?; |z| > a}. Henceforth, we always choose a so
large that D, C U. We shall use the polar coordinates, r = |z|, w = z/|z|. For
q € mj(I,) with a > 0, we say that F(z) € C*(U)3*® belongs to the class S;5(q) if

(3.2) O(F(z) - o(r)) = o(¢r~ /2 *),  j=0,1.
Theorem 3.1 Suppose that e(z) and u(z) are positive scalar functions such that
(33) € € S12(q1), b € Sya(@), g € mip(L)NLP(L), j=1,2.
If u € L*(U) be a solution to (2.2), then u is identically zero in U.
We shall consider the case when ¢, or ¢, diverges at infinity.

Theorem 3.2 Letg; € m} (L), j = 1,2 and suppose that g7 ' q; or g'q1 is bounded
in I,. Ife(z) and p(z) are respectively positive scalar functions belonging to S1/4(q1)
and S,/4(q2) such that

a% — 492 = o(r 'q14s),

then the conclusion of Theorem 8.1 is still true.



Remark 3.1 D. Eidus has studied the same problem by the second order approach.
He has obtained an analogous result (Theorem 4.4 of [1]) for U = R® under the
assumption that € and p belong to C*(R3) and they satisfy a stronger asymptotic
property

le — €ol + |1 — pol + [Ve| + V| = o(|2|™).

Remark 3.2 If both ¢'q; and q;'q, are bounded, we can replace m} (I.) and
51/4(g;) in Theorem 8.2 by m3 ,(L.) and S12(q;), respectively.

Remark 3.3 A similar result for Dirac operators with the potential growing at in-
finity has been obtained in [5].

4 Nonisotropic media

To describe our conditions in nonisotropic media, we introduce the function space
M(U) as the set of all real positive symmetric matrices of third order whose com-
ponents are continuously differentiable functions in U satisfying that there exist
a symmetric matrix Fo(z) € C'(U)**® and a positive constant F, such that as
|z| = oo

(4.1) F(z) = Foo(2) = o(|2]™), Feo() = FoI = o(|2|7/?), VF(z) = o(|a|™).

Theorem 4.1 Suppose that ¢ and p belong to M(U) and there ezists a positive
constant K such that e (z) = Kpo(z) for all z in a neighborhood of infinity. If
u € L*(U) is a solution to (2.2), then u has a compact support.

Corollary 4.2 In addition to the assumptions of Theorem 4.1, we assume that there
exists a scalar function K € C'(U) such that e(z) = k(z)u(z). Ifu € L*(U) is.a
solution to (2.2), then u is identically zero in U.

Remark 4.1 Ifu € L*(U) is a solution to (2.2), then u € HL _(U).

We remark that each hypothesis of Theorems 4.1, 3.1 and 3.2 implies that if a
is taken to be so large, there exists a positive number x such that

(4.2) (rT') > &, Vz € D,.

This can be verified as follows. If

Po(r)=(?(; ;’)
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then it holds that

(4.3) | (rT) = (rTo)' + (rT — rTo)".

Since miny, ¢; > 0 and [¢]- = o(r™'), if a is taken to be large enough, we have
(4.4) iﬁf(rq,-)' > 0.

In view of

(rT' = rTp) = o(1),

(4.2) follows from (4.3) and (4.4).
If U = R® and there exists a positive constant § such that

(4.5) 9, (rT)(z) > BI,

holds for all z € R?, we can easily show the absence of nonzero eigenvalues. Let
B(U) be the subset of C!(U) consisting of all functions f satisfying

If1+1Vfl € L=(U).

Theorerh 4.3 Let U = R® and ¢, p € B*(R3)®3 satisfy (2.1). Suppose (4.5). If
u € L*(R?) satisfies (2.2), then u =0 in R3,

Remark 4.2 Theorem 4.3 also improves Theorem 4.4 of [1].

5 The Polar coordinates
Let r = |z| and w = z/|z|. It holds -
3,,, = w,-ar + T‘_lﬂj,

where ) is a vector field on S?. Define respectively two important matrices J,, and
Jq as Jyu =w A u and Jou = Q A u: It is easily seen that

0 —ws w 0 -0 Q
Jw = w3 0 —Ww1 ) J| Q= Qa 0 - 01
o —Wws wq 0 —Qg Ql 0

Lemma 5.1
curl = J,0, + r~1Jq

and
Jocurlu = —=0,u + r~'Gu + (divu)w,

where G is a selfadjoint operator in L?(S%1).



Remark 5.1 G is given explicitly as

0 —L3 L2 (
G = L3 0 —-Ll 3
L, I 0 ’
where , -
Ly = 2305 — 2303, L2 = z30, — 2103, L3 =1z,0; - z20,.
Let
0 I Jo, 0
| “‘(—u 0 )"7“‘< 0 Jw)'.
Define . ' ‘
s [ Ja O _( G+1 0
Ja=Ja J“”Jﬂ__(o jn)’g_( 0 G+1)'
Lemma 5.2 If v = ru, then it satisfies »
(5.1) {-TJ.0, —r ' Ja}av = Alv.

Lemma 5.3 Suppose that € and p are scalar functions belonging to C*(U). Let
v = ru. It holds that

(5.2) {8, —r'G — Q}av = AT Tv,

where

(5.3) Q vy \ [ wel(Ve,vy) os € C3
' oo )T \wp (Vo) )7 ET T

0, ( vt ) _ ( 4 (V1,04 )w )
v~ q;’_l (VQ2, V- )w ’ .
Q, ( vt ) _ ( w{e'l(Vs,v+) — ¢ '(Vai,v4)} ) )
\ V- w{p™H(Vp,v-) — 65 (Vaa,v-)}
If the hypothesis of Theorem 3.2 is fulfilled and lim,_, g(r) exists, then Q7 = @1,
Q2 = o(r~'/?) and 8,Q, = o(r71).
In what follows, we denote the inner product and the norm of L?*(S?)® by (-, ")

and || - ||, respectively. Then, we note that :

(Jav,v) = (v, Jav)

and

/(B,v,v)rzdr = /((3, + r”i)v,' vyridr = /(ary,v)dr.
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6 The virial theorem
Note that (a)* = a, o = I. Define
F,(r) = —=ArRe(J.0,av,v).
First of all, we need the following property on regularity of solutions.

Lemma 6.1 Suppose that F € M(R3). There ezists a positive constant Cg > 0
such that '

(6.1) /IVv|2dx <Cfr ]{Icurl'vl2 + |divFv|? + |v|*}dz
for all v € CL(R3)3.
The next is a kind of virial theorems.

Lemma 6.2 Let v=ru. Then,

[ (8,(rT)v, v)dr = F,(t) — Fy(s).

7 Proof of Theorem 4.3

Theorem 4.3 follows from the virial theorem. Since u € H!(R?), we see that

/w r~!|F,|dr < co.

. 0
Thus, it holds that
limrigf(')|F,,|(r) =0, lim inf |F,(r)[=0.
Performing s = s; — 0 and ¢ = t; = oo in Lemma 6.2, we obtain
22 [7(8,[rTlv, v)dr =0,

@ lrTv, v)ar
which implies v = 0 since &,[rI'] > 0. O
Remark 7.1 From Lemma 6.2 and the fact that

lim inf |F,(r)| =0,
it follows that F,(r) < 0 for every sufficient large r.

The essential difficulty arises when the virial condition (4.2) is valid only in a
neighborhood of infinity.



8 Isotropic cases

In this section we shall consider the isotropic case.
Define

P\T) = V§192y No\T) = | 0 gl y LoolT) = ql-l/zq;/zI

0

and
Q= L ( (@1a2 — die)] 0 ) _
4919, 0 (Q'1fI2 - 41‘12)1

Lemma 8.1 Let v = I'Y/?ru. Then,

(8.1) {-T.,0, —r " Jq — JQs}av = AV
and
(8.2) {6, — 16 — Q + Qs}av = ATV,

where V € C*(D,) satisfies that

(8.3) V*=V, V=gl +W), &V, =o(r UtV/?) j=0,1.

I = ql_l/zq;lz[ 13;2 .
0 il |

“(34)=(0 %)=

we observe that if u is a solution to (2.2), @& = I'}/’ru satisfies

Proof: Define

Using

(84) — 7.0, +r 7 Ta} o — 10, T o

= A (qol¥? + (T - AQI‘;}”) ii.

Let
Vo =TT — A)TZ2, V = gl + Vs

Note that v = ru satisfies

Ov =r(8, + V)i

Since I'..,['w, = I, we arrive at the first identity (8.1). If we multiply (8.1) by J

we obtain (8.2) in view of Lemma 5.1.

0

|
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9 A weighted virial relation
In the polar coordinates (r,w) € [0,00) x S%~1, we see that v = I'}/>ru satisfies
{-7.8, =700 = JuQs}av = AVv = 0.

For each pair of (s,t), 0 < s < t < 0o, we shall consider a cutoff function x(r) €
C>([0,00)) such that

0<x <1, suppx C[s—1,t+1], x(r) =1 on [s,1].
If o(r) € C3([0,00)), then ¢ = x(r)e?v satisfies

(9.1) {_Jwar - r_ljﬂ + Jw(‘P’ - QS)} a( - AVC = wale‘pav(::' wax)

and
(9.2) [0, —r G~ ¢'| ol — Q¢ = — £,
where )
Q=Qa- Qza+ I\, V.
We recall that

Q = Ql + Q27 QI = Ql, Q2 = 0(7‘_1/2)7 ar'Ql = 0(7'_1)-

From the virial relation, it follows that

Lemma 9.1
t+1 - t4+1
[ P0.0V)6,0) - 2ARe(r (! + Qa)ac, 8.0)] dr = = [~ (T fy C)r.

By (9.1) we can show a kind of Carleman estimates as follows.

Proposition 9.2
(9.3) /}:° [)@((rV)'e‘Pv, e“v) + kwq-l"ewv"2 + rcp’||8,(e“’v/\/6)||2] dr
<C f L+ 1'la~ )X 12 + rg~ " |1x |} €4 v||2dr

for any N > s. Here,

by = rg{(8" + (77 — o))’} — 5(r") = 1)’ — o)’ = o(L)l¢’ + 1"
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We need much space to present the proof of this proposition. So we just mention to
the following important inequality.

Lemma 9.3 Suppose that (8.8) and (4.2). Then, it holds that
t+1
(94) [2ARe [ (rTLQsal,:0)
t+1 , o
g/iU%VQQ+M+wWHMﬂMnt>s>L
Now we are going to show | |
(logr)™v, r™v, exp{nr’}ve L*D,), Vn €N, Vpe (0,1).

Choosing respectively q(r) = log!/?r, r*/? and finally 0087 a5 the weight function
of (?7), we obtain three kind of weighted inequalities. The first one is as follows.

t+1 t+1
95) [ (ogrylixulltdr < C{[ " o(1)(1 +n*(logr)*)(logr)"l|xu|[*dr

s t+1 9
+{[ + [ Inliogryuldr.
We shall use
N+1
lim inf N / l[ul[2dr = 0.
N-aoo N :
By letting t — oo in (9.5), an induction procedure implies that if v € L*(D,)¢,
(logr)"*v € L¥(1,), VYn=0,1,2,....

In view of

r™ = exp{mlogr} = > _(mlog r)"/n!,‘ /

n=0

we can conclude that r™v € L?(I,)®. In the same manner, we see that

o N
06) [ ;%(mrb)""unzdr

- N
< C/ T2, Y (n 1 2)"(mrb)""3||u||2dr + Cm(u)
s—1 — e ‘

n=2

for all N =2,3,.... Finally, we arrive at
v € L2(Ia)6, Vn=1,2,....

for any b € (0,1). ,
Applying the weighted inequality with e2¢ = e"r’(er)? we can conclude that
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Lemma 9.4 For everyn € N and every s > a+1,
9.7) [ et ol < [ ne e o] 2r.

Proof: To prove this, we have to show that k, > 0. Indeed, if €* = {r®(log r)?}",
it holds that
¢'[n = (r*(logr)?) = brt~'(logr)? + 2r*~!logr,

@"n = b(b—1)r*"?(log r)? + 2br*~2(log r) + 2(b — 1)r*~2log r + 2r*~2.
Therefore,
re'(¢" + r71¢’) = n?b*r*=2(log r)%br(log r)%(1 + o(1)) = n?63r®~2(log r)*(1 + o(1))

and
(re") + ¢'o(1) = nb(b — 1)2r*~%(log r)? + no(r*=*(log r)?).

Let X = nr®~!(logr)?. Then, there exists a positive number g such that
Ago + b°X? — o(X) — o(X?) > oo(1 + X?), VX >0.

]
Now, we are in the final step for proving Theorem 3.1. Let ¢ = r®(logr)?. From
(9.7), it follows that

[ Ioldr < Cnexp(2n(g(s) - ¢(s + 1)} [ _|vlldr.
Since ¢(r) is monotone increasing, we see

0< eP(8)—w(s+1) <1.

Letting n — oo, we conclude that v = 0 in D,4;. On account of unique continuation
theorem for the time harmonic Maxwell equations, we see that v = 0 in U. O

10 Potentials diverging at infinity

In this section we shall prove Theorem 3.2.

If ¢ and g, are in m} (L), then it holds that go = (q142)"/% € m3;(L.). Fur-
thermore, if ¢, and ¢, are in m},(I,) and both ¢,g5 ! and ¢,¢;! are bounded, then
P = (q@)/* € m} o(1s)-
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It suffices to consider only the case where qqi' € L*(I,). We can treat the
other case in the same manner. Define

~ I 0
Fc~o = -
( 0 ¢ l‘lzl)

Y2312, then { = ye¥v satisfies

If'U:qo

1 ~ -
(100) {=T.0 —rFa+ T (¥ = 3(65"dh + Qu)) Ya¢ = AT
= —JuxX'e®v(:= Jugx),

where

0 =_1_((q1qa—cflq2)1 0)
¢ 219z 0 0

and
['=go + Y} - gL'
Thus, it holds that '
, [t . t+1 , 1,
(102) ¥ [ (@[T, )dr — 2Re [ (rTule! - 505705 + Qu)al, B C)dr
e [ (rTugs, 8:C)d
= /3_1 (7' wIx> rC) T.
If

) 1 _ _
ho(r) = qo(dy + 5" 0) ™

then, we have
Lemma 10.1 Let ¢, and q; belong to mf/4(1,,) and qaq7" be bounded at inﬁniiy.
Suppose that € and p are scalar functions belonging to Sy/4(q1) and Sy/4(qz), respec-
tively. Moreover, we assume that
ad — 40 = o(r ' q1g)-
Then, it holds that
t+1 / 1 -1 7 |
(10.3) [2ARe / _ (rTu(@’ = 50"d + Quat, 0:)dr] |
t+1 . :
< [0, + 1 + B o P, 1> s> 1
s—1

By this lemma, we can show the analogue to Proposition 9.2.
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Proposition 10.2

(104) [ R(TYerv, e0) + (=Ko )5 ol + 13, (v VI dr
<C [*AQ +IP1gH X P + g5 e |IX Hefol*dr
for any N > s.
Our choice of v gives
Lemma 10.3 Ifu € L*(U) is a solution to (2.2), then ¢ = a5 \*T'Y2ru satisfies
(Ju0rab, D) € L}(L,).
In view of Lemma 10.3 and Proposition 9.2, we can prove that
v=0if |z] >a>1

in the same manner as in the previous section.
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