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1. Introduction
We study aplanar model of crystal evolution. This model was derived by M.Gurtin and
J.Matias (see [GM]). Its special feature is that the interfacial curve is apolygon. Our aim
is to investigate the system when afacet is annihilated or afacet is broken, i.e. anew
segment of zero length is inserted.

The system in question was derived from the principles of thermodynamics and after
some simplifications takes the form:

$u_{t}=\Delta u$ in
$0<t<T\cup\Omega_{1}\cup\Omega_{2}$

, ’ (1.1)

[$\nabla u\mathrm{J}\nu_{j}=-V_{j}$ , $j=1$ , $\ldots$ , $N$, $\mathbb{I}u\mathrm{J}$ $=0$ , (1.2)

$\int_{s_{j}(t)}u=\Gamma_{j}-\beta_{j}L_{j}V_{j}$ , $j=1$ , $\ldots$ , N. (1.3)

(1.1) is the heat equation; (1.2) is the law governing the motion of the interface and (1.3)
is the counterpart of the Gibbs-Thompson law suitable for polygons in the plane which is
supplemented by kinetic undercooling. Originally (1.3) was derived from the balance of
capillary forces.

We augment the above system with the initial and boundary conditions

$s(0)=s_{0}$ , $u(0, x)=u_{0}(x)$ (1.4)

and
$u|\partial\Omega=0$ for t $\geq 0$ . (1.5)

We remark here that the above problem was formulated by Herring in the metallurgical
literature in the fifties, see [Hr]. Later, it was independently rediscovered by Ben Amar-
Pomeau [BP] and Gurtin -Matias [GM]

We remark that system (1.1)-(1.5) has been already studied for regular data, i.e. when
all facets have positive length. In this case we have already shown in [Ryl, Ry2] that weak
solutions to (1.1)-(1.5) exist and they are unique. We have also established in [Ry2] some
geometric properties of the small interfaces.

Let us mention that the above problem for smooth interfaces is also well-posed. This
was established in the early ’ $90’ \mathrm{s}$ , see [CR] and [Ra]. It turns out that $\beta>0$ is quit $\mathrm{e}$
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important. The problem for $\beta$ $=0$ and smooth interfaces was studied by Luckhaus [L] and
in greater generality by Almgren-Wang [AW]. In particular, they showed that uniqueness
fails. Uniqueness is an open problem also if we admit general interfaces for $\beta>0$ , see
Soner [S].

Let us also mention that the limiting case of our problem for $u=0$ is the (driven)
‘motion by weighted crystalline curvature’

$F=\Gamma_{j}-\beta_{j}L_{j}V_{j}$ , $j=1$ , $\ldots$ , $N$ (1.6)

When the driving term $F$ is zero then above system has been proposed independently by
J.Taylor [T1] and S.Angenent-M.Gurtin [AG]. Since then this problem has attracted many
authors.

In this paper we deal mainly with the question of existence of solutions (1.1)-(1.5).
We show existence of weak solutions in case of initial polygon possessing anumber of zero
length facets. In order to obtain atractable problem we consider only zero crystalline
curvature facets. On the way we establish existence of solutions up to annihilation of a
zero crystalline curvature facets.

We do not show their uniqueness. One of the problems is that the notion of weak
solution does not specify the position of anew zer0-length facet.

The above results permit acontinuation of solutions after each loss of facet and possible
creation of new ones. However, this is not quite acorollary implying global existence since
we do not consider here all possible topological catastrophes.

On the other hand, evolution past singularity has been already established for motion
of polygons by crystalline curvature. The authors of [EGS] and [FG] treated the case of
graphs, while in [IS] the case of any closed polygon is covered.

We shall announce anumber of results here and we will present the main ideas while
asking the Reader willing to learn the full account to refer to the original paper [Ry3].

2. Preliminaries
In order to make the presentation of notation easier we refer to the picture below:

Aregion with smooth boundary $\Omega$ (a vessel) is asum of $\Omega_{1}(t)$ (an ice crystal) bounded
by interface $s(t)$ and $\Omega_{2}(t)$ (water), i.e. and $s(t)=\partial\Omega_{1}(t)\cap\partial\Omega_{2}(t)$ . The facets of $s$ are
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denoted by $s_{\mathrm{i}_{\rangle}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$
$1_{\mathrm{t}^{\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}\mathrm{t}}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} L_{i}$ is the length of facet $!\ovalbox{\tt\small REJECT}_{\rangle}L\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT} \mathrm{X}\mathrm{y}_{\ovalbox{\tt\small REJECT} S}L_{\mathrm{y}}\ovalbox{\tt\small REJECT} v$ is the outer

normal to $s(t)$ . The jump of ($\#$ across 8is denoted by [\langle 6[ i.e.

$\mathbb{I}^{\phi \mathrm{J}(x_{0})=\lim_{\Omega_{2}(t)\ni xarrow x_{0}}\phi(x)-\lim_{\Omega_{1}(t)\ni xarrow x_{0}}\phi(x)}$
, $x_{0}\in s(t)=\partial\Omega_{1}(t)\cap\partial\Omega_{2}(t)$ .

We assume that $\beta_{\dot{1}}$ $>0$ and $\Gamma_{:}$ are constants. We shall see momentarily how $\Gamma_{i}$ are related
to curvature. Before that, we note that in order to fully describe the position of $s(t)$ at
time $t$ , it is sufficient to specify the signed distance between the line containing the i-th
facet at the initial time and the line containing the $i$-th facet at the time instant $t$ . We
shall denote this distance by $z:(t)$ , hence

$V_{\dot{1}}$ $= \frac{dz_{\dot{1}}}{dt}$

is the facet velocity in the direction of the outer normal. Thus, the vector $\mathrm{z}=(z_{1}, \ldots, z_{N})$

fully describes evolution of the interface.
In our considerations the Wulff shape $W$ plays arole of areference polygon. We note

that if $s(t)$ is convex, then $s(t)$ and $W$ have the same number of facets. We always assume
that $s(t)$ is an admissible, i.e.
(i) the normals $\nu_{\dot{1}}$ belong to the set of normals to the Wulff shape $W$

(ii) normals $\nu_{\dot{1}}$ to the neighboring facets $S$:are normals to the neighboring facets of $W$ .
The constants $\mathrm{p}_{:}$ are defined as follows (see $[\mathrm{G},$ \S 12.5]):

$\Gamma_{\dot{1}}$ $=\{$

$-\ell_{:}$ if $s$ is locally convex near both ends of $s:$ ;
$\ell_{:}$ if $s$ is locally concave near both ends of $s:$ ;
0otherwise;

where $\ell_{:}$ is the length of the facet of the Wulff shape to which $\nu_{\dot{1}}$ is outer normal.
Interestingly, $\Gamma_{j}/L_{j}$ is the crystalline weighted curvature of Sj. The relevant definition,

which does not need any differential structure of $s$ is given in [T2] p. 423. If $z$:are as above
and $\mathrm{z}=$ $(z_{1}, \ldots, z_{N})$ , i.e. $s(\mathrm{z})$ is apolygon resulting from $s$ by moving entire facet $s_{i}$ by $z_{i}$

in the direction of the normal $\nu_{\dot{1}}$ , then we shall denote by $A(\mathrm{z})$ is the area surrounded by
$s(\mathrm{z})$ and by $E(\mathrm{z})$ the surface energy of $s(\mathrm{z})$ , i.e. $E(z)$ $= \sum_{\dot{|}=1}^{N}f(\nu_{i})L:$ , where $f(\nu)$ is the
surface energy density. Using this notation, the crystalline weighted curvature $\kappa_{:}$ of $s_{i}$ is

$\kappa_{:}=-\lim_{\Delta z.arrow 0}.\frac{E(\mathrm{z}+\mathrm{e}_{1}\Delta z_{1})-E(\mathrm{z})}{A(\mathrm{z}+\mathrm{e}_{\dot{1}}\Delta z_{\dot{1}})-A(\mathrm{z})}\cdot$

.

where $\mathrm{e}:$ , $i=1$ , $\ldots$ , $N$ , are the standard unit vectors of the coordinate axis in $\mathrm{E}\mathrm{t}^{N}$ . It is
not difficult to check that $\mathcal{K}_{j}=\Gamma_{j}/L_{j}$ .

In our presentation we shall assume that $N$ is constant in time, but some of the facets
may be of zero length
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3. Existence and uniqueness of solutions with fixed number of facets
We have to formulate (1.1)-(1.5) in aweak form. We look for aposition $\mathrm{z}$ of the interface as
well as for the distribution of temperature $u$ . We impose some minimal regularity, namely
we need

1) $\mathrm{z}\in C^{1}([0, T)\mathrm{R}^{N})$ ;
and

2) $u\in C^{\alpha}([0, T),$ $H_{0}^{1}(\Omega))$ , $(1>\alpha>0)$ , $u_{t}\in L_{loc}^{\infty}([0, T),$ $H^{-1}(\Omega))$ , such that $u(0)=u_{0}\in$

$H_{0}^{1}(\Omega)$ and $u$ satisfies the weak form of (1.1)-(1.2):

$\langle u_{t}, h\rangle=\int_{\Omega}\nabla u(x)\cdot\nabla h(x)dx+\sum_{j=1}^{N}\int_{s_{j}}V_{j}h(x)dl$ , (3.1)

for all $h\in H_{0}^{1}(\Omega)$ , here $\langle\cdot, \cdot\rangle$ is the pairing between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega)$ , and $\underline{d}zdt\lrcorner$

.
$=V_{j}$

fulfill (1.3).
Apparently, the three terms in (3.1) seem loosely related to each other. We shall show

that we can simplify their form. We start with the observation that the functionals

$H_{0}^{1}( \Omega)\ni h\vdasharrow\int_{S:(t)}hdl\in \mathrm{R}$

are continuous. Therefore, by the Riesz Representation Theorem there is just one element
$f_{i}\in H_{0}^{1}(\Omega)$ such that,

$\int_{\Omega}\nabla h(x)\cdot\nabla f_{\dot{l}}(x)dx=:(h, f_{\dot{l}})_{H_{0}^{1}(\Omega)}=\int_{s_{\mathrm{i}}(t)}hdl$ . (3.2)

It is apparent from (3.2) that in fact, $f_{i}$ satisfies the equation

$-\Delta f_{\dot{l}}=\delta_{S:}$

and hence it belongs to $H_{0}^{1}(\Omega)\cap H^{\sigma}(\Omega)$ , $\sigma<3/2$ (cf. [Ryl])
Thus, the weak form becomes

$\langle u_{t}, h\rangle=-(u, h)_{H_{0}^{1}(\Omega)}+\sum_{j=1}^{N}V_{j}(f_{j}, h)_{H_{\mathrm{O}}^{1}(\Omega)}$ , $u(0)=u_{0}$ , (3.3a)

$\frac{dz_{i}}{dt}=i^{\Gamma_{i}-(u,f)_{H_{0}^{1}(\Omega)}}\beta_{\dot{1}}L_{\dot{l}}’ z_{\dot{l}}(0)=0$ , $i=1$ , $\ldots$ , N. (3.36)

Let us also mention that we need more regular initial data than just belonging to $H_{0}^{1}(\Omega)$ .
We shall say that $u_{0}$ is admissible if

$u_{0}- \sum_{\dot{l}=1}^{N}V_{\dot{l}}(0)f_{\dot{l}}(0)\in H^{\sigma}(\Omega)$ for all $\sigma<2$
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In order to be precise we need aslightly different function space which we shall define
momentarily.
Lemma 1. Let us suppose that $\partial\Omega$ is smooth, then the operator $A$ : $D(A)$ $\subset L^{2}(\Omega)arrow$

$L^{2}(\Omega)$ given by $Au=-\Delta u$ for $u\in D(A)=H_{0}^{1}(\Omega)\cap H^{2}(\Omega)$ is sectorial and the fractional
powers

$X^{\alpha}:=(L^{2}(\Omega))^{\alpha}$

are well defined. In particular $X^{1/2}=H_{0}^{1}(\Omega)$ . Moreover, $A$ is self-adjoint and strictly
positive.

It is an abuse of notation, but we shall write $H^{2\sigma}(\Omega)$ for $X^{\sigma}$ .
Now the existence result may be formulated in afollowing way:

Theorem 1. [cf. [Ryl-Ry2] Let us suppose that $s_{0}$ is an admissible polygon, $u_{0}$ is an
admissible data. Then, there exist $T>0$ and aunique weak solution to (3.3) satisfying

$\mathrm{z}\in C^{1,\alpha}([0, T),$ $\mathrm{R}^{N})$ , $u\in C^{\gamma}([0, T),$ $H^{\sigma}(\Omega))$ ,

where $0< \alpha<\frac{1}{2}$ , and $0<\gamma$ , $1\leq\sigma$ are such that $\gamma+\sigma<3/2$ .
The proof we shall present is new. It contains ideas which will be subsequently used

to show existence in the case of broken facets.
We transform system (3.3) by introducing anew variable $U$ :

$U:=-\Delta^{-1}u$ .

Hence, the weak form becomes

$(U_{t}, h)_{H_{0}^{1}(\Omega)}=( \Delta U, h)_{H_{0}^{1}(\Omega)}+\sum_{j=1}^{N}V_{\dot{1}}(f_{\dot{1}}, h)_{H_{0}^{1}(\Omega)}$ , $\forall h\in H_{0}^{1}(\Omega)$

or

$U_{t}= \Delta U+\sum_{\dot{l}=1}^{N}$ V4 $f_{\dot{1}}$ , $U(0)=-\Delta^{-1}u_{0}$ , (3.4a)

and it is coupled to

$\frac{dz}{d}i=i\Gamma_{\dot{1}}+(\Delta U\cdot’ f. )_{H_{0}^{1}(\Omega)}\beta_{1}L_{1}$ , $z:(0)=0$ , i $=1$ , \ldots , N. (3.4b)

Let us notice that system (3.4) is slightly awkward since this is an ODE coupled to heat
equation with the highest order term in the ODE. Thus, some additional work is required.

Let us first suppose that the postulated solution exists, i.e. $\mathrm{V}=$ $(V_{1}, \ldots, V_{N})\in C^{\alpha}$

for some positive $\alpha$ . We know that the map

$\mathrm{R}^{N}\ni \mathrm{z}\mapsto\neq f_{\dot{l}}(\mathrm{z})\in H^{\sigma}(\Omega)$ , $\sigma<3/2$
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is Holder continuous with exponent a satisfying a At 0 $<3/2$ , (see [Ryl, Proposition 3.4]).
Thus, te $f_{\mathrm{i}}(\mathrm{z}(t))$ is Holder continuous. Then, by [He, Theorem 3.2.2] the constant
variation formula is valid:

$U(t)=-e^{\Delta t} \Delta^{-1}u_{0}+\int_{0}^{t}e^{\Delta(t-\tau)}\sum_{\dot{|}=1}^{N}f_{\dot{\iota}}(\tau)V.\cdot(\tau)$ dr.

and due to regularity of $f_{\dot{l}}$ ’s we may recover $u$ :

$u(t)=e^{\Delta t}u_{0}- \int_{0}^{t}\Delta e^{\Delta(t-\tau)}\sum_{\dot{|}=1}^{N}f_{i}(\tau)V_{\dot{l}}(\tau)d\tau$. (3.5)

Further manipulations require working with the Green function $G$ for the heat operator,
i.e. with afunction satisfying $(\partial_{t}-\Delta_{x})G(x, y, t)=\delta_{y}$ and the boundary condition (1.5).
It is awell-known fact that $G(x, y, t)$ is equal to the sum of the Gauss-Weierstrass kernel
(Ant) $\exp(-(x-y)^{2}/4t)$ and acorrecting smooth term $H(x, y, t)$ whose specific form is not
quite important to us.

One of the properties of $G$ is the formula (cf. [Ry2])

$e^{\Delta t}u_{0}(x)= \int_{\Omega}G(x, y, t)u_{0}(y)dy$ .

For aspecial case of $u_{0}$ more can be proven, see Lemma 3.5 in [Ry2]:

$\Delta e^{\Delta t}f_{\dot{l}}(x)=-\int_{S:}G(x, y,t)dy$ , $t>0$ . (3.6)

If we insert (3.5) into (3.3b), and we use (3.6), then we come to

$V_{i}= \frac{\Gamma_{i}}{\beta_{i}L_{i}}-\frac{1}{\beta_{i}L_{i}}\int_{s(t)}:\int_{\Omega}G(x, y, t)u_{0}(y)dydx+\frac{1}{\beta_{\dot{l}}L_{\dot{l}}}\sum_{j=1}^{N}\int_{0}^{t}M_{\dot{|}j}(\mathrm{z}(t), \mathrm{z}(\tau),$$(t-\tau))V_{j}d\tau$,

(3.7)
where

$M_{\dot{l}j}(\mathrm{z}_{1},$
$\mathrm{z}_{2}$ , $()$ $= \int_{s_{*}(\mathrm{z}_{1})}.\int_{s_{j}(\mathrm{z}_{2})}G(x, y, \zeta)$ dxdy. (3.8)

Thus, we have obtained an integral equation for V. We can denote the RHS of (3.7) by
$\Psi(\mathrm{V})$ and note that $\Psi$ is acontinuous operator on $C([0, T];\mathrm{E}\mathrm{t}^{N})$ into itself. Thus, the
problem of finding asolution to (3.3) is reduced to afixed point problem: $\mathrm{V}=\Psi(\mathrm{V})$ . In
order to proceed we need an estimate for $M_{\dot{l}j}$ . Namely, we proved in [Ry2, Lemma 3.7]
that for $\zeta>0$ we have

$|M_{ij}( \mathrm{z}_{1}, \mathrm{z}_{2}, \zeta)-M_{ij}(\mathrm{z}_{1}’, \mathrm{z}_{2}’, \zeta)|\leq\frac{C}{\zeta^{1/2}}(|\mathrm{z}_{1}-\mathrm{z}_{1}’|+|\mathrm{z}_{2}-\mathrm{z}_{2}’|)$, (3.9)
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where $C$ is independent of $\langle$ .
Now, we can apply the Banach Fixed Point Theorem to (3.7) for sufficiently small

$T>0$ to find asolution in the space of continuous functions.
Finally, we have to show that aunique solution to (3.7) is in fact Holder continuous.

We will deal only with the core of the problem, i.e. with the second and third terms of the
RHS of (3.7). We adopt the standard notation: $\Delta_{h}v(t)=v(t+h)-v(t)$ . Let us set

$N_{\dot{1}}(t):= \int_{s.(t)}.\int_{\Omega}G(x, y, t)u_{0}(y)dydx$ .

We note that

$\Delta_{h}N_{\dot{1}}(t)=\int_{\epsilon:(t+h)}\int_{\Omega}G(x, y, t+h)u_{0}(y)dydx-\int_{\epsilon.(t)}.\int_{\Omega}G(x, y, t+h)u_{0}(y)dydx$

$+ \int_{\epsilon.(t)}.\int_{\Omega}(G(x, y, t+h)-G(x, y, t))u_{0}(y)dydx$

$=I_{1}+\mathcal{J}_{2}$ .

Basing on the observation that $\int_{\Omega}G(x,y, t+h)u_{0}(y)dy$ belongs to $H_{0}^{1}(\Omega)$ we use $[\mathrm{R}\mathrm{y}\mathrm{O}$ ,
equation (2.16) $]$ to deduce that

$|J_{1}|\leq C|\mathrm{z}(t+h)-\mathrm{z}(t)|^{1/2}||e^{\Delta t}u_{0}||_{H_{0}^{1}(\Omega)}\leq Ch^{1/2}||u_{0}||_{H_{0}^{1}(\Omega)}$ .

As far as $J_{2}$ is concerned we shall show only the most difficult part related to estimating
the singular part of $G$ , i.e. the Gauss-Weierstrass kernel. Let us set

$J_{2}’= \frac{1}{4\pi t}\int_{\epsilon.(t)}.\int_{\Omega}e^{\frac{-(\mathrm{r}-y)^{2}}{\mathrm{e}\mathrm{r}t+h7}}u_{0}(y)dydx-\frac{1}{4\pi t}\int_{\epsilon.(t)}.\int_{\Omega}e^{\frac{-\mathrm{t}*-v)^{2}}{\sim t}}u_{0}(y)$ dydx

We notice that

$J_{2}’= \frac{1}{4\pi t}\int_{\epsilon.(t)}.\int_{\Omega}\frac{-h}{t+h}e^{\frac{-(x-y)^{2}}{4(t+h)}}u_{0}(y)dydx$

$- \frac{1}{4\pi t}\int_{\epsilon:(t)}\int_{\Omega}e^{\frac{-\mathrm{t}\approx-v)^{2}}{\neg 7}}(1-\exp(-(x-y)^{2}4((t+h)^{-1}-t^{-1})))$

$= \frac{1}{4\pi}(J_{21}’+J_{22}’)$

The maximum principle applied to $J_{21}’$ yields

$|J_{21}’| \leq\frac{h}{t+h}\int_{\epsilon.(t)}.||u_{0}||_{L(\Omega)}\infty\leq i||u_{0}||_{L\infty(\Omega)}\underline{hL(t)}\leq C||\mathrm{V}||_{C[0,T]}||u_{0}||_{L\infty(\Omega)}$ .

For the purpose of estimating $J_{22}’$ we make use of

$1-e^{-|x|}\leq C_{\alpha}|x|’$ , $0<\alpha<1$ ,
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whose proof we leave to the Reader (cf. also [Ry3, equation (4.16)]). This inequality
implies that

$|J_{22}’| \leq\int_{s.(t)}.\int_{\Omega}\frac{e^{-(x-y)^{2}}}{4t}u_{0}(y)(x-y)^{2\alpha}h^{\alpha}(t+h)^{-\alpha}t^{-}$ ’dydx,

where $ce\leq 1/2$ . Now, the same reasoning as applied to $J_{21}’$ gives us the following estimate:

$|J_{22}’| \leq(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\Omega)^{\alpha}h^{\alpha}(t+h)^{-\alpha}t^{-}’\int_{S:(t)}||u_{0}||_{L\infty(\Omega)}$

$\leq C(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}\Omega)^{\alpha}h^{\alpha}||u_{0}||_{L(\Omega)}\infty||\mathrm{V}||_{C[0,T]}t^{1-2\alpha}$ .

Finally,
$|N_{\dot{l}}(t+h)-N_{\dot{l}}(t)|\leq Ch^{1/2}$ .

Now, we turn our attention to estimating the third term of (3.7) and let us set

$\sum_{j=1}^{N}\int_{0}^{t}M_{j}\dot{.}(\mathrm{z}(t), \mathrm{z}(\tau)$ , $t-\tau)V_{j}(\tau)d\tau=:F_{i}(t)$ .

We shall estimate the difference $\Delta_{h}\mathrm{F}:=\sum_{\dot{l}=1}^{N}|F_{\dot{l}}(t+h)-F_{\dot{l}}(t)|$ :

$F_{i}(t+h)-F_{i}(t)= \sum_{j=1}^{N}\int_{0}^{h}M_{\dot{|}j}(\mathrm{z}(t+h), \mathrm{z}(\tau),$ $t+h-\tau)V_{j}(\tau)d\tau$

$+ \sum_{j=1}^{N}\int_{0}^{t}(M_{ij} (\mathrm{z}(t+h), \mathrm{z}(\tau+h)$ , $t-\tau)V_{j}(\tau+h)-M_{\dot{l}j}(\mathrm{z}(t), \mathrm{z}(\tau),$ $t-\tau)V_{j}(\tau))d\tau$

Hence, by (3.9)

$|F_{i}(t+h)-F_{i}(t)| \leq\int_{0}^{h}\frac{C}{\sqrt{t+h-\tau}}d\tau+\int_{0\xi}^{t}C\frac{\max_{\tau}|V_{j}(\tau+h)-V_{j}(\tau)|}{\sqrt{t+h-\tau}}\max|z(\xi)|d\tau$

$+ \sum_{j=1}^{N}\int_{0}^{t}|\mathrm{z}(\tau+h)-\mathrm{z}(\tau)|\frac{\max_{\tau}|V_{j}(\tau+h)|}{\sqrt{t+h-\tau}}d\tau$

$\leq C\sqrt{h}+CT^{3/2}\mathrm{m}\mathrm{a}\mathrm{x}j|V_{j}(\tau)|\max_{\tau}|V_{j}(\tau+h)-V_{j}(\tau)|$

$+CT^{3/2} \max_{\tau}\mathrm{m}\mathrm{a}\mathrm{x}j|V_{j}(\tau)|^{2}h$.

We notice the presence on the RHS of aquantity which we are estimating, i.e. $\max_{r}|\dot{V}_{j}(\tau+$

$h)-V_{j}(\tau)|$ . We use eq. (3.7) again and we arrive at (after noting that $\mathrm{z}\vdasharrow L$:is Lipschitz
continuous):

$| \Delta_{h}\mathrm{F}|\leq C\sqrt{h}+CT^{3/2}\max_{\tau}|\Delta_{h}\mathrm{F}|+C\max_{\dot{1}}$ $||V_{\dot{\iota}}||_{L^{\infty}([0,T])}^{2}T^{3/2}h$
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and for $CT^{3/2}\leq 1/2$

$|| \Delta_{h}\mathrm{F}||_{L\infty([0,T])}\leq C\sqrt{h}+C(\max_{\dot{1}}$ $||V_{\dot{\iota}}||_{\iota\infty([0,T])}^{2}+ \frac{1}{2}||\Delta_{h}\mathrm{F}||_{L\infty([0,T])}$

that is we obtain
$\max_{\tau}|F(\tau+\hslash)-F(\tau)|\leq C\sqrt{h}$

as desired.
Once we have established Holder continuity of $V_{\dot{1}}$ ’s we can recover $u$ from (3.5).

4. Properties of solutions when facets vanish
We wish to establish time regularity of weak solutions to (3.3) near the instant of collapsing
of afacet. Our experience with parabolic problems suggests that space regularity will play
an important role. We recall that $f_{\dot{1}}$ $\in H^{\sigma}(\Omega)$ , $\sigma<3/2$ and it is not true that $s=3/2$ .
We stress that $V_{\dot{1}}$ $\in C^{\alpha}$ , and $u\in C^{\alpha}([0,T),$ $H^{\sigma}(\Omega))$ , where $\alpha<\frac{1}{2}$ and $\alpha+\sigma<3/2$ .

We shall denote $Z$ anonempty subset of $\{$ 1, $\ldots$ , $N\}$ , such that
(a) if $i\in Z$ , then $\mathrm{p}_{:=}0$ ;
(b) its complement $Z^{c}=\{1, \ldots, N\}\backslash Z$ is non-void.

Here is the main result of Section 4.
Theorem 2. Let us suppose that $Z$ is as above, $(\mathrm{z}, u)$ is aweak solution to (3.3) such
that $u_{0}$ is admissible and

$\lim_{tarrow T}L:(t)=0$ , $i\in Z$ ,

$\lim_{tarrow T}L:(t)\geq m>0$ , $i\in Z^{c}$ .
Then,
(i) $\lim_{tarrow T}\mathrm{V}(t)$ exists;
(ii) $\lim_{tarrow T}$ $u(t)$ exists in $H^{\sigma}(\Omega)$ for each $\sigma<3/2$ , in particular

$\sup_{t\in[0,T)}||u(t)||_{L\infty(\Omega)}\leq C<\infty$
.

Moreover, ifV $\in C^{\alpha}([0,T], \mathrm{R}^{N})$ for all $\alpha<1/4$ , then for all t $\in[0,$T] we have

$u(t)- \sum_{\dot{l}=1}^{N}f_{\dot{1}}(\mathrm{z}(t))V_{\dot{1}}(t)\in H^{\sigma}(\Omega)$, Vo $<2$ . (3.3)

Remark. We stress that we assume H\"older continuity uP to the instant of vanishing of
some facets.

Proof. We shall proceed in anumber of steps. We will present the main ideas while
referring the Reader to [Ry3] for details.

Step 1. We first establish uniform in $t$ bounds on $||u||_{L\infty(\Omega)}$ and $|\mathrm{V}|$ . We use the
integral representation of $u$ :

$u(t)=e^{\Delta t}u_{0}- \int_{0}^{t}\Delta e^{\Delta(t-\tau)}\sum_{\dot{|}=1}^{N}f_{\dot{l}}(\tau)V_{\dot{1}}(\tau)$dr. (4.2
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It is relatively convenient to estimate the $H’(\mathrm{O})$ norm of the RHS. For this purpose we
recall [Ryl, Proposition 3.3]

$||f_{\dot{1}}(\mathrm{z})||_{H^{\sigma}(\Omega)}\leq CL_{\dot{l}}^{\alpha}$ , $\alpha+\sigma<3/2$ (4.3)

and [He, Theorem 1.3.4]
$||(-\Delta)^{\sigma}e^{\Delta t}||_{L^{2}(\Omega)}\leq Ct^{-\sigma}$ . (4.4)

We also split the set of summation indices in (4.2), subsequently we use (4.3), (4.4) and
Lemma 1to obtain

$||u(t)||_{\sigma}\leq Ce$ $- \lambda t||u_{0}||_{\sigma}+C\int_{0}^{t}(t-\tau)^{-1+\delta}e^{-\lambda(t-\tau)}\sum_{\dot{\iota}\in \mathcal{Z}}L_{\dot{l}}^{\alpha-1}(\tau)|\int_{\epsilon}.\cdot udl|d\tau$

$+C \int_{0}^{t}\frac{e^{-\lambda(t-\tau)}}{(t-\tau)^{1-\delta}}\sum_{\dot{\iota}\in \mathcal{Z}^{c}}L_{\dot{l}}^{\alpha-1}(\tau)(|\Gamma_{j}|+|\int_{s}:udl|)d\tau$ ,

where $\sigma/2+\delta<3/4$ , and $\delta>0$ is arbitrary. Due to Sobolev embedding,

$||u||_{L\infty(\Omega)}\leq C||u||_{\sigma}$ ,

for $\sigma>1$ we obtain an estimate for $||u||_{L}\infty(\Omega)(t)$ for which ageneralized Gronwall inequality
(see [He, Lemma 7.1.1]) is applicable yielding abound for $\max_{t\in[0,T]}||u||_{L\infty(\Omega)}(t)$ . A
uniform bound on $|\mathrm{V}|$ may now be easily obtained from (3.3b).
Step 2. We show that the limit

$\lim_{tarrow T}\mathrm{V}(t)$

exists. For this purpose we use again the constant variation formula (3.7).

$V_{i}= \frac{\Gamma_{i}}{\beta_{i}L_{i}}-\frac{1}{\beta_{i}L_{i}}\int_{s_{*}(t)}.\int_{\Omega}G(x, y, t)u_{0}(y)dydx-\frac{1}{\beta_{i}L_{i}}\sum_{j=1}^{N}\int_{0}^{t}M_{\dot{l}j}(\mathrm{z}(t), \mathrm{z}(\tau),$ $t-\tau)V_{j}d\tau$,

(4.5)
The difficulty is the presence of the factor $1/L_{:}(t)$ which goes to infinity for $i\in Z$ . But the
second and third terms of (4.5) are averages and this makes them tractable. Namely, we
can represent $s_{i}$ as follows $s_{i}=\mu_{i}[0, L_{i}]+v:$ , where $v:$ , $\mu_{i}\in \mathrm{R}^{2}$ and $\mu$:has aunit length,
and $v_{i}$ is aposition of one vertex of Si. Then, the second term takes the form

$I= \frac{1}{\beta_{i}}\int_{0}^{1}\int_{\Omega}G(x, \mu:\cdot\xi L:(t)+v_{i}(t)$ , $t)u_{0}(x)dxd\xi$ .

It is relatively easy to see that $v:(t)$ and $L_{\dot{\iota}}(t)$ have alimit as $tarrow T$ (see [Ry3] for details).
Therefore I has alimit as $tarrow T$ because of Lebesgue theorem. The third term can be
handled in asimilar way (see [Ry3]).

Existence of the limit $\lim_{tarrow T}u(t)$ in $H^{\sigma}(\Omega)$ is easier and left to the Reader (see also
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Step 3. In order to estimate

$||u(t)- \sum_{j=1}^{N}f_{j}(\mathrm{z}(t))V_{j}(t)||_{H^{\sigma}(\Omega)}$ , $\sigma<2$

we use (3.7). We set up the following identity for an easy application of the essential fact
that $V_{\dot{l}}\in C^{\alpha}([0, T])$ :

$u(T)- \sum_{\dot{|}=1}^{N}V_{\dot{1}}(T)f_{\dot{l}}(\mathrm{z}(T))$

$=e^{\Delta T}(u_{0}- \sum_{\dot{|}=1}^{N}V_{\dot{1}}(T)f_{\dot{\iota}}(\mathrm{z}(T)))-\int_{0}^{T}\Delta e^{\Delta(T-\tau)}\sum_{\dot{|}=1}^{N}(V_{\dot{1}}(\tau)-V_{\dot{l}}(T))f_{i}(\mathrm{z}(\tau))d\tau$

$- \int_{0}^{T}\Delta e^{\Delta(T-\tau)}\sum V_{\dot{1}}(T)(f_{\dot{1}}(\mathrm{z}(\tau))N-f_{\dot{1}}(\mathrm{z}(T)))d\tau$

$:=1$

Now, one can check that all terms belong to $H^{\sigma}(\Omega)$ , for all $\sigma<2$ .
Remark. We have to establish the H\"older continuity of V. This can be achieved with
the method of Theorem 1used for estimating $\Delta_{h}\mathrm{F}$ but it has to be refined. This will be
presented in the next section. Here we note:
Proposition 1. Ifat $t=T$ facets with indices $i$ in $Z$ disappear, then

V $\in C^{\alpha}([0,T],\mathrm{R}^{N})$ , Vcr $<1/4$ .

5. Evolution of broken facets
The results of previous Section suggest what kind of solution we should look for if we allow
facet breaking.
Theorem 3. Suppose that $u0$ is admissible, $Z$ defined $ae$ above $\mathrm{j}_{S}$ non-empty,, $s\circ$ is an
admissible polygon, with anumber of point (different $ko\mathrm{m}$ vertices) marked and dubbed
zerO-length zerO-curvature facets, their indices form the set Z. Then, there is $T>0$ , such
that $\mathrm{z}$

$\in C^{1,\alpha}([0, T);\mathrm{R}^{N})$ , $u\in C^{0,\alpha}([0, T);H^{\sigma}(\Omega))$ , for all $\alpha\in(0,1/4)$ , $\sigma+\alpha<3/2$ such
that $(\mathrm{z}, u)$ is aweak solution to (3.3).

Let us first remark that for asingular problem we can indeed guarantee lower temporal
smoothness of $\mathrm{V}$ than in case of regular data. However, it is not clear if this is adeficiency
of the method of the proof or agenuine phenomenon. On the other hand some temporal
H\"older regularity of $\mathrm{V}$ is necessary for the whole method to work.

Idea of the proof. We shall proceed as in the proof of Theorem 1. Let us suppose
that $u$ is apostulated solution. Then, the temporal H\"older continuity implies that (3.7)
holds. We shall treat (3.7) as an integral equation for velocities V.
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Let us introduce some convenient notation:

$(D(\mathrm{V})):=\{$
$\hat{L.\cdot\beta}\Gamma.\cdot$ , if $i\in Z^{\mathrm{c}}$,
0, if $i\in Z$ ;

$( \mathcal{L}(\mathrm{V})):(t)=-\frac{1}{\beta_{\dot{1}}L_{i}}\int_{s.(t)}.\int_{\Omega}G(x, y, t)u_{0}(y)$ dydx;

$(N( \mathrm{V})):(t)=-\sum_{j=1}^{N}\int_{0}^{t}\int_{s_{i}(t)}\int_{s_{j}(\tau)}G(x, y, t-\tau)\frac{V_{j}(\tau)}{\beta_{\dot{l}}L_{\dot{l}}}dydxd\tau$,

where $i=1$ , $\ldots$ , $N$ .
These definitions are correct even if $L_{:}(t)=0$ . One can see that

$D$ , $N$, $\mathcal{L}:C([0, T];\mathrm{R}^{N})arrow C([0, T];\mathrm{R}^{N})$

are continuous and their sum $V$ $+N$ $+\mathcal{L}$ is compact. Moreover, one can also check that
Schauder fixed point theorem is applicable. Thus, it yields existence of at least one solution
to

$\mathrm{V}=D(\mathrm{V})+N(\mathrm{V})+\mathcal{L}(\mathrm{V})$ . (5.1)

Subsequently, one may show that all fixed points of $D+N+\mathcal{L}$ are H\"older continuous. Thus,
solutions to (5.1) (i.e. (3.7)) belong to the class of functions for which this representation
was derived.

Let us comment on compacteness of $N$. We showed (see [Ry2]) that for $i,j\in Z$ ,
$M_{ij}(\mathrm{z}_{1}, \mathrm{z}_{2}, \zeta)$ is locally Lipschitz continuous in $\mathrm{z}_{1}$ , $\mathrm{z}_{2}$ with Lipschitz constant bounded by
$C\zeta^{-1/2}(\mathrm{c}.\mathrm{f}(3.7))$ . But this is impossible if $i$ or $j\in Z$ because of vanishing denominator
in $\frac{1}{L_{i}(t)}$ . We set amore restricted goal. We set

$\overline{M}_{ij}(\mathrm{z}_{1}, \mathrm{z}_{2}, \zeta)=\frac{1}{\beta_{i}L_{\dot{1}}(\mathrm{z}_{1})}\int_{S:(\mathrm{z}_{1})}\int_{s_{\mathrm{j}}(\mathrm{z}_{2})}G(x, y, \zeta)$ dxdy,

Our aim is to show that

$| \overline{M}_{\dot{|}j}(\mathrm{z}_{1}, \mathrm{z}_{2}, \zeta)|\leq\frac{C}{\sqrt{\zeta}}(|\mathrm{z}_{1}|+|\mathrm{z}_{2}|)$. (5.2)

This is sufficient to establish the compactness of $N|$ due to the general theory, (see $[\mathrm{H}\mathrm{P}$,
Theorem 7.6.2]).

It is rather clear.that we have to deal mainly with the singular part of $G(x, y, t)$ i.e.
we study

$\overline{M}_{ij}’(\mathrm{z}_{1}, \mathrm{z}_{2}, \zeta)=\frac{1}{L_{\dot{l}}(\mathrm{z}_{1})}\int_{S:(\mathrm{z}_{1})}\int_{s_{\mathrm{j}}(\mathrm{z}_{2})}K_{\zeta}(x-y)$ dxdy,

where $K_{\zeta}(z)=(4\pi\zeta)^{-1}\exp(-z^{2}/4\zeta)$ is the fundamental solution of the heat equation.
Once we notice that due to the fixed inner angles of $s(t)$ we can estimate uniformly ffom
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below the expression $(x-y)^{2}$ for $x$ , $y$ belonging to facets of $s(t)$ , then the remaining
calculations are fairly standard, (see [Ry3] for details).

We establish compactness of $\mathcal{L}(\mathrm{V})$ by establishing its H\"older continuity with exponent
1/2 and constant independent of $\mathrm{V}$ for $\mathrm{V}$ bounded in $C[0, T]$ . Once we have established
compactness of the operator on the RHS of (5.1), then in aroutine manner using Schauder
fixed point we can establish existence of asolution to (5.1), (see [Ry3]).

After we have shown existence of $\mathrm{V}$ afixed point to (5.1), $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}\mathrm{n}$ the key point is to
prove its H\"older continuity. In fact is remains to show that for $N(\mathrm{V})$ is H\"older continuous
with exponent less than 1/4. The main task is to establish this for $\overline{M}_{\dot{|}j}’$ defined above. We
set up the difference for

$\int_{0}^{t}\sum_{j=1}^{N}\overline{M}_{\dot{l}j}’(\mathrm{z}(t), \mathrm{z}(\tau)$ , $t-\tau)V_{j}(\tau)d\tau=:J(t)$ .

After obvious transformations we obtain:

$J(t+h)-J(t)$

$= \int_{t}^{t+h}\frac{1}{L_{\dot{l}}(t+h)}\int_{s:(t+h)}\sum_{j=1}^{N}\int_{s_{j}(\tau)}\frac{1}{t+h-\tau}\exp(-\frac{(x-y)^{2}}{t+h-\tau})V_{j}(\tau)dxdyd\tau$

$+ \int_{0}^{t}(\frac{1}{L_{\dot{1}}(t+h)}\int_{s:(t+h)}-\frac{1}{L_{\dot{1}}(t)}\int_{s.(t)}.)\sum_{j=1}^{N}\int_{\epsilon_{\mathrm{j}}(\tau)}\frac{V_{j}(\tau)}{t+h-\tau}\exp(-\frac{(x-y)^{2}}{t+h-\tau})dxdyd\tau$

$+ \int_{0}^{t}\sum_{j=1}^{N}\frac{1}{L_{\dot{1}}(t)}\int_{\mathit{8}:(t)}\frac{\exp(_{t+h\tau}^{x-\underline{u}}-\simeq\llcorner^{2})-\exp(-\frac{(x-y)^{2}}{t-\tau})}{t+h-\tau}V_{j}(\tau)dxdyd\tau$

$+ \int_{0}^{t}\sum_{j=1}^{N}\frac{1}{L_{\dot{1}}(t)}\int_{s:(t)}\exp(-\frac{(x-y)^{2}}{t-\tau})(\frac{1}{t+h-\tau}-\frac{1}{t-\tau})V_{j}(\tau)dxdyd\tau$

The estimates of these four terms are tiresome, we refer the Reader for details to [Ry3].
Our task is finished with showing that solutions to (5.1) yield weak solutions of (3.3),

i.e. we have to define $u$ using (4.2).
We note that Schauder fixed point theorem does not guarantee uniqueness of asolu-

than
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