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ON EXISTENCE OF SCATTERING
SOLUTIONS FOR DISSIPATIVE SYSTEMS

MiITSUTERU KADOWAKI (FEl YOiE)

In this report we shall give two frameworks (Theorem 1 and 3) for the existence
of scattering solutions of dissipative systems and apply these to some dissipative
wave equations. v

Let H be a separable Hilbert space with inner product (-,-}3;. This norm is
denoted by || - ||». Let {V(¢)};>0 and {Up(t)}ter be a contraction semi- group
and a unitary group in H, respectively. We denote these generators by A and A
(V(t) = e~*4 and Up(t) = e~**40). We make the following assumptions on A and
Ap.

(A1) 6(Ao) = 04c(Ao) = R or [0,00).
(A2) (A—1i)"1—(Ag—i)~! defined as a form is extended to a compact operator

(A3) ?hgxl'e?:).cist non-zero projection operators P, and P_ such that P, +P_ = I,
and
(A3.1) IKUo(t)¥(A0)Pill € L' (Ry),
(A3.2) 1K Uo(8)¥(Ao) Pill € L (R+4),
(A3.3) 1K*Uo(—t)9(Ao)P-|| € L (R+),
(A3.4) w— lim Up(~t)¥(Ao)P-f; =0,

for each ¥ € C$°(R\0) and {f; }+cr satisfying sup,cg || filln < o0, where |- || is the
operator norm of bounded operator from H to H.
Let H; be the space generated by the eignvectors of A with real cigenvalues.

Theorem 1. Assume that (A1) ~ (A8). For any f € Hi-, the wave opeartor
Wf = lim U(-t)V(t)f
t—oc

exists. Moreover W is not zero as an operator in H.

To prove Theorem 1 we shall use the following facts ( sce [17] and [14]):
(F1) {(A-i)"2Af € H: f € D(A)NHi} is dense in Hy.
(F2) There exists a sequence {t,} such that

lim ¢, = 20
n—o<

and
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MITSUTERU KADOWAKI
w— lim V(t,)f =0, forany f&Hi.
n—o0

Theorem 1 implies that there exists scattering states of %—t—)i = —tAV()f,f €
D(A) as follows:

Corollary 2. Assume that (A1) ~ (A8). Then there exist non-trivial initial data
f € H and f € H such that for any k =0,1,2,--- , and (o € C satisfying R > 0

tli{go IV(#)(A = Co) % f — Us(t)(Ao — o) frlln = 0.

Theorem 1 is proven by using Enss’s approach [3] and [17]. Examples of Theorem
1 contain scattering problem for clastic wave equation with dissipative boundarly
condition in a half space of R? (cf. [2]). To show (A3) we use the Mellin transforma-
tion (cf.[13]). Theorem 1 is not applied to acoustic wave equations with dissipative
terms in stratifed media(cf. [19]). Since generalized eigenfunctions of acoustic wave
propagation in stratifed media are not smooth at thresholds, the key estimates
(A3.1)~(A3.3) have not been obtained in the neighborhood of each threshold. So
we consider the following assumnptions to deal with such equations .
Let By be non-negative operator.
(A4) By is Ag-compact.
(A5) Let ¢ belong to C\R. VBo(Ag — €)1V By can be extended to a bouneded
operator Q(¢) which satisfies that for any 8 > a > 0, there exist positive
constants Cy, g and 7 such that

sup HQ(C)“ = Ca,ﬁ-

aS|ReC|SB,0<{Im(|<n

We reset A = Ag — iBg, D(A) = D(Ap). Then [15] (see Theorem X-50) implies
that A generates a contraction semi-group ,{V (£)};20(V (t) = e7#4).
We have the following theorem.

Theorem 3. Assume that (A1), (A4) and (A5). Then

(1) A has no real eigenvalues.
(2) The wave operator

W=zs-— tlim Ug(—t)V (t)

exists. Moreover W is not zero as an operator in 'H.

Corollary 4. Assume that (A1), (A4) and (A5). Then we have the same conclu-
sion of Corollary 2. ' .

To prove Theorein 3 we shall used Mochizuki’s idea [12] due to Kato’s smooth
perturbation theory(8].

In §4 we shall apply our frameworks to clastic wave equation with dissipative
boundary condition in a half space of R and acoustic wave equation with dissipa-
tive term in stratifed media. It seems that there is little literature concerning such
dissipative systems (cf. [7]).
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2. Proof of Theorem 1 and Corollary 2.

In this section we deal the case 0(Ag) = 04c(Ag) = R only. The another case
can be dealt in the same way. We set F(A) = (A —i)72X and W (t) = Ug(—=t)V (1).
In this section C is used as positive constants.

Below we shall give the proof of Theorem 1. First we prove the existence of W
by refering to (3], [17], [10], [13], [4], [18] and [14]. But we sometimes omit to note
the above references.

proof of the ezistence of W. For any f € Hi- N D(A) and t,5 > t,, note (F1) and
(W (t) = W(s)F(A)?flln
SN(W(t) = W(tn)) F(A)? flln + 1(W (s) = W (tn)) F(A)? flln.
Thus in order to prove the existence of W, it is sufficent to show
(2.1) hm hm (W (t) — W(tp))F(A)2f||n =0

(cf. [4])
We estimate ||[(W(t) — W (t,))F(A)%f||x as follows (cf. [17]):
(W (t) = W (ta)) F(A)? flin
=[Uo(=t)(V (t — ta) = Uo(t = ta))F(A)?V (ta) fline

5
Jj=1

where
= (V(t = tn) — Uo(t — ta))(F(A)? = F(A0)*)V (tn)f,
72 = (V(t — ta) — Uo(t ~ t))(Ia = ¥am(A0)) F(A0)*V (ta)
73 - (V(t - tn) - UO(t - tn))(¢MF)(A0)P+ (AO)V(tn)fa
= (V(t = ta) = Uo(t — ta))(¥mI)(Ao) P-F(Ao)(Ia — ¥m(A0))V (ta) f,

Ts = (V(t — ta) = Uo(t = t)) (M F)(A0) P- (¥m F)(A0)V (tn) f
and Ya(A) € C§°(R) satisfies 0 < ¥pr(A) S 1L, ¥vm(A) = 0(|A| < 1/2M,|\| > 2M)
and Yy () = 1(1/M < |A| < M).

First, we note that for any ¢, there exists M > 0 such that

Therefore once the limits

(2.2) lm Tm Tl=0, (=1,35)

n—oo t—

are proved, we obtain (2.1). Below we shall show (2.2). For j = 1 (A2) implies that
F(A)? — F(Ap)? is a compact operator in H. Using (F2) we have

ITilln S CI(F(A)? = F(A0)*)V (ta)flln — 0 (n — o0)



i

MITSUTERU KADOWAKI
For j = 3, we decompose T3 as follows
T3 = T3 + T32 + 133,
where

Ty = V(t — to)(F(Ag) — F(A)) (M F)(Ao) P+ F(Ao)V (tn) f
Tye = (F(A) — F(Ao))Uo(t — t) (¥mF)(Ao) P+ F(Ao)V (tn) f
Tys = F(A)(V(t —tn) — Up(t — tn))¥m (A0) P+ F(A0)V (tn) f

Sawne argument as in the proof of Tj implies
lim lim ||T5;]|» = 0.
n—00 t—00

We have by (Al)
W — tlim Uo(t - tn)f =0.

Thus (A2) implies
lim | Tselle = 0.
t—o0

To estimate Ty3, we use Cook-Kuroda method. We have by (A2)
(T33,9)H

. N
=1 /0 (V(t —tn — 5)A(A — 1) " KUo(s)¢r (Ao) Py F(Ag) fry g)mds.

where g € H, fn = V(ta)f and Par(A) = (A — )par ().

Thercfore we obtain

Taslae S C [ IKUs(s)b (40) P (o) ol
For each s = 0 we have by (F2) and (A2) ,
Jim. |1 KUo(s)¢ar(Ao) Py F(Ao) fullr = 0.
Therefore (A3.1) and Lebesgue’s theorem imply
Jim T [Taall = 0.

Now we obtain L
lim lim ||75||» = 0.
n—oc t—oo

We cstimate T5 as follows :

1513 £ ClIP-(Fypar) (Ao)V (tn) fll3

3
=CY Ty,
j=1
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where

Ts1 = (Ym(Ao)P_hn, (F(Ao) — F(A))V(tn) In
Tsz = (M (Ao)P_hn, (V(tn) — Uo(tn)) F(A) f)n
Tss = (Uo(—tn)¥m(Ao) P-lin, F(A) f)n

and h, = (Fyr)(Ao)V (tn)f.
(A2) and (F2) imply

lim T51 =0.
n—oo

(A3.4) implies
lim T53 =0.
n—0o0

To estimate T2, again we use Cook-Kuroda method. Note that

(Teal < CIlflln /0 |K*Un(= ) y(Ao) P hulreds

Using (A2), (F2) and (A3.2) we have by Lebesgue’s theoremn

lim Tsz = 0.
n—oo

Now we obatin L
lim lim ||75|l% = 0.
n—oo t—oo

Therefore the proof of the existence of W is completed. U

To show W # 0, we introduce a subspace of H, D, as follows :
D={feH: lim V(t)f =0}
t—oo

Since
Af =0, AeR, feH= A*f=)Af

(see Lemina 1.1.5 of [14]), we can easily show
D C Hy.

We prepare the following proposition without the proof.

Proposition 2.1. Assume that
Hi © D = {0}.
Then one has

(2.3) w= lim Uo(~t)V(t)f =0
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for any f € H.
Below we shall show W # 0(cf. [12]§3).
proof of W # 0. For any f € H and g € H, note that -

(26)  (Uo(-OV(E)(A =), (Ao +8) 7 g)n |
t
(A=), (Ao 4 i) gy + i /0 V() f. K*To(r)g, Yedr.

We assume that W =0, i.e, for any f € ’Hé‘,

(2.7) IW flir = Jim [V (t) fll2 = O.
(2.7) means
Hi © D = {0}

Hence Proposition 2.1 and (2.6) imply

(A=), (o 4 g = =i [ V(D) K To(r) e
Putting
f = (Ao — )Uo(s)um(Ag)Prh and g = (Ag + 1)Uo(s)¥m (Ao)Prh
for any h € H, we have
1oa (Ao) Py W2, IRl (A = )71 = (Ao — )" )Uo(s)¥n(Ao) Pihlla
+Cor [ I Volr+ )iaa(A0)PyHlper).
(A1) and (A2) imply |
lim [[((A =)™ = (Ao = ) 7)Us(s)¥m(Ao) Pehllze = 0

and (A3.2) implies

lim / NK*Us(T + $)a(Ag) Py |ldr = 0.
0

5§00

Therefore we have

(2.8) ll"L/JM(AQ)P+]l'|-H = 0,
tor any h € Hy and any M > 0.
(2.8) means P, = 0. This is a contradiction with (A3). Now we complete the

proof of W £ 0. [
We give a brief sketch of the proot of Corollary 2.

proof of Corollary 2. Noting that Up(t) is unitary in H we have the case k = 0 by
Theorem 1. It follows from the case k = 0 and (A1) that the case k = L.
We can show the cases k = 2,3,4,--- by the induction. [
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3. Proof of Theorem 3 and Corollary 4.
For the sake of simplicity, we shall also restrict ourselves to the case g(Ag) =

0ac(Ag) = R only.
Let E()) be the spectral family of Ag. Then we have

o= /_ Z AE(N).

For 3 > a > 0, we denote E((—3, —a) U (e, 8)) by E4, g(Ao).
(A3) means that vBoE, 3(Ag) is Ag-smooth, i.c. for any g € H

(3.1) / 1VBoUo(t) Ea p(Ao)gllZdt < Ca gl

— 00

(cf. [8] or [16]), where C, g is a positive constant which depends on a and 3 only.
Moreover we note the following identity of V (¢)f, f € D(A) :

t
(3.2) V£, +2 /0 IVBoV(r) fIBedr = 112

Using (3.1) and (3.2) we prove the following lemna.

Lemma 3.1. Let 3> a > 0. Then for any f € D(A) one has

Jim | Ea.5(A0) (Uo(—=t)V () — Uo(—5)V(s)) flln = 0.

proof. Sec [12] §3.
By Lemma 3.1 and (A1) we have the following lemna.

Lemma 3.2. One has
w— tlilglo V(t) =0.

Using Lemma 3.2 we prove Theorem 3(1) as follows.

proof of Theorem 3(1). Assuine that there exists f € D(A),\A € R such that
Af = Af. Then we have

(VO fim = e A flI%

This yields a contradiction with Lemma 3.2. [
Theorem 3(1) and (F1) imply that

(3.4) {(A-i))"2Af e H:fe D(A)} isdenscin M.

Below we prove Theorem 3(2).
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proof of Theorem 3(2). First we show the existence of W. Set F(\) = (A —1)
By (2.6) it is sufficient to show that {Uo(—t)V (t)F(A)f};>o is Cauchy in
t — 0o, where f € D(A) . We estimate as follows (cf. [17]) :

4
|(Uo(~t)V (t) = Uo(=s)V () F(A) fllre £ I Tl
| p
where

Ty = Ug(—t)(F(A) — F(A)V () f
Ty = Uo(—5)(F(A) — F(Ao)V(s)f -
T3 = F(Ao)(Ig — E1/m,m(A0)) (Uo(—t)V (t) — Uo(—8)V () f

and
Ty = F(Ao)E1/a,m(A0)(Uo(—t)V(t) — Uo(—8)V (s))f.

We note that for any ¢, there exists M > 1 such that

N1 = x(=m,—1/a00/M ) FllLe®m) <€

Thus we have
(3.5) T3l < el fllne-
By (A4), F(A) — F(Ap) is a compact operator. Hence Lemma 3.2 implies
(3.6) tlim 1|l = lim ||T2|| = O.
—0C §—0C
Lemma 3.1 implies

(37) lim [Tl = 0.

(3.5), (3.6) and (3.7) imply the existence of W.
Next we prove W # 0 (cf. [12]§3). Assume that W =0 i.e. for any f € H
(338) Jim V@Sl =0.
We set G(A\) = (A — i)™}, Then noting
(Uo(=)V()G(A)f, G(Ao)f)n
= (G- Gl ~ [ Uo(-rIBV ()AL, GlAo) e,
we have by (3.8) and Schwartz inequality

(3.9)
(G(A)f,G(Ao) finl
<

( T IVBY (G an? x ([ ™ IVBUo(r)G(Ao) fIBudr)?.

0
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(3.2) and (3.8) imply
(3.10) 2/000 VBV (r)G(A) f|I}dr = |G(A) f1I3-

Hence we have by (3.9) and (3.10)

1

IG(A0) 117, < I {I(G(A4) — G(Ao)) fllz + (5 /Ooo |IVBUo(7)G(Ao) fl12,d7) % }.

Let fix M > 1. Put f = Uy(s)g, g satisfying Ej /pr,p(Ao)g = g. Then we have

(3.11)
1G(Ao)gli%; Sllglir{I(G(A) — G(Ao))Vo(s)glln
4 [ VBBl Ao)Uo(r)G(Ao)glBir) ).
(Al) and (A4) imply
(3.12) lim [[(G(A) - G(A0))Uo(s)gll+ = O
(3.1) implies
(3.13) lim ” IVBE /3,1 (A0)Uo(T)G(Ao)gl|3,dT = 0.

—
8§—0C s

Therefore it follows from (3.11), (3.12) and (3.13) that g = 0. This is a contradic-
tion. Therefore we have W # 0. U :

To prove Corollary 4 we should repeat the same way as in the proof of Corollary
2. Here we omit to do it.

4. Applications.

Application 1 (Elastic wave equation with dissipative boundary condition
in a half space of R3).
We shall apply Theorem 1. In this section we also use C as positive constants.
Let x = (21,22,23) = (y,23) € R? x R4 and po > 0,p0 > 0, € R satistying
3o + 2up > 0. We use Ozx3 and I3x3 as zero and unit matrix of 3 x 3 type,

respectively.
We set 16 5
Up, U4
enj(u(z)) = 352, + 3,—4)
3
and

oni(u(z)) = A(Vg - w)bn; + 2108h; (1)
where h, j = 1,2,3, u(x) =t (u1(z), uz(x), us(x)) € C3and V, = (0/01,0/8,,0/53) |
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We define operators Lo as

3 .
= 1 dopj(u(x)) :
Ly —-——E ——=—= (h=1,2,3).
(Lou)n i Po Ox; ( )

We consider two elastic wave equations as follows:

(4.1) { té)tzu(w,t) + Lou(z,t) = 0, (z,t) € R3 x [0, 00),
(013(u), 023(1), 033(1)) |zs=0= B(y)O¢tt |25=0
and
(42) { O2u(x,t) + fjou(:?:, t)(: 0, (z,t) € R3 xR,
0i3(1) |gs=0=0( = 1,2, 3).

To set assunptions for B(y) we introduce a function space B*(12) as follows :

B*(Q) = {u e C¥€); D [|0%ullp=(q) < o0},

lelSk

where (2 C R™.
Assuine that
(4.3) B(y) belongs to B} (R?, M3y3) and satisfies

O3x3 < B(U) = ?(lyl)IZ&x:},

where (1) is a non-increasing function and belongs to L1(Ry). Mjys is the class
of 3 X 3 matrix.

The following operator Ly in G = LZ(R‘?‘H C3; podx) :
Lo'l,L = j;o’lt

and

D(Lo) = {u € H'(R3,C?); Low € G, 0n3(1t) |zy—0= 0(h = 1,2,3)}

is a non-negative self-adjoint operator.
Let H be Hilbert space with inner product :

3

.<fs.(]>'H:/R( > anjmen(f1)en(91) + f2gz2po)d;

T hgkd=1

where apjer = AoOhj0kr + fo(Onkbis + Ombsr) and f =t (f1, f2),9 =t (91,92). By
Korn’s incquality (cf. [5]) we note that H is equivalent to H'(R3, C3) x L?(R3, C?)
as Banach space.

We sct f = t(u(x,t),us(x,t)), where u(x, t) is the solution to (4.1) (resp. (4.2))
with a initial data fo = *(w(x,0),us(x,0)) € H. Then (4.1) (resp. (4.2)) can be
written as v
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Of = —iAf  (resp. O f = —tAof),

where
. 0  I3xs3 . 0 I3xs
A_l(—io 0 ) AO_Z(—]’LO 0 >
D(A) = {f ="(f1,f2) € H; Lof1 € L*(R},C®), f» € H'(R3.C),
Ho13(f1), 023(f1), 733(f1)) |za=0= B(¥) f2 |lzy=0}
and

D(Ao) = {f ='(f1, f2) € H; Lof1 € L*(R3,C®), f, € H'(R3, C3),
0h3(fl) |:l:3=0= O(h = 13 2a 3)}

According to P210-P211 of [11] or Corollary 1.1.4 of [14] we can show that A
gencerates a contraction sewi-group {V(¢)},>¢ (resp. a unitary group {Up(t) }ser) in
H. Using {V(t)};>0 (resp. {Uo(t)}ter) we solve 8y f = —iAf (resp. O f = —iAof)
as follows -

f=V(®)fo (resp.f="Uo(t)fo).

Below we make a check on Assuinptions (Al),(A2) and (A3)
[2] implies 0(Ag) = 04c(Ao) = R. Thercfore we have (Al).

Next we show (A2). For f, g € H, we have by easy caluculation
(4.4) ((A=9)7" = (Ao =)™ 1) frg)n
=i [ BINo((40 — 1) £)2Tol(A" + D Tg)ad.

where I'g is a tarce operator which is defined by
(Tou)(y) = u(y,0).

Note that I'o((Ao—¢)~* f)2 and [o((A*+7)~! f)2 belong to H~#(R3,, C3) by Korn's
inequality for any s € (1/2,1). Since B(y)ToIlz(Ag — i)~! is a compact operator
from H to L2(R?, C3) by Rellich’s theorem, where I1; ¢( fi, f2) = fi(j = 1,2), the
form (A —3)~! — (Ap —i)™! can be extended to a compact operator,(Tollp(A* +
1)~ 1)*B(y)Tolla(Ap — )7L, in H. ‘

To show (A3) we sate a result from [2]. There cxist Fpu, Fsu, Fsgu and Fg
which are partially isometric operators from G = L2(R3, C?; podz) onto L2(R3, C3)]
and L?(R2, C3), respectively. Defining the cperator F as follows :

Fu = (Fpu, Fsu, Fsgu, Fpu) for u €@,

we have by Theorem 3.6 of [2]
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Lemma A. F is unitary operator from G to
'3
R =P L*R3, C*) P L*(R? C%)
Jj=1 ‘
and for every u € D(Lo)
FLou = (&|k|?Fpu, &|k|? Fsu, ¢&|k|? Fsgu, cg|pl* Fru),

where k = (p,p3) € RZ x Ry
Using Fj(j = P, S, SH, R) as above, we construst Py as follows :

FrPO L s F;
(4.5) Py =T7Y Z (a F f3x3L Osx3 )

=P SSH Osxs  Fy PO IsusF,
FiPPIixsFr  Osxa
+ . p(2) T
Osx3s FaP{" Isx3Fr

where

| b

T = 1 Lé il3x3
\/§ Lg _'1:13)(3 ‘
and PES)(resp. Pf)) and .Piz)(resp. Pf)) are negative(resp. positive) spectral

projections of

~

1 1
DB — Z(k Vi +Vi-k) and D@ = 2—Z(p -Vp+Vp:-p), respectively.

Using the representation of the generalized eigenfunction of Lo(see [2]) and the
Mellin transformation we show (A3.1)~(A3.4) (cf. [13] and [6]). The Mellin trans-
formations for D®), D) are given as

+o00
(M® )\ w) = (27r)“1/2/ /2=y (rw)dr
0

and

+o00
(MPv)(\,v) = (27r)—1/2/ r~(rv)dr
0

where u(k) € Cgc(Ri\{O}), (p) € CP(R2A\{0}),w € 82 = {(w1,w2,ws) = @,ws) €l
S2: w3 >0} and v € St

Then M® (resp. M®) is extended to a unitary operator from L2(R3) (resp.
L2(R2)) to L%(R x S2%)(resp. L2(R x S')) (cf. [13] Lemma 2 ).

Proposition 4.1. Py as in (4.5) satisfy (A3)

To show Proposition 4.1 we prepare
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Lemma 4.2. Let ¢()\) be same as in (A8) and 0 < § < cg (for cr, see Appendiz).
Then for any positive integer N andt € Ry, there exists a positive constant Cy
which is independent of t such that

—1 z|S - .
(46)  [IVale ™ %(A0) P/l faas ooy = Cnau(1+ )Vl flles
—i . z|<6 - .
(4.7) (493 (A0) Pe el it oy S v (1 + 1E) ™ fl
and
. < .
(48)  [To(e™*4op(Ao) P )zl Mitmr ooy S Cnw(1+ 1t) NI Fll

for any f € Hp, where

1 1
ullZa g ooy = ( /B [ul2dz)}  and ||o]Bagme.co) = /B (v [2dy)? .

This lemma is the key lemma to show (A3). The proof is donec by using
M® M® and Lemma A. But we omit to prove (cf. [13] or [6]).

proof of Proposition 4.1. Lemma A of Appendix implies that P, and P_ are pro-
jection operators and satisty Py + P_ = Id in ‘H. Below we show (A3.1)~(A3.4).
For any f,g € H we have by (4.4)

[(Ke™ 49 (Ao) Py f, 9)n|
S CI(t) x (|[A*(A* + i) glla + I(A* + 1)~ glln),

where
16) = (| 1B)Tole™*4(40 — i)' 6(Ao)ala)
X(14° (A" +3) gl + (A" + ) gl

Decomposing I(t) as follows :

Ity = C{(] [To(e™#40 (Ao — 1) "'9(Ao) Py f)2l?dy)?
R2n{jy| <6t}

| +(/ ~|B(y)To(e™*40 (A — i) 19p(Ao) Py f)2[2dy) },
4 R2N{|y|26t}
we have by (4.8) of Lemma 4.2 and (4.3)

I(t) S Cnu{(1+ )N + o(6t) I flln-

Therefore (A3.1) is proven.
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To prove (A3.2) and (A3.3) we note

K g = (A= )~" = (Ao — i) 1) f, 9}

for any f,g € H.

By casy caluculation we have
(4.9) (A=) = (A0 = D)7)f 9o
=i [ Tol(4=0)7 )2 B0 + )" g)ady
R?

Then using (4.9) and the same way as in the proof of (A3.1), we obtain (A3.2) and
(A3.3). Here we omit the detail.
We show (A3.4). Lemma 4.2 implies

(et 40w (Ao) P- fi, g)ml
|z| 26t |z| 26t

< Onap {1+ 07Nl + IVamnll2ims ooy + 1921l2ms oo el

for any g € H and any positive integer N. Thus, noting sup;cgr | felln < oo, we
have (A3.4). U

Application 2 ( Acoustic wave equations with dissipative terms in strat-
ified media ).

We shall apply Theorein 3. First we explain acoustic operator.

Let n 2 1 and (2,y) € R® x R. We sct

cy (y2h)
coly) = e, (0<y<h)
c. (y=0),

for sowme positive constants h and ¢4, ¢, ¢h.
Acoustic operators are
— (22
Lo = —co(y)° D,

where

n 62 62
= ; D% + oy?’
Considering the case ¢p < min(cy, c—) we find the guided waves (cf. [18] or [19]).
But we do not restrict oursclves to such cases.

Lo is a non-negative self-adjoint operator in G = L2(R™*1; ¢o(y)~2dady). D(Lo)
is given by H2(R*+1), H*(R™*}) being Sobolev space of order s over R

We deal with the following dissipative wave equations :

(4.10) DPu(r,y, t) + b(a, y)Opu(r, y, t) + Lou(z, y, t) =0
and

(4.11) Pule, yo1) + (O, g p(,y) + Lou(,y,1) =0,
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where (z,y,t) € R™ X R x [0,00) and (-, ‘)¢ is the inner-product of G.
We assumnc that b(x,y) and ¢(x,y) are measurable functions which satisfy

0=b(x,y) =C(1+ |:1I|2 + ;(/2)_%

and
o(r,y) € L3R (1 + |x|? + y2) dady)

for some 8 > 1 and C > 0.
We shall show the existence of the scattering states for (4.10) and (4.11) which
are considered as the pertubed systems of

(4.12) Fu(w,y,t) + Lou(r,y,t) =0, (x,y9,t)e R* xR xR

In [19], [1], and [21], we can find local resolvent estimates as follows : for any
B> a >0, there exists positive constants Cq g and 1 such that

(4.13) sup | X
aS|Re¢|£8,0<|Im¢|<n

1=

)

(LO _ Cz)_lX% “L'-*(R"' N—L2(Rm11) § Ca‘ﬁ.

=

u

where ( € C, X, = (1 + 2|2 +y?)~% and || - ||L2(rn 1 1)—L2(R 1 1y I8 the norm of the

bounded operator in L2(R"*1),

[12] has already dcalt with the case ¢p = ¢y = ¢ =1 and n 2 2 of (4.10). His
proof has becen baesd on Kato’s smooth pertubation theory [10] and global resolvent
estimates for Lo(sec also [10] Theorem 4.4.1)

We apply Theorein 3(Corollaty 4) to (4.10). Weset f(t) = (u(t, x,y), Qgu(t, x,y)).}
Then (4.12) and (4.10) can be written as 9, f = —iAof and 0y f = —iAf respec-

tively, where
( 0 1 {0 1
AO_Z(—LO 0)’ A_z(—Lo —b(;z:,y))'

Let H be Hilbert spaces with inner product
(froyn = /R H(Vfl (&, )V (2, y) + fa(z,y)g2(r, y)cg?(y))dady,

and || - || is the corresponding norm, where f =t (f1, f2), 9 =t (91, 92)-
The domains of Ag is

D(Ao) = {f € H; A fi € LER™), f, € HY(R™)}.

Then Ap is a self-adjoint operator in H and generates a unitary group {Up(t)}ter
in H. Below we make a chcak on (A1), (A4) and (A5).

Note that 7
v -1 __ V L0 0
ToAoTy ™ = ( 0 —\/L_o) )

where
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and Tp is a unitary operator from H onto G x G. It follows from (4.13) that for any
ueGqg

sup Im{(£v/Lo — ¢) "1 Xeu, Xou)g| < co.
aS|Re¢|<B,0<Im(|<n 7

Therefore we have (A1) by [16] Theorem XIII-20.

Since
0 0
Bo = (0 b(w,y))

is Ag-compact by Rellich’s theorem, we have (A2). Therefore A generates a con-
traction scii-group {V'(t)};>0 in H.
In the same argunent as in [12]§3 we can show (A5) as follow. Let g = (g1,92) €

H. We sct
u= (“l) ~ (4 - O)"'VBo (9‘).
U2 92

(Lo — ¢®)uz = (1/b(z, ) g2

Then we have

and
V' Bo(Ao — €)'/ Bog = v/Bou =" (0, /b(x, y)uz).

Thercfore we can calculate as follows :

(4.14)  [IV/Bo(Ao — €)™ v/ Bogln = ICI1Vb(@, ) (Lo — ¢2) " 1/b(z, y)g2llgo-

(4.13) and (4.14) imply (A5). Thus we have the conclusion of Theorem 3(Corollary
4) for (4.10) and (4.12).
Next we apply Theorem 3(Corollary 4) to (4.11). we set

Bo = (8 k('a</?>g<P)

Then B is a compact operator in ‘H. We shall show (A5). Note that

(415 [Iw¢lIVB(Ao = O™ fII% S 1Im¢|[| X g (Ao — Q)  allf x 1 X_g Il

2

(0 0
n-(d 2).

I |[1X g (Ao — )" Mllg =Mnglllv/Bi (Ao — )7 fII3,
<IVBH{(Ao = )7 = (40 = ) IBillI fIRe-

Noting (4.14) which is changed By and b(x,y) to By and Xy, respectively we get
(A5). Therefore we have the conclusion of Theorem 3(Corollary 4) for (4.11) and

for any f € H. We set

Then we have
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