ON EXISTENCE OF SCATTERING SOLUTIONS FOR DISSIPATIVE SYSTEMS

MITSUTERU KADOWAKI (門脇 光輝)

In this report we shall give two frameworks (Theorem 1 and 3) for the existence of scattering solutions of dissipative systems and apply these to some dissipative wave equations.

Let \mathcal{H} be a separable Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. This norm is denoted by $\| \cdot \|_{\mathcal{H}}$. Let $\{V(t)\}_{t \geq 0}$ and $\{U_0(t)\}_{t \in \mathbf{R}}$ be a contraction semi-group and a unitary group in \mathcal{H} , respectively. We denote these generators by A and A_0 ($V(t) = e^{-itA}$ and $U_0(t) = e^{-itA_0}$). We make the following assumptions on A and A_0 .

- (A1) $\sigma(A_0) = \sigma_{ac}(A_0) = \mathbf{R} \text{ or } [0, \infty).$
- (A2) $(A-i)^{-1} (A_0-i)^{-1}$ defined as a form is extended to a compact operator K in \mathcal{H} .
- (A3) There exist non-zero projection operators P_+ and P_- such that $P_+ + P_- = I_d$ and

(A3.1)
$$||KU_0(t)\psi(A_0)P_+|| \in L^1(\mathbf{R}_+),$$

(A3.2)
$$||K^*U_0(t)\psi(A_0)P_+|| \in L^1(\mathbf{R}_+),$$

(A3.3)
$$||K^*U_0(-t)\psi(A_0)P_-|| \in L^1(\mathbf{R}_+),$$

(A3.4)
$$w - \lim_{t \to +\infty} U_0(-t)\psi(A_0)P_-f_t = 0,$$

for each $\psi \in C_0^{\infty}(\mathbf{R}\setminus 0)$ and $\{f_t\}_{t\in\mathbf{R}}$ satisfying $\sup_{t\in\mathbf{R}} \|f_t\|_{\mathcal{H}} < \infty$, where $\|\cdot\|$ is the operator norm of bounded operator from \mathcal{H} to \mathcal{H} .

Let \mathcal{H}_b be the space generated by the eignvectors of A with real eigenvalues.

Theorem 1. Assume that (A1) \sim (A3). For any $f \in \mathcal{H}_b^{\perp}$, the wave operator

$$Wf = \lim_{t \to \infty} U_0(-t)V(t)f$$

exists. Moreover W is not zero as an operator in \mathcal{H} .

To prove Theorem 1 we shall use the following facts (see [17] and [14]):

- (F1) $\{(A-i)^{-2}Af \in \mathcal{H} : f \in D(A) \cap \mathcal{H}_b^{\perp}\}$ is dense in \mathcal{H}_b^{\perp} .
- (F2) There exists a sequence $\{t_n\}$ such that

$$\lim_{n\to\infty}t_n=\infty$$

and

$$\mathbf{w} - \lim_{n \to \infty} V(t_n) f = 0$$
, for any $f \in \mathcal{H}_b^{\perp}$.

Theorem 1 implies that there exists scattering states of $\frac{dV(t)f}{dt} = -iAV(t)f$, $f \in D(A)$ as follows:

Corollary 2. Assume that $(A1) \sim (A3)$. Then there exist non-trivial initial data $f \in \mathcal{H}$ and $f_+ \in \mathcal{H}$ such that for any $k = 0, 1, 2, \dots$, and $\zeta_0 \in \mathbb{C}$ satisfying $\Re \zeta_0 > 0$

$$\lim_{t \to \infty} ||V(t)(A - \zeta_0)^{-k} f - U_0(t)(A_0 - \zeta_0)^{-k} f_+||_{\mathcal{H}} = 0.$$

Theorem 1 is proven by using Enss's approach [3] and [17]. Examples of Theorem 1 contain scattering problem for elastic wave equation with dissipative boundarly condition in a half space of \mathbf{R}^3 (cf. [2]). To show (A3) we use the Mellin transformation (cf.[13]). Theorem 1 is not applied to acoustic wave equations with dissipative terms in stratifed media(cf. [19]). Since generalized eigenfunctions of acoustic wave propagation in stratifed media are not smooth at thresholds, the key estimates $(A3.1)\sim(A3.3)$ have not been obtained in the neighborhood of each threshold. So we consider the following assumptions to deal with such equations .

Let B_0 be non-negative operator.

- (A4) B_0 is A_0 -compact.
- (A5) Let ζ belong to $\mathbb{C}\backslash\mathbb{R}$. $\sqrt{B_0}(A_0-\zeta)^{-1}\sqrt{B_0}$ can be extended to a bounced operator $Q(\zeta)$ which satisfies that for any $\beta > \alpha > 0$, there exist positive constants $C_{\alpha,\beta}$ and η such that

$$\sup_{\alpha \leq |Re\zeta| \leq \beta, 0 < |Im\zeta| < \eta} ||Q(\zeta)|| \leq C_{\alpha,\beta}.$$

We reset $A = A_0 - iB_0$, $D(A) = D(A_0)$. Then [15] (see Theorem X-50) implies that A generates a contraction semi-group, $\{V(t)\}_{t\geq 0}(V(t)=e^{-itA})$.

We have the following theorem.

Theorem 3. Assume that (A1), (A4) and (A5). Then

- (1) A has no real eigenvalues.
- (2) The wave operator

$$W = s - \lim_{t \to \infty} U_0(-t)V(t)$$

exists. Moreover W is not zero as an operator in H.

Corollary 4. Assume that (A1), (A4) and (A5). Then we have the same conclusion of Corollary 2.

To prove Theorem 3 we shall used Mochizuki's idea [12] due to Kato's smooth perturbation theory[8].

In $\S4$ we shall apply our frameworks to elastic wave equation with dissipative boundary condition in a half space of \mathbb{R}^3 and acoustic wave equation with dissipative term in stratifed media. It seems that there is little literature concerning such dissipative systems (cf. [7]).

2. Proof of Theorem 1 and Corollary 2.

In this section we deal the case $\sigma(A_0) = \sigma_{ac}(A_0) = \mathbf{R}$ only. The another case can be dealt in the same way. We set $F(\lambda) = (\lambda - i)^{-2}\lambda$ and $W(t) = U_0(-t)V(t)$. In this section C is used as positive constants.

Below we shall give the proof of Theorem 1. First we prove the existence of W by referring to [3], [17], [10], [13], [4], [18] and [14]. But we sometimes omit to note the above references.

proof of the existence of W. For any $f \in \mathcal{H}_b^{\perp} \cap D(A)$ and $t, s > t_n$, note (F1) and

$$||(W(t) - W(s))F(A)^{2}f||_{\mathcal{H}}$$

$$\leq ||(W(t) - W(t_{n}))F(A)^{2}f||_{\mathcal{H}} + ||(W(s) - W(t_{n}))F(A)^{2}f||_{\mathcal{H}}.$$

Thus in order to prove the existence of W, it is sufficent to show

(2.1)
$$\lim_{n \to \infty} \overline{\lim}_{t \to \infty} \| (W(t) - W(t_n)) F(A)^2 f \|_{\mathcal{H}} = 0$$

(cf. [4])

We estimate $\|(W(t) - W(t_n))F(A)^2 f\|_{\mathcal{H}}$ as follows (cf. [17]): $\|(W(t) - W(t_n))F(A)^2 f\|_{\mathcal{H}}$ $= \|U_0(-t)(V(t - t_n) - U_0(t - t_n))F(A)^2 V(t_n)f\|_{\mathcal{H}}$ $\leq \sum_{i=1}^{5} \|T_j\|_{\mathcal{H}},$

where

$$T_{1} = (V(t - t_{n}) - U_{0}(t - t_{n}))(F(A)^{2} - F(A_{0})^{2})V(t_{n})f,$$

$$T_{2} = (V(t - t_{n}) - U_{0}(t - t_{n}))(I_{d} - \psi_{M}(A_{0}))F(A_{0})^{2}V(t_{n})f,$$

$$T_{3} = (V(t - t_{n}) - U_{0}(t - t_{n}))(\psi_{M}F)(A_{0})P_{+}F(A_{0})V(t_{n})f,$$

$$T_{4} = (V(t - t_{n}) - U_{0}(t - t_{n}))(\psi_{M}F)(A_{0})P_{-}F(A_{0})(I_{d} - \psi_{M}(A_{0}))V(t_{n})f,$$

$$T_{5} = (V(t - t_{n}) - U_{0}(t - t_{n}))(\psi_{M}F)(A_{0})P_{-}(\psi_{M}F)(A_{0})V(t_{n})f$$

and $\psi_M(\lambda) \in C_0^{\infty}(\mathbf{R})$ satisfies $0 \le \psi_M(\lambda) \le 1, \psi_M(\lambda) = 0(|\lambda| < 1/2M, |\lambda| > 2M)$ and $\psi_M(\lambda) = 1(1/M < |\lambda| < M)$.

First, we note that for any ε , there exists M>0 such that

$$||T_j||_{\mathcal{H}} \le C||(1-\psi_M)F||_{L^{\infty}(\mathbf{R})} < \varepsilon \quad (j=2,4)$$

Therefore once the limits

(2.2)
$$\lim_{n\to\infty} \overline{\lim_{t\to\infty}} \|T_j\|_{\mathcal{H}} = 0, \quad (j=1,3,5)$$

are proved, we obtain (2.1). Below we shall show (2.2). For j = 1 (A2) implies that $F(A)^2 - F(A_0)^2$ is a compact operator in \mathcal{H} . Using (F2) we have

$$||T_1||_{\mathcal{H}} \le C||(F(A)^2 - F(A_0)^2)V(t_n)f||_{\mathcal{H}} \to 0 \quad (n \to \infty)$$

For j = 3, we decompose T_3 as follows

$$T_3 = T_{31} + T_{32} + T_{33},$$

where

$$T_{31} = V(t - t_n)(F(A_0) - F(A))(\psi_M F)(A_0)P_+F(A_0)V(t_n)f$$

$$T_{32} = (F(A) - F(A_0))U_0(t - t_n)(\psi_M F)(A_0)P_+F(A_0)V(t_n)f$$

$$T_{33} = F(A)(V(t - t_n) - U_0(t - t_n))\psi_M(A_0)P_+F(A_0)V(t_n)f$$

Same argument as in the proof of T_1 implies

$$\lim_{n\to\infty} \overline{\lim_{t\to\infty}} \, \|T_{31}\|_{\mathcal{H}} = 0.$$

We have by (A1)

$$w - \lim_{t \to \infty} U_0(t - t_n)f = 0.$$

Thus (A2) implies

$$\lim_{t\to\infty} ||T_{32}||_{\mathcal{H}} = 0.$$

To estimate T_{33} , we use Cook-Kuroda method. We have by (A2)

$$\langle T_{33}, g \rangle_{\mathcal{H}}$$

$$= -i \int_0^{t-t_n} \langle V(t - t_n - s) A(A - i)^{-1} K U_0(s) \tilde{\psi}_M(A_0) P_+ F(A_0) f_n, g \rangle_{\mathcal{H}} ds.$$

where $g \in \mathcal{H}$, $f_n = V(t_n)f$ and $\tilde{\psi}_M(\lambda) = (\lambda - i)\psi_M(\lambda)$.

Therefore we obtain

$$||T_{33}||_{\mathcal{H}} \leq C \int_0^\infty ||KU_0(s)\tilde{\psi}_M(A_0)P_+F(A_0)f_n||ds.$$

For each $s \ge 0$ we have by (F2) and (A2),

$$\lim_{n \to \infty} \|KU_0(s)\tilde{\psi}_M(A_0)P_+F(A_0)f_n\|_{\mathcal{H}} = 0.$$

Therefore (A3.1) and Lebesgue's theorem imply

$$\lim_{n\to\infty} \overline{\lim}_{t\to\infty} ||T_{33}||_{\mathcal{H}} = 0.$$

Now we obtain

$$\lim_{n \to \infty} \overline{\lim}_{t \to \infty} ||T_3||_{\mathcal{H}} = 0.$$

We estimate T_5 as follows:

$$||T_5||_{\mathcal{H}}^2 \le C||P_-(F\psi_M)(A_0)V(t_n)f||_{\mathcal{H}}^2$$
$$= C\sum_{j=1}^3 T_{5j},$$

where

$$T_{51} = \langle \psi_{M}(A_{0})P_{-}h_{n}, (F(A_{0}) - F(A))V(t_{n})f \rangle_{\mathcal{H}}$$

$$T_{52} = \langle \psi_{M}(A_{0})P_{-}h_{n}, (V(t_{n}) - U_{0}(t_{n}))F(A)f \rangle_{\mathcal{H}}$$

$$T_{53} = \langle U_{0}(-t_{n})\psi_{M}(A_{0})P_{-}h_{n}, F(A)f \rangle_{\mathcal{H}}$$

and
$$h_n = (F\psi_M)(A_0)V(t_n)f$$
.
(A2) and (F2) imply

$$\lim_{n\to\infty}T_{51}=0.$$

(A3.4) implies

$$\lim_{n\to\infty}T_{53}=0.$$

To estimate T_{52} , again we use Cook-Kuroda method. Note that

$$|T_{52}| \leq C \|f\|_{\mathcal{H}} \int_0^\infty \|K^* U_0(-s) \overline{\tilde{\psi}}_M(A_0) P_- h_n\|_{\mathcal{H}} ds.$$

Using (A2), (F2) and (A3.2) we have by Lebesgue's theorem

$$\lim_{n\to\infty}T_{52}=0.$$

Now we obatin

$$\lim_{n\to\infty} \overline{\lim_{t\to\infty}} \, ||T_5||_{\mathcal{H}} = 0.$$

Therefore the proof of the existence of W is completed. \square

To show $W \not\equiv 0$, we introduce a subspace of \mathcal{H} , D, as follows:

$$D = \{ f \in \mathcal{H} : \lim_{t \to \infty} V(t)f = 0 \}.$$

Since

$$Af = \lambda f, \lambda \in \mathbf{R}, f \in \mathcal{H} \Longrightarrow A^*f = \lambda f$$

(see Lemma 1.1.5 of [14]), we can easily show

$$D \subset \mathcal{H}_b^{\perp}$$
.

We prepare the following proposition without the proof.

Proposition 2.1. Assume that

$$\mathcal{H}_b^{\perp} \ominus D = \{0\}.$$

Then one has

(2.3)
$$w - \lim_{t \to \infty} U_0(-t)V(t)f = 0$$

for any $f \in \mathcal{H}$.

Below we shall show $W \not\equiv 0$ (cf. [12]§3).

proof of $W \not\equiv 0$. For any $f \in \mathcal{H}$ and $g \in \mathcal{H}$, note that

(2.6)
$$\langle U_0(-t)V(t)(A-i)^{-1}f, (A_0+i)^{-1}g\rangle_{\mathcal{H}}$$

$$= \langle (A-i)^{-1}f, (A_0+i)^{-1}g\rangle_{\mathcal{H}} + i \int_0^t \langle V(\tau)f, K^*U_0(\tau)g, \rangle_{\mathcal{H}} d\tau.$$

We assume that $W \equiv 0$, i.e, for any $f \in \mathcal{H}_b^{\perp}$,

(2.7)
$$||Wf||_{\mathcal{H}} = \lim_{t \to \infty} ||V(t)f||_{\mathcal{H}} = 0.$$

(2.7) means

$$\mathcal{H}_b^{\perp} \ominus D = \{0\}.$$

Hence Proposition 2.1 and (2.6) imply

$$\langle (A-i)^{-1}f, (A_0+i)^{-1}g\rangle_{\mathcal{H}} = -i\int_0^\infty \langle V(\tau)f, K^*U_0(\tau)g, \rangle_{\mathcal{H}}d\tau.$$

Putting

$$f = (A_0 - i)U_0(s)\psi_M(A_0)P_+h$$
 and $g = (A_0 + i)U_0(s)\psi_M(A_0)P_+h$

for any $h \in \mathcal{H}$, we have

$$\|\psi_{M}(A_{0})P_{+}h\|_{\mathcal{H}}^{2} \leq \|h\|_{\mathcal{H}}(\|((A-i)^{-1}-(A_{0}-i)^{-1})U_{0}(s)\tilde{\psi}_{M}(A_{0})P_{+}h\|_{\mathcal{H}} + C_{M}\int_{0}^{\infty} \|K^{*}U_{0}(\tau+s)\tilde{\psi}_{M}(A_{0})P_{+}h\|_{\mathcal{H}}d\tau).$$

(A1) and (A2) imply

$$\lim_{s \to \infty} \|((A-i)^{-1} - (A_0-i)^{-1})U_0(s)\tilde{\psi}_M(A_0)P_+h\|_{\mathcal{H}} = 0$$

and (A3.2) implies

$$\lim_{s \to \infty} \int_0^\infty \|K^* U_0(\tau + s) \tilde{\psi}_M(A_0) P_+ \| d\tau = 0.$$

Therefore we have

$$\|\psi_M(A_0)P_+h\|_{\mathcal{H}} = 0,$$

for any $h \in \mathcal{H}_0$ and any M > 0.

(2.8) means $P_{+} \equiv 0$. This is a contradiction with (A3). Now we complete the proof of $W \not\equiv 0$. \square

We give a brief sketch of the proof of Corollary 2.

proof of Corollary 2. Noting that $U_0(t)$ is unitary in \mathcal{H} we have the case k=0 by Theorem 1. It follows from the case k=0 and (A1) that the case k=1.

We can show the cases $k = 2, 3, 4, \cdots$ by the induction. \square

3. Proof of Theorem 3 and Corollary 4.

For the sake of simplicity, we shall also restrict ourselves to the case $\sigma(A_0) = \sigma_{ac}(A_0) = \mathbf{R}$ only.

Let $E(\lambda)$ be the spectral family of A_0 . Then we have

$$A_0 = \int_{-\infty}^{\infty} \lambda dE(\lambda).$$

For $\beta > \alpha > 0$, we denote $E((-\beta, -\alpha) \cup (\alpha, \beta))$ by $E_{\alpha,\beta}(A_0)$. (A3) means that $\sqrt{B_0}E_{\alpha,\beta}(A_0)$ is A_0 -smooth, i.e. for any $g \in \mathcal{H}$

(3.1)
$$\int_{-\infty}^{\infty} \|\sqrt{B_0} U_0(t) E_{\alpha,\beta}(A_0) g\|_{\mathcal{H}}^2 dt \leq \tilde{C}_{\alpha,\beta} \|g\|_{\mathcal{H}}^2$$

(cf. [8] or [16]), where $\tilde{C}_{\alpha,\beta}$ is a positive constant which depends on α and β only. Moreover we note the following identity of $V(t)f, f \in D(A)$:

(3.2)
$$||V(t)f||_{\mathcal{H}}^2 + 2 \int_0^t ||\sqrt{B_0}V(\tau)f||_{\mathcal{H}}^2 d\tau = ||f||_{\mathcal{H}}^2,$$

Using (3.1) and (3.2) we prove the following lemma.

Lemma 3.1. Let $\beta > \alpha > 0$. Then for any $f \in D(A)$ one has

$$\lim_{t,s\to\infty} ||E_{\alpha,\beta}(A_0)(U_0(-t)V(t) - U_0(-s)V(s))f||_{\mathcal{H}} = 0.$$

proof. See [12] §3.

By Lemma 3.1 and (A1) we have the following lemma.

Lemma 3.2. One has

$$w - \lim_{t \to \infty} V(t) = 0.$$

Using Lemma 3.2 we prove Theorem 3(1) as follows.

proof of Theorem 3(1). Assume that there exists $f \in D(A), \lambda \in \mathbf{R}$ such that $Af = \lambda f$. Then we have

$$\langle V(t)f, f \rangle_{\mathcal{H}} = e^{-it\lambda} ||f||_{\mathcal{H}}^2$$

This yields a contradiction with Lemma 3.2. \Box

Theorem 3(1) and (F1) imply that

(3.4)
$$\{(A-i)^{-2}Af \in \mathcal{H} : f \in D(A)\} \text{ is dense in } \mathcal{H}.$$

Below we prove Theorem 3(2).

proof of Theorem 3(2). First we show the existence of W. Set $F(\lambda) = (\lambda - i)$ By (2.6) it is sufficient to show that $\{U_0(-t)V(t)F(A)f\}_{t\geq 0}$ is Cauchy in $(t \to \infty)$, where $f \in D(A)$. We estimate as follows (cf. [17]):

$$||(U_0(-t)V(t) - U_0(-s)V(s))F(A)f||_{\mathcal{H}} \le \sum_{j=1}^4 ||T_j||_{\mathcal{H}},$$

where

$$\begin{split} T_1 &= U_0(-t)(F(A) - F(A_0))V(t)f \\ T_2 &= U_0(-s)(F(A) - F(A_0))V(s)f \\ T_3 &= F(A_0)(I_d - E_{1/M,M}(A_0))(U_0(-t)V(t) - U_0(-s)V(s))f \\ \text{and} \\ T_4 &= F(A_0)E_{1/M,M}(A_0)(U_0(-t)V(t) - U_0(-s)V(s))f. \end{split}$$

We note that for any ε , there exists M > 1 such that

$$\|(1-\chi_{(-M,-1/M)\cup(1/M,M)})F\|_{L^{\infty}(\mathbf{R})}<\varepsilon.$$

Thus we have

$$(3.5) ||T_3||_{\mathcal{H}} < \varepsilon ||f||_{\mathcal{H}}.$$

By (A4), $F(A) - F(A_0)$ is a compact operator. Hence Lemma 3.2 implies

(3.6)
$$\lim_{t \to \infty} ||T_1||_{\mathcal{H}} = \lim_{s \to \infty} ||T_2||_{\mathcal{H}} = 0.$$

Lemma 3.1 implies

$$\lim_{t,s\to\infty} ||T_4||_{\mathcal{H}} = 0.$$

(3.5), (3.6) and (3.7) imply the existence of W.

Next we prove $W \not\equiv 0$ (cf. [12]§3). Assume that $W \equiv 0$ i.e. for any $f \in \mathcal{H}$

$$\lim_{t \to \infty} ||V(t)f||_{\mathcal{H}} = 0.$$

We set $G(\lambda) = (\lambda - i)^{-1}$. Then noting

$$\langle U_0(-t)V(t)G(A)f, G(A_0)f\rangle_{\mathcal{H}}$$

= $\langle G(A)f, G(A_0)f\rangle_{\mathcal{H}} - \int_0^t \langle U_0(-\tau)BV(\tau)G(A)f, G(A_0)f\rangle_{\mathcal{H}}d\tau$,

we have by (3.8) and Schwartz inequality

(3.9)

$$|\langle G(A)f, G(A_0)f \rangle_{\mathcal{H}}|$$

$$\leq \left(\int_0^\infty \|\sqrt{B}V(\tau)G(A)f\|_{\mathcal{H}}^2 d\tau \right)^{\frac{1}{2}} \times \left(\int_0^\infty \|\sqrt{B}U_0(\tau)G(A_0)f\|_{\mathcal{H}}^2 d\tau \right)^{\frac{1}{2}}.$$

(3.2) and (3.8) imply

(3.10)
$$2\int_0^\infty \|\sqrt{B}V(\tau)G(A)f\|_{\mathcal{H}}^2 d\tau = \|G(A)f\|_{\mathcal{H}}^2.$$

Hence we have by (3.9) and (3.10)

$$||G(A_0)f||_{\mathcal{H}}^2 \leq ||f||_{\mathcal{H}} \{ ||(G(A) - G(A_0))f||_{\mathcal{H}} + (\frac{1}{2} \int_0^\infty ||\sqrt{B}U_0(\tau)G(A_0)f||_{\mathcal{H}}^2 d\tau)^{\frac{1}{2}} \}.$$

Let fix M > 1. Put $f = U_0(s)g$, g satisfying $E_{1/M,M}(A_0)g = g$. Then we have

$$(3.11)$$

$$||G(A_0)g||_{\mathcal{H}}^2 \leq ||g||_{\mathcal{H}} \{ ||(G(A) - G(A_0))U_0(s)g||_{\mathcal{H}} + (\frac{1}{2} \int_{s}^{\infty} ||\sqrt{B}E_{1/M,M}(A_0)U_0(\tau)G(A_0)g||_{\mathcal{H}}^2 d\tau)^{\frac{1}{2}} \}.$$

(A1) and (A4) imply

(3.12)
$$\lim_{s \to \infty} \| (G(A) - G(A_0)) U_0(s) g \|_{\mathcal{H}} = 0.$$

(3.1) implies

(3.13)
$$\lim_{s \to \infty} \int_{s}^{\infty} \|\sqrt{B} E_{1/M,M}(A_0) U_0(\tau) G(A_0) g\|_{\mathcal{H}}^2 d\tau = 0.$$

Therefore it follows from (3.11), (3.12) and (3.13) that $g \equiv 0$. This is a contradiction. Therefore we have $W \not\equiv 0$. \square

To prove Corollary 4 we should repeat the same way as in the proof of Corollary 2. Here we omit to do it.

4. Applications.

Application 1 (Elastic wave equation with dissipative boundary condition in a half space of R³).

We shall apply Theorem 1. In this section we also use C as positive constants. Let $x = (x_1, x_2, x_3) = (y, x_3) \in \mathbf{R}^2 \times \mathbf{R}_+$ and $\mu_0 > 0, \rho_0 > 0, \lambda_0 \in \mathbf{R}$ satistying $3\lambda_0 + 2\mu_0 > 0$. We use $O_{3\times 3}$ and $I_{3\times 3}$ as zero and unit matrix of 3×3 type, respectively.

We set

$$\varepsilon_{hj}(u(x)) = \frac{1}{2} \left(\frac{\partial u_h}{\partial x_j} + \frac{\partial u_j}{\partial x_h} \right)$$

and

$$\sigma_{hj}(u(x)) = \lambda_0(\nabla_x \cdot u)\delta_{hj} + 2\mu_0\varepsilon_{hj}(u)$$

where
$$h, j = 1, 2, 3, u(x) = {}^t (u_1(x), u_2(x), u_3(x)) \in \mathbf{C}^3$$
 and $\nabla_x = (\partial/\partial_1, \partial/\partial_2, \partial/\partial_3)$.

We define operators \tilde{L}_0 as

$$(\tilde{L}_0 u)_h = -\sum_{j=1}^3 \frac{1}{\rho_0} \frac{\partial \sigma_{hj}(u(x))}{\partial x_j} \quad (h = 1, 2, 3).$$

We consider two elastic wave equations as follows:

(4.1)
$$\begin{cases} \partial_t^2 u(x,t) + \tilde{L}_0 u(x,t) = 0, (x,t) \in \mathbf{R}_+^3 \times [0,\infty), \\ t(\sigma_{13}(u), \sigma_{23}(u), \sigma_{33}(u)) \mid_{x_3=0} = B(y)\partial_t u \mid_{x_3=0} \end{cases}$$

and

(4.2)
$$\begin{cases} \partial_t^2 u(x,t) + \tilde{L}_0 u(x,t) = 0, (x,t) \in \mathbf{R}_+^3 \times \mathbf{R}, \\ \sigma_{i3}(u) \mid_{x_3=0} = 0 (i=1,2,3). \end{cases}$$

To set assumptions for B(y) we introduce a function space $B^k(\Omega)$ as follows:

$$B^{k}(\Omega) = \{ u \in C^{k}(\Omega); \sum_{|\alpha| \le k} \|\partial^{\alpha} u\|_{L^{\infty}(\Omega)} < \infty \},$$

where $\Omega \subset \mathbf{R}^n$.

Assume that

(4.3) B(y) belongs to $B^1(\mathbf{R}^2, \mathbf{M}_{3\times 3})$ and satisfies

$$O_{3\times 3} \leq B(y) \leq \varphi(|y|)I_{3\times 3},$$

where $\varphi(r)$ is a non-increasing function and belongs to $L^1(\mathbf{R}_+)$. $\mathbf{M}_{3\times 3}$ is the class of 3×3 matrix.

The following operator L_0 in $\mathcal{G} = L^2(\mathbf{R}^3_+, \mathbf{C}^3; \rho_0 dx)$:

$$L_0 u = \tilde{L}_0 u$$

and

$$D(L_0) = \{ u \in H^1(\mathbf{R}_+^3, \mathbf{C}^3); \tilde{L}_0 u \in \mathcal{G}, \sigma_{h3}(u) \mid_{x_3=0} = 0 (h = 1, 2, 3) \}$$

is a non-negative self-adjoint operator.

Let \mathcal{H} be Hilbert space with inner product :

$$\langle f, g \rangle_{\mathcal{H}} = \int_{\mathbf{R}^3_+} \left(\sum_{h,j,k,l=1}^3 a_{hjkl} \varepsilon_{kl}(f_1) \overline{\varepsilon_{hj}(g_1)} + f_2 \overline{g_2} \rho_0 \right) dx,$$

where $a_{hjkl} = \lambda_0 \delta_{hj} \delta_{kl} + \mu_0 (\delta_{hk} \delta_{jl} + \delta_{hl} \delta_{jk})$ and f = t $(f_1, f_2), g = t$ (g_1, g_2) . By Korn's inequality (cf. [5]) we note that \mathcal{H} is equivalent to $\dot{H}^1(\mathbf{R}^3_+, \mathbf{C}^3) \times L^2(\mathbf{R}^3_+, \mathbf{C}^3)$ as Banach space.

We set $f = {}^t(u(x,t), u_t(x,t))$, where u(x,t) is the solution to (4.1) (resp. (4.2)) with a initial data $f_0 = {}^t(u(x,0), u_t(x,0)) \in \mathcal{H}$. Then (4.1) (resp. (4.2)) can be written as

$$\partial_t f = -iAf$$
 (resp. $\partial_t f = -iA_0 f$),

where

$$A = i \begin{pmatrix} 0 & I_{3 \times 3} \\ -\tilde{L}_0 & 0 \end{pmatrix}, \qquad A_0 = i \begin{pmatrix} 0 & I_{3 \times 3} \\ -\tilde{L}_0 & 0 \end{pmatrix},$$

$$D(A) = \{ f = {}^{t}(f_{1}, f_{2}) \in \mathcal{H}; \tilde{L}_{0}f_{1} \in L^{2}(\mathbf{R}_{+}^{3}, \mathbf{C}^{3}), f_{2} \in H^{1}(\mathbf{R}_{+}^{3}, \mathbf{C}^{3}), t_{3} \in \mathcal{H}^{1}(\mathbf{R}_{+}^{3}, \mathbf{C}^{3}), t_{3} \in \mathcal{H}^{1}(\mathbf{R}_{+}^$$

and

$$D(A_0) = \{ f = {}^t(f_1, f_2) \in \mathcal{H}; \tilde{L}_0 f_1 \in L^2(\mathbf{R}_+^3, \mathbf{C}^3), f_2 \in H^1(\mathbf{R}_+^3, \mathbf{C}^3), \sigma_{h3}(f_1) \mid_{x_3=0} = 0 (h = 1, 2, 3) \}$$

According to P210-P211 of [11] or Corollary 1.1.4 of [14] we can show that A generates a contraction semi-group $\{V(t)\}_{t\geq 0}$ (resp. a unitary group $\{U_0(t)\}_{t\in \mathbf{R}}$) in \mathcal{H} . Using $\{V(t)\}_{t\geq 0}$ (resp. $\{U_0(t)\}_{t\in \mathbf{R}}$) we solve $\partial_t f = -iAf$ (resp. $\partial_t f = -iA_0 f$) as follows

$$f = V(t)f_0$$
 (resp. $f = U_0(t)f_0$).

Below we make a check on Assumptions (A1),(A2) and (A3)

[2] implies $\sigma(A_0) = \sigma_{ac}(A_0) = \mathbf{R}$. Therefore we have (A1).

Next we show (A2). For $f, g \in \mathcal{H}$, we have by easy caluculation

(4.4)
$$\langle ((A-i)^{-1} - (A_0-i)^{-1})f, g \rangle_{\mathcal{H}}$$

$$= i \int_{\mathbf{R}^2} B(y) \Gamma_0((A_0-i)^{-1}f)_2 \overline{\Gamma_0((A^*+i)^{-1}g)_2} dy,$$

where Γ_0 is a tarce operator which is defined by

$$(\Gamma_0 u)(y) = u(y,0).$$

Note that $\Gamma_0((A_0-i)^{-1}f)_2$ and $\Gamma_0((A^*+i)^{-1}f)_2$ belong to $H^{1-s}(\mathbf{R}_+^3, \mathbf{C}^3)$ by Korn's inequality for any $s \in (1/2, 1)$. Since $B(y)\Gamma_0\Pi_2(A_0-i)^{-1}$ is a compact operator from \mathcal{H} to $L^2(\mathbf{R}^2, \mathbf{C}^3)$ by Rellich's theorem, where $\Pi_j^{\ t}(f_1, f_2) = f_j(j = 1, 2)$, the form $(A-i)^{-1} - (A_0-i)^{-1}$ can be extended to a compact operator, $(\Gamma_0\Pi_2(A^*+i)^{-1})^*B(y)\Gamma_0\Pi_2(A_0-i)^{-1}$, in \mathcal{H} .

To show (A3) we sate a result from [2]. There exist $F_P u$, $F_S u$, $F_S u$ and F_R which are partially isometric operators from $\mathcal{G} = L^2(\mathbf{R}^3_+, \mathbf{C}^3; \rho_0 dx)$ onto $L^2(\mathbf{R}^3_+, \mathbf{C}^3)$ and $L^2(\mathbf{R}^2, \mathbf{C}^3)$, respectively. Defining the operator F as follows:

$$Fu = (F_P u, F_S u, F_{SH} u, F_R u)$$
 for $u \in \mathcal{G}$,

we have by Theorem 3.6 of [2]

Lemma A. F is unitary operator from G to

$$\hat{\mathcal{H}} = igoplus_{j=1}^3 L^2(\mathbf{R}_+^3, \mathbf{C}^3) igoplus L^2(\mathbf{R}^2, \mathbf{C}^3)$$

and for every $u \in D(L_0)$

$$FL_0u = (c_P^2|k|^2F_Pu, c_S^2|k|^2F_Su, c_S^2|k|^2F_{SH}u, c_R^2|p|^2F_Ru),$$

where $k = (p, p_3) \in \mathbf{R}^2 \times \mathbf{R}_+$.

Using $F_i(j=P,S,SH,R)$ as above, we construst P_{\pm} as follows:

$$(4.5) P_{\pm} = T^{-1} \left\{ \sum_{j=P,S,SH} \begin{pmatrix} F_{j}^{*} P_{\mp}^{(3)} I_{3 \times 3} F_{j} & O_{3 \times 3} \\ O_{3 \times 3} & F_{j}^{*} P_{\pm}^{(3)} I_{3 \times 3} F_{j} \end{pmatrix} + \begin{pmatrix} F_{R}^{*} P_{\mp}^{(2)} I_{3 \times 3} F_{R} & O_{3 \times 3} \\ O_{3 \times 3} & F_{R}^{*} P_{\pm}^{(2)} I_{3 \times 3} F_{R} \end{pmatrix} \right\} T$$

where

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} L_0^{\frac{1}{2}} & iI_{3\times3} \\ L_0^{\frac{1}{2}} & -iI_{3\times3} \end{pmatrix}$$

and $P_{-}^{(3)}(\text{resp. }P_{+}^{(3)})$ and $P_{-}^{(2)}(\text{resp. }P_{+}^{(2)})$ are negative(resp. positive) spectral projections of

$$D^{(3)} = \frac{1}{2i}(k \cdot \nabla_k + \nabla_k \cdot k) \quad \text{and} \quad D^{(2)} = \frac{1}{2i}(p \cdot \nabla_p + \nabla_p \cdot p), \quad \text{respectively}.$$

Using the representation of the generalized eigenfunction of L_0 (see [2]) and the Mellin transformation we show (A3.1)~(A3.4) (cf. [13] and [6]). The Mellin transformations for $D^{(3)}$, $D^{(2)}$ are given as

$$(M^{(3)}u)(\lambda,\omega) = (2\pi)^{-1/2} \int_0^{+\infty} r^{1/2 - i\lambda} u(r\omega) dr$$

and

$$(M^{(2)}v)(\lambda,\nu) = (2\pi)^{-1/2} \int_0^{+\infty} r^{-i\lambda}v(r\nu)dr,$$

where $u(k) \in C_0^{\infty}(\mathbf{R}_+^3 \setminus \{0\}), v(p) \in C_0^{\infty}(\mathbf{R}^2 \setminus \{0\}), \omega \in \mathbf{S}_+^2 = \{(\omega_1, \omega_2, \omega_3) = (\overline{\omega}, \omega_3) \in \mathbf{S}^2 : \omega_3 > 0\}$ and $\nu \in \mathbf{S}^1$.

Then $M^{(3)}$ (resp. $M^{(2)}$) is extended to a unitary operator from $L^2(\mathbf{R}^3)$ (resp. $L^2(\mathbf{R}^2)$) to $L^2(\mathbf{R} \times \mathbf{S}^2_+)$ (resp. $L^2(\mathbf{R} \times \mathbf{S}^1)$) (cf.[13] Lemma 2).

Proposition 4.1. P_{\pm} as in (4.5) satisfy (A3).

To show Proposition 4.1 we prepare

Lemma 4.2. Let $\psi(\lambda)$ be same as in (A3) and $0 < \delta < c_R$ (for c_R , see Appendix). Then for any positive integer N and $t \in \mathbf{R}_{\pm}$, there exists a positive constant $C_{N,\psi}$ which is independent of t such that

(4.6)
$$\|\nabla_{\mathbf{x}}(e^{-itA_0}\psi(A_0)P_{\pm}f)_1\|_{L^2(\mathbf{R}^3_+,\mathbf{C}^3)}^{|\mathbf{x}| \le \delta|t|} \le C_{N,\psi}(1+|t|)^{-N}\|f\|_{\mathcal{H}},$$

(4.7)
$$\|(e^{-itA_0}\psi(A_0)P_{\pm}f)_2\|_{L^2(\mathbf{R}^3, \mathbf{C}^3)}^{|x| \le \delta|t|} \le C_{N,\psi}(1+|t|)^{-N}\|f\|_{\mathcal{H}}$$

and

(4.8)
$$\|\Gamma_0(e^{-itA_0}\psi(A_0)P_{\pm}f)_2\|_{L^2(\mathbf{R}^2,\mathbf{C}^3)}^{|y| \le \delta|t|} \le C_{N,\psi}(1+|t|)^{-N}\|f\|_{\mathcal{H}}$$

for any $f \in \mathcal{H}_0$, where

$$\|u\|_{L^2(\mathbf{R}^3_+,\mathbf{C}^3)}^B = (\int_B |u|^2 dx)^{\frac{1}{2}} \quad and \quad \|v\|_{L^2(\mathbf{R}^2,\mathbf{C}^3)}^B = (\int_B |v|^2 dy)^{\frac{1}{2}}.$$

This lemma is the key lemma to show (A3). The proof is done by using $M^{(3)}$, $M^{(2)}$ and Lemma A. But we omit to prove (cf. [13] or [6]).

proof of Proposition 4.1. Lemma A of Appendix implies that P_+ and P_- are projection operators and satisfy $P_+ + P_- = Id$ in \mathcal{H} . Below we show (A3.1)~(A3.4). For any $f, g \in \mathcal{H}$ we have by (4.4)

$$|\langle Ke^{-itA_0}\psi(A_0)P_+f,g\rangle_{\mathcal{H}}|$$

$$\leq CI(t)\times (\|A^*(A^*+i)^{-1}g\|_{\mathcal{H}} + \|(A^*+i)^{-1}g\|_{\mathcal{H}}),$$

where

$$I(t) = \left(\int_{\mathbf{R}^2} |B(y)\Gamma_0(e^{-itA_0}(A_0 - i)^{-1}\psi(A_0)f)_2|^2 dy \right)^{\frac{1}{2}} \times \left(\|A^*(A^* + i)^{-1}g\|_{\mathcal{H}} + \|(A^* + i)^{-1}g\|_{\mathcal{H}} \right).$$

Decomposing I(t) as follows:

$$I(t) \leq C\{\left(\int_{\mathbf{R}^{2} \cap \{|y| \leq \delta t\}} |\Gamma_{0}(e^{-itA_{0}}(A_{0} - i)^{-1}\psi(A_{0})P_{+}f)_{2}|^{2}dy\right)^{\frac{1}{2}} + \left(\int_{\mathbf{R}^{2} \cap \{|y| \geq \delta t\}} |B(y)\Gamma_{0}(e^{-itA_{0}}(A_{0} - i)^{-1}\psi(A_{0})P_{+}f)_{2}|^{2}dy\right)^{\frac{1}{2}}\},$$

we have by (4.8) of Lemma 4.2 and (4.3)

$$I(t) \leq C_{N,\psi} \{ (1+t)^{-N} + \varphi(\delta t) \} ||f||_{\mathcal{H}}.$$

Therefore (A3.1) is proven.

To prove (A3.2) and (A3.3) we note

$$\langle f, K^*g \rangle_{\mathcal{H}} = \langle ((A-i)^{-1} - (A_0-i)^{-1})f, g \rangle_{\mathcal{H}}$$

for any $f, g \in \mathcal{H}$.

By easy caluculation we have

(4.9)
$$\langle ((A-i)^{-1} - (A_0-i)^{-1})f, g \rangle_{\mathcal{H}_0}$$
$$= i \int_{\mathbf{R}^2} \Gamma_0((A-i)^{-1}f)_2 \overline{B(y)\Gamma_0((A_0+i)^{-1}g)_2} dy.$$

Then using (4.9) and the same way as in the proof of (A3.1), we obtain (A3.2) and (A3.3). Here we omit the detail.

We show (A3.4). Lemma 4.2 implies

$$\begin{aligned} & |\langle e^{itA_0} \psi(A_0) P_- f_t, g \rangle_{\mathcal{H}}| \\ & \leq C_{N,\psi} \{ (1+t)^{-N} ||g||_{\mathcal{H}} + ||\nabla_x g_1||_{L^2(\mathbf{R}^3_+, \mathbf{C}^3)}^{|x| \geq \delta t} + ||g_2||_{L^2(\mathbf{R}^3_+, \mathbf{C}^3)}^{|x| \geq \delta t} \} ||f_t||_{\mathcal{H}}, \end{aligned}$$

for any $g \in \mathcal{H}$ and any positive integer N. Thus, noting $\sup_{t \in \mathbf{R}} ||f_t||_{\mathcal{H}} < \infty$, we have (A3.4). \square

Application 2 (Acoustic wave equations with dissipative terms in stratified media).

We shall apply Theorem 3. First we explain acoustic operator.

Let $n \ge 1$ and $(x,y) \in \mathbf{R}^n \times \mathbf{R}$. We set

$$c_0(y) = \begin{cases} c_+ & (y \ge h) \\ c_h & (0 < y < h) \\ c_- & (y \le 0), \end{cases}$$

for some positive constants h and c_+, c_-, c_h .

Acoustic operators are

$$L_0 = -c_0(y)^2 \triangle,$$

where

$$\triangle = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y^2}.$$

Considering the case $c_h < \min(c_+, c_-)$ we find the guided waves (cf. [18] or [19]). But we do not restrict ourselves to such cases.

 L_0 is a non-negative self-adjoint operator in $\mathcal{G} = L^2(\mathbf{R}^{n+1}; c_0(y)^{-2} dx dy)$. $D(L_0)$ is given by $H^2(\mathbf{R}^{n+1})$, $H^s(\mathbf{R}^{n+1})$ being Sobolev space of order s over \mathbf{R}^{n+1} .

We deal with the following dissipative wave equations:

(4.10)
$$\partial_t^2 u(x, y, t) + b(x, y) \partial_t u(x, y, t) + L_0 u(x, y, t) = 0$$

and

(4.11)
$$\partial_t^2 u(x, y, t) + \langle \partial_t u, \varphi \rangle_{\mathcal{G}} \varphi(x, y) + L_0 u(x, y, t) = 0,$$

where $(x, y, t) \in \mathbf{R}^n \times \mathbf{R} \times [0, \infty)$ and $\langle \cdot, \cdot \rangle_{\mathcal{G}}$ is the inner-product of \mathcal{G} . We assume that b(x, y) and $\varphi(x, y)$ are measurable functions which satisfy

$$0 \le b(x,y) \le C(1+|x|^2+y^2)^{-\frac{\theta}{2}}$$

and

$$\varphi(x,y) \in L^2(\mathbf{R}^{n+1}; (1+|x|^2+y^2)^{\frac{\theta}{2}} dx dy)$$

for some $\theta > 1$ and C > 0.

We shall show the existence of the scattering states for (4.10) and (4.11) which are considered as the pertubed systems of

(4.12)
$$\partial_t^2 u(x,y,t) + L_0 u(x,y,t) = 0, \quad (x,y,t) \in \mathbf{R}^n \times \mathbf{R} \times \mathbf{R}$$

In [19], [1], and [21], we can find local resolvent estimates as follows: for any $\beta > \alpha > 0$, there exists positive constants $C_{\alpha,\beta}$ and η such that

(4.13)
$$\sup_{\alpha \leq |\operatorname{Re}\zeta| \leq \beta, 0 < |\operatorname{Im}\zeta| < \eta} \|X_{\frac{\theta}{2}} (L_0 - \zeta^2)^{-1} X_{\frac{\theta}{2}} \|_{L^2(\mathbf{R}^{n+1}) \to L^2(\mathbf{R}^{n+1})} \leq C_{\alpha,\beta}.$$

where $\zeta \in \mathbf{C}, X_{\gamma} = (1+|x|^2+y^2)^{-\frac{\gamma}{2}}$ and $\|\cdot\|_{L^2(\mathbf{R}^{n+1})\to L^2(\mathbf{R}^{n+1})}$ is the norm of the bounded operator in $L^2(\mathbf{R}^{n+1})$.

[12] has already dealt with the case $c_h = c_+ = c_- = 1$ and $n \ge 2$ of (4.10). His proof has been based on Kato's smooth pertubation theory [10] and global resolvent estimates for L_0 (see also [10] Theorem 4.4.1)

We apply Theorem 3(Corollaty 4) to (4.10). We set $f(t) = (u(t, x, y), \partial_t u(t, x, y))$. Then (4.12) and (4.10) can be written as $\partial_t f = -iA_0 f$ and $\partial_t f = -iAf$ respectively, where

$$A_0 = i \begin{pmatrix} 0 & 1 \\ -L_0 & 0 \end{pmatrix}, \qquad A = i \begin{pmatrix} 0 & 1 \\ -L_0 & -b(x,y) \end{pmatrix}.$$

Let \mathcal{H} be Hilbert spaces with inner product

$$\langle f, g \rangle_{\mathcal{H}} = \int_{\mathbf{R}^{n+1}} (\nabla f_1(x, y) \overline{\nabla g_1(x, y)} + f_2(x, y) \overline{g_2(x, y)} c_0^{-2}(y)) dx dy,$$

and $\|\cdot\|_{\mathcal{H}}$ is the corresponding norm, where $f=^t(f_1,f_2), g=^t(g_1,g_2)$. The domains of A_0 is

$$D(A_0) = \{ f \in \mathcal{H}; \Delta f_1 \in L^2(\mathbf{R}^{n+1}), f_2 \in H^1(\mathbf{R}^{n+1}) \}.$$

Then A_0 is a self-adjoint operator in \mathcal{H} and generates a unitary group $\{U_0(t)\}_{t\in\mathbb{R}}$ in \mathcal{H} . Below we make a cheak on (A1), (A4) and (A5).

Note that

$$T_0 A_0 T_0^{-1} = \begin{pmatrix} \sqrt{L_0} & 0 \\ 0 & -\sqrt{L_0} \end{pmatrix},$$

where

$$T_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{L_0} & i \\ \sqrt{L_0} & -i \end{pmatrix}$$

and T_0 is a unitary operator from \mathcal{H} onto $\mathcal{G} \times \mathcal{G}$. It follows from (4.13) that for any $u \in \mathcal{G}$

$$\sup_{\alpha \leq |Re\zeta| \leq \beta, 0 < |Im\zeta| < \eta} |\operatorname{Im}\langle (\pm \sqrt{L_0} - \zeta)^{-1} X_{\frac{\theta}{2}} u, X_{\frac{\theta}{2}} u \rangle_{\mathcal{G}}| < \infty.$$

Therefore we have (A1) by [16] Theorem XIII-20.

Since

$$B_0 = \begin{pmatrix} 0 & 0 \\ 0 & b(x, y) \end{pmatrix}$$

is A_0 -compact by Rellich's theorem, we have (A2). Therefore A generates a contraction semi-group $\{V(t)\}_{t\geq 0}$ in \mathcal{H} .

In the same argument as in [12]§3 we can show (A5) as follow. Let $g = (g_1, g_2) \in \mathcal{H}$. We set

$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = (A_0 - \zeta)^{-1} \sqrt{B_0} \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}.$$

Then we have

$$(L_0 - \zeta^2)u_2 = \zeta \sqrt{b(x, y)}g_2$$

and

$$\sqrt{B_0}(A_0-\zeta)^{-1}\sqrt{B_0}g=\sqrt{B_0}u=^t(0,\sqrt{b(x,y)}u_2).$$

Therefore we can calculate as follows:

$$(4.14) \|\sqrt{B_0}(A_0 - \zeta)^{-1}\sqrt{B_0}g\|_{\mathcal{H}} = |\zeta|\|\sqrt{b(x,y)}(L_0 - \zeta^2)^{-1}\sqrt{b(x,y)}g_2\|_{\mathcal{G}_0}.$$

(4.13) and (4.14) imply (A5). Thus we have the conclusion of Theorem 3(Corollary 4) for (4.10) and (4.12).

Next we apply Theorem 3(Corollary 4) to (4.11). we set

$$B_0 = \begin{pmatrix} 0 & 0 \\ 0 & \langle \cdot, \varphi \rangle_{\mathcal{G}} \varphi \end{pmatrix}$$

Then B is a compact operator in \mathcal{H} . We shall show (A5). Note that

$$(4.15) \qquad |\operatorname{Im} \zeta| \|\sqrt{B} (A_0 - \zeta)^{-1} f\|_{\mathcal{H}}^2 \le |\operatorname{Im} \zeta| \|X_{\frac{\theta}{2}} ((A_0 - \zeta)^{-1} f)_2\|_{\mathcal{G}}^2 \times \|X_{-\frac{\theta}{2}} \varphi\|_{\mathcal{G}}^2$$

for any $f \in \mathcal{H}$. We set

$$B_1 = \begin{pmatrix} 0 & 0 \\ 0 & X_{\theta} \end{pmatrix}.$$

Then we have

$$|\operatorname{Im}\zeta| \|X_{\frac{\theta}{2}}((A_0 - \zeta)^{-1}f)_2\|_{\mathcal{G}}^2 = |\operatorname{Im}\zeta| \|\sqrt{B_1}(A_0 - \zeta)^{-1}f\|_{\mathcal{H}}^2$$

$$\leq \|\sqrt{B_1}\{(A_0 - \zeta)^{-1} - (A_0 - \overline{\zeta})^{-1}\}\sqrt{B_1} \|\|f\|_{\mathcal{H}}^2.$$

Noting (4.14) which is changed B_0 and b(x, y) to B_1 and X_{θ} , respectively we get (A5). Therefore we have the conclusion of Theorem 3(Corollary 4) for (4.11) and

REFERENCES

- 1. _____, Analyticity properties and estimates of resolvent kernels near thresholds, to appear in Comm.PDE.
- 2. Y. Dermenjian J.C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle, Math. Meth. in the Appl. Sci. 10 (1988), 87-124.
- 3. V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Comm. Math. Phys 61 (1978), 285-291.
- 4. H.Isozaki-H.Kitada, Modified wave operators with time-independent modifiers, J.Fac.Sci.Univ.Tokyo Sect.IA, Math. 32 (1985), 77-104.
- 5. H.Ito, Extended Korn's inequalities and the associated best possible constants, J. Elasticity 24 (1990), 43-78.
- 6. M. Kadowaki, Asymptotic completeness for acoustic propagators in perturbed stratified media, Integral Eq. Operator Th. 26 (1996), 432-459.
- 7. _____, Low and high energy resolvent estimates for wave propagation in stratified media and their applications, to appear in J. Differential Equations.
- 8. T.Kato, Wave operator and similarity for some non-selfadjoint operators, Math. Annalen 162 (1966), 258-279.
- 9. S. T. Kuroda, Spectral theory II, Iwanami, Tokyo, 1979. (Japanese)
- An Introduction to Scattering Theory, Lecture Note Series No 51, Matematisk Institut. Aarhus University, 1980.
- 11. P.D. Lax R.S. Phillips, Scattering theory for dissipative systems, J.Funct. Anal. 14 (1973), 172-235.
- 12. K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. RIMS, Kyoto Univ 12 (1976), 383-390.
- 13. P. Perry, Mellin transforms and scattering theory I. Short range potentials, Duke Math. J 47 (1980), 187-193.
- 14. V. Petkov, Scattering theory for hyperbolic operators, North-Holland, Amsterdam, New york, Oxford, Tokyo, 1989.
- M. Reed B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness, Academic Press, New York, San Francisco, London, 1975.
- 16. _____, Methods of Modern Mathematical Physics, IX, Analysis of Operators, Academic Press, New York, San Francisco, London, 1978.
- 17. B.Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), 119-168.
- 18. P. Stefanov V. Georgiev, Existence of the scattering operator for dissipative hyperbolic systems with variable multiplicities, J. Operator Theory 19 (1988), 217-241.
- 19. R. Weder, Spectral and scattering theory for wave propagation in perturbed stratified media, Applied Mathematical Sciences 87, Springer-Verlag, New york, Berlin, Heidelberg, 1991.
- 20. C. Wilcox, Sound propagation in stratified fluids, Applied Mathematical Sciences 50, Springer-Verlag, New york, Berlin, Heidelberg, 1984.
- 21. B. Zhang, Commutator estimate, Besov spaces and scattering problems for the acoustic wave propagation in perturbed stratified fluids, Math. Proc. Camb. Phil. Soc. 128 (2000), 177-192.

TOKYO METOROPOLITAN COLLEGE OF AERONAUTICAL EINGINEERING