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0 Introduction

In this paper we consider a shape memory material occupying the one-dimensional interval
(0,1). We put Q(T) := (0,T) x (0,1), 0 < T < oo. It is a crucial step to describe the’
relationship between the temperature field 6, the stress ¢ and the shear strain €, in the
analysis of the dynamics of shape memory alloys as a system of differential equations. By
some experiments we have already obtained the following load-deformation curves (Fig. 0.1).
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Figure 0.1. Load-deformation curves.

There are a lot of papers dealing with one-dimensional shape memory alloy problems (see
[3]). In the most of papers Landau-Devonshire form was employed, which is one of acceptable -
approximations of the load deformation curves. The idea is as follows. Let ¥ := ¥(0,¢) be
the Helmholtz free energy function given by

U(0,e) = Uo(B) + k1(0 — Go)e® — Ko™ + K3eb,

where _
\110(0) = —Cvo log(0/0) + Cva + C(),
K1, K2, K3, By, Co and Cy are positive constants. Moreover, we assume that
_ov
T 0’

g
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In such an approximation the relationship corresponding to the load-deformation curves is
able to be mathematically described. Now, we recall the following Falk’s model which is
based on the Landau-Devonshire form and thermodynamics theory (cf. [6]).

Ugt + Vlzzzz — (f1(Uz)0 + fo(us))e = f  in Q(T),

0 — kbzz — f1(us)0uee = g in Q(T),

u(t,0) =u(t,1) =0 for0<t<T,

Uzz(t,0) = uz(t,1) =0 for a.e. t € [0,T],

0:(t,0) =0,(t,1) =0 fora.e. t€[0,T],

u(0, z) = up(z), u:(0, ) = vo(z) and 0(0,z) = fp(z) for z € (0,1),

where f; and f, are continuous functions on R, f and g are given functions on Q(T), and u,,
vg and 6, are initial functions. In this system we denote by u the displacement and assume
that € = u,. This problem was already discussed in [11, 3, 4, 5, 1]. Also, the above system
with viscosity terms was studied by Hoffmann-Zochowski [7] and Sprekels-Zheng-Zhu [12].

Recently, some types of hysteresis operators were characterized by the differential equa-
tions including the subdifferential operators of the indicator functions of closed intervals in
R (cf. [13]). In this paper we consider an ordinary differential equation of the form:

o+ 01(0,¢;0) 3 cey, (0.1)

where ¢ is a non-negative constant and I is the indicator function of the closed interval
[f2(0, ), f4(0,€)] for given continuous functions f, and f; on R x R, that is,

0 if fa(0,€) o< fd(oa 8),
+00 otherwise.

I(6,¢;0) = {

In case ¢ = 0, the hysteresis operator (see Fig. 0.2) with unti-clockwise trend is charac-
terized by (0.1). Kenmochi-Koyama-Meyer discussed parabolic PDEs and quasivariational
inequalities with hysteresis operators in the case of ¢ = 0 (cf. [8]). Their system contains an
approximation equation for (0.1) with ¢ = 0.
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We can describe hysteresis operators (see Fig. 0.3) with clockwise trend as the differential
equation (0.1) in the case that ¢ > 0 and

afa 6fd
= ¢’

In this setting o is determined by the hysteresis operator illustrated by Fig. 0.3 if and
only if o is a solution of (0.1). This idea was already found by Krejci (cf. [9]) in case I is
independent of €.

In this paper by using this characterization of hysteresis operators we discuss the following
system: Our problem is to find functions u, § and o on Q(T') satisfying

0< <con R XR.

Ugt + Vlagas — Mllzet — 0z =0 in Q(T), (0.2)
0; — Kbz = ouy in Q(7), (0.3)
0y — VO35 + 01(0,€;0) D cuye  in Q(T), (0.4)
u(t,0) = u(t,1) = 0 and uz,(t,0) = Uge(t,1) =0 for 0 <t < T, (0.5)
6.(t,0) =0,(t,1)=0 for0<t<T, (0.6)
0:(t,0) =0.(t,1) =0 for0<t<T, (0.7)
u(0) = ug, u(0) = vy, 8(0) = bp,0(0) =09 on [0,1], (0.8)

where € = wug, 7, 4, K, v and c are positive constants and ug, v, 6o and oy are initial
functions. Throughout this paper we denote by (P) := (P)(uo, vo, 6o, 00) the above system
(0.2) ~ (0.8).

The momentum balance law with viscosity yields (0.2) (cf. [7]). From the physical point
of view it is natural to add —v(uz)? to the left hand of the balance equation (0.3) of the
internal energy, when we consider the viscosity for the stress. Our system (P) is regarded
as a mathematical model for the shape memory alloys by using the hysteresis operators
instead of the Landau-Devonshire form. Also, we approximate (0.1) by (0.4) so as to control
mathematically o, in (0.2).

The plan of this paper is as follows. In section 1 we list the assumptions for data and
give the definition of a solution of (P) and an existence and uniqueness theorem for problem
(P). The brief proof of the theorem will be given in section 2.

We refer to the book by Brezis ([2]) for the definitions and basic properties of subdiffer-
ential operators.

1 Main result

We begin with the precise assumptions for data. Throughout this paper we assume that
(A1) fo, f2 € C] (R x R)NW2*(R x R) and f, < fs on R x R. Here, we put

L = max{| fa|w2eo®xr), | falw2omxr) }-
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(A2) ug € H*(0,1) with up(0) = up(1) = upzz(0) = uozz(1) =0, vo € HE(0,1), 8y € H*(0,1)
and oy = 0. Moreover, f,(6o,€0) < 0o < fa(6o,€0) a.e. on (0,1).

In order to apply the abstract theory of evolution equations, we recall the definition of
the indicator functions. Now, for any given § € L%(0,1) and € € L?(0,1) we denote by
I(0,¢; ) the function on L?(0,1) defined by

. _ 0 if o € K(aa 6)’
I(0,¢;0) = { +00 otherwise,

where K(8,¢) = {0 € L*(0,1) : f,(6,¢) < 0 < fa(6,¢) a.e. on (0,1)}. Clearly, I(8,¢;-) is
proper, L.s.c. and convex on L2(0,1), D(I(0,¢;-)) = K(0,¢), and its subdifferential 8I(9,¢; )
is a multivalued operator in L?(0, 1) which satisfies the following property: £ € 01(0,¢;0) if
and only if o € L?(0,1) with f,(8,¢) < o < f4(6,¢) a.e. on (0,1) and £ € L?(0,1) such that

1
/ €(2—0o)dz <0 for any z € K(0,¢); (1.1)
0

this variational inequality is equivalent to
£(z) <0 fora.e. z€(0,1) with o(z) = fa(6,¢),
&(z) =0 forae z€ '(0, 1) with f,(8,¢) < o(z) < fa(6,¢),
&(z) >0 fora.e. z€(0,1) with o(z) = f.(0,¢).
By using the above notation we define a solution of (P) as follows:
Definition 1.1. We call that a triplet {u,0, 0} of functions u, 6 and ¢ on Q(T) is a
solution of (P) on [0, T, if the following conditions hold.
(S1) u € L>(0, T; H*(0,1)) n W*?(0, T; H3(0,1)) N Wh>(0, T; H?(0, 1)),
8 € W'2(0,T; L2(0,1)) N L®(0, T; H(0, 1)), o € W'2(0,T; L2(0,1)) N L®(0, T; H'(0, 1)).

(S2) (0.2) and (0.3) hold for a.e. (t,z) € Q(T), there exists £ € L%Q(T)) such that
£(t) € 8I(0(t),e(t); o(t)) for a.e. t € [0,T] and

01(t) — vo.(t) + £(t) = cun(t) in L*(0,1) and for a.e. t € [0, T), (1.2)
and (0.5) ~ (0.8) hold.

Remark 1.1. It is easy to see that (1.2) with (0.7) holds if and only if o(t) € K(0(t),<(t))
for a.e. t € [0,7] and

/0 o) (o(t) — 2)dz + v /0 o) (0x(t) — 22)dz < ¢ /0 e(t)(o(t) — 2)dz

for any z € K(0(t),e(t)) and a.e. t € [0,7).

1

Our main result is stated as follows.
Theorem 1.1.  Assume that (A1) and (A2) hold. Then, there exists one and only one
solution {u,0,0} of (P)(uo,vo,8,00) on [0,T].
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In our existence proof we shall use the following approximation of the indicator function.
For A > 0 let I(6,¢;0) be the Yosida approximation of I(6,¢;0). We have already known
the certain expression of I, and 3I, as mentioned below.

Lemma 1.1.  (c¢f. [8; Section 4]) For each A > 0 it holds that

1
I)\(av &5 U) = ﬁ{”a - fd(oa E-)]4-’%2(0,1) + I[fa(oa 8) - 0']+I%2(0,1)} fOT' 076’ (S L2(0, 1)’

O1\(0,¢;0) = %{[a — F4(B, O] = [fu(8,€) — o]*} for 6,¢,0 € L2(0,1).

Later, we consider the following problem (P), for each A > 0:

Utt + Vlzzzz — HUzet — 0z =0 in Q(T), (1.3)
0; — K0z = ouyy  in Q(T), (1.4)
Ot — VOgg + OI\(0,¢;0) = cuyy  in Q(T), (1.5)
u(t,0) = u(t,1) = 0 and uzz(¢,0) = upe(t,1) =0 for0<t < T, (1.6)
0:(t,0) = 0,(t,1) =0 for0<t<T, (1.7
0:(t,0) = 0,(t,1) =0 for0<t<T, (1.8)
u(0) = ug, u(0) = vo,0(0) = bp,0(0) =09 on [0,1]. (1.9)

2 Proof of Theorem 1.1.

The purpose of this section is to give a brief proof of Theorem 1.1. The proof is rather long
so that the complete proof will be given in authors’ forthcoming paper. Throughout this
section we assume (Al) and (A2), use the same notation as in the previous section. '

First, we prove the uniqueness of solutions of (P). In order to show the uniqueness
we provide several lemmas. We denote by {ui,6:,01} and {us,8;,02} two solutions of
(P)(uo, vo, 89,00) on [0,T]. Here, for simplicity we put

M (s) = max{|fa(61,€1) — fa(02, €2)|Lo(@(s)) | fa(B1,€1) — fa(B2,€2)|Lo(qsyy} for 0 < s < T.
Lemma 2.1.  For each s € (0,T] the following inequality holds:

%Edz(/o llo1(t) — o2(t) — M(s)]*|*dx +/0 |lo2(t) — o1(t) — M(s)]*|%dz)

- / lo2(2) — o2(t) — M(s)]3 Pdz + / l02(2) — o1(t) — M(s)]}?dz)

+§-%(/0 lu1e (t) — ua(t)*dz + ’Y/O U122 () — Uzex(t)|*de)

A pl
C
+2 / 100 (2) — uzee (8) 2
0

< Q%M(s)2 for a.e. t €0, s], ~ | (2-1‘),
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whereé=cifc>0,=1ifc=0.
Proof. We can prove the lemma in a similar way to that of [8; Lemma 3.1]. So we omit its
proof. a

Next, we give some estimates for 6; — 6,. Before the statement, we note that for ¢ =
1,2, ug; € L®(Q(T)) and o; € L®(Q(T)) because u; € W'°(0,T; H?(0,1)) and o; €
L>(0,T; H*(0,1)).

Lemma 2.2. There ezists a positive constant C; depending only on u, ¢, K, [Uitz| L (Q(1))
and |oa| L (q(r)) Such that

2dt|61( ) - 02(t)|%2(o n+ K1612(2) — 92:@)1%2(0 1)

< Cu(161(t) — 02(8)|Z2(0,1) + o (t) — 02(t) 20,1y + |u1tz( ) — taiz(t) 220,y (2:2)

and
2 1612(8) = Bae(®)aoz) + S10has(t) — s (1)
2dt 1z 2z L%(0,1) ) lzz 2z L2(0,1)
< Ci(low(t) — 02()32(0,1) + |Urez(t) — vaez(t)[32(0,1))  for a.e. t€[0,T]. (2.3)
Proof. The proof of (2.2) and (2.3) are elementary. O

For simplicity, we introduce the following notations: u := u;—uy, 6 := 6,—0;, 0 := 01—09,

Bot) = of / lo(t) - M(3)]*[Pdz + / [=o(t) — M(s)]* ?dz)

+5( / |ue(2) Pdz + / |tzz( t)lzdx / 0(t)|?dz,
and

Bi(t) = / lo(t) — M(s)}} Pz + / [=o(t) — M(s)]} [*da)

+E4E/ |u,,(t)|2dx+n/ |02 (t)|?dz.
0 0

Lemma 2.3. There exists a positive constant Cy such that

8
sup Ey(t) +/ Ey(t)dt < CosM(s)? for0<s<T.
0<t<s 0

Proof. From Lemma 2.1 and (2.2) it follows that

dEo(t) +E) < M(s)2+Cl(|0( oo + 0@ Eay) for ae. £ € [0,5].

We note that
- lo| < [0 — M(s)]* + [0 — M(s)]" + M(s) on Q(s).



173

Then, we see that
1
/ lo(t) 2z < 18Eo(t) + 9M(s)* for t € [0,s]. (2.4)
0

Therefore, we obtain the following inequality:

%Eo(t) + Ei(t) < (éc; +9C1)M(s)? + 20C, Ey(t) for a.e. t € [0, s].

By applying the Gronwall’s inequality to the above inequality we have
Eo(t) + /Ot Ei(r)dr < emclt(a% +9C,)M(s)’s forte0,s].
Put C, = 2e2°C‘T(§% +9C}). Then, we have proved this lemma. O
On account of (Al) it is clear that
M(s) = max{|fa(01,€1) — fa(B2,€2) (s, [ fa(B1,€1) — fa(b2, €2)| (e}

< Li(10]r(qes) + lelz=(@esn) (2.5)

where L; = 2L. In order to get an estimate for M(s) we give the following two lemmas.
Lemma 2.4. There ezists a positive constant C3 depending only on T such that

I8|%00(Q(S)) < 03 sup Eo(t) fOT’ 0<s< T.
0<t<s

Next, we give an estimate for |0]Le(q(s))-
Lemma 2.5. There exists a positive constant Cy such that

8
1017 (@(s)) < 04/ (lo(®)32¢01) + |ute(®)|Z20,1))dt + Ca Sup Eo(t) for0<s<T.
0 Stss

Proof. By using the Gagliardo-Nirenberg inequality we infer that Lemmas 2.4 and 2.5 are
true. a

Using the above lemmas we give a proof of the uniqueness of (P).
Proof of uniqueness. First, we show that there is a positive constant Cj satisfying

lo(t)|22(0,1) < Cs{ sup Eo(7) + / (lo(m) 2201y + Er(r))dr} for 0 <t <s<T. (26)
0<7<s 0

In fact, from (2.4), (2.5) and Lemmas 2.4 and 2.5 it follows that

lo(t) |%2(0,1’)d1"

< 18Ey(t) +9M(s)?
< 18{Eo(t) + L3(|0]7=(qesy) + lelZo0 sy}
_ s 4
< 18{1 + L%(Cg + C4) sup E()(t) + 18L%C4/ (IU(T)I%/‘-’(O,I) + aEl(T))d‘T
0<t<s 0
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for 0 < ¢ < s < T. Hence, by putting Cs = 18{1 + L}(Cs + Cy) + 31} we get (2.6).
Next, by Lemmas 2.3 ~ 2.5 and (2.5) we see that

8
sup Eo(t) + / E,(1)dT
0<t<s 0

< 202[/%038 sup Eo(t)

0<t<s

+2C2LfC4s{/ (|0(t)|iz(0,1) + [z (t)|Z2(0,1y) dt +os<l:5 Eo(t)} for0<s<T.
0 <SU<s

Here, we take a number T; € (0, 7] such that

1
2C,L2C3T, + 2C, L3C, T < 5

Then, we have

= sup Eo(t) / E\(7)dr

0<t<s

< 2C,I2Cys /0 (Io(8) ooy + luea(8) ooyt

< C’ss(/ IO’(T)liz(o,l)dT +/ Ei(r)dr) for0<s<T,
0 0

where Cs is a suitable positive constant. Now, choose a number T,
Then, we get the following inequality:

8 8
sup Ey(t) +/ E\(1)dr < sC—,/ IO’(T)l%z(o,l)dT for 0 <s< Ty,
0<t<s 0 0

where C7 = 2Cs. (2.6) and (2.7) imply that

A(s) = sup Eo(t)+ / Ey(r)dr

0<t<s
< SCC{AG) + [ lot)xandr)
< CsCis*A(s) + C:C2s* {A(s) +/0-' |lo(7)|320,1y87}
for 0 < s < T5. Recursively, we obtain

sup Eo(t) + /08 E;()dr

0<t<s

C7(Css? + C25% + - - - + CPs™1) A(s) + C,CPs™ / o (7)|Z20,1 07
0

IA

€ (O,TI] with Cst < %

(2.7)
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for 0 < s<T,and n=1,2,---. By choosing a number T3 € (0, T3] satisfying

1

sC7(Css + Cgs2 +--+CPs" < 2 for 0 < s < T3 and each n,

we infer that

S
A(s) < 2C7Cg's”+1/ lo(7)220,1yd7  for 0 < s < T3 and n. (2.8)
0
Finally, take a number Ty € (0, T3] with C5Ty < % Then, letting n — oo in (2.8) yields that

sup Ey(t) +/ Ei(r)dr=0 for0<s<Ty.
0

0<t<s
Thus we have proved the uniqueness of solutions of (P). )

Next, we prove the existence of a solution of (P). To do so we discuss the approximate

problem (P), for each A > 0, which was defined in section 1. The following lemma guaran-
tees the existence of a solution of (P),.
Lemma 2.6.  For each A > 0 there exist T\ > 0 and a unique solution {uy, 0x,0.} of (P)x
on [0,T)], that is, uy € L*(0,Tx; H*(0,1)) N W12(0,Ty; H3(0,1)) N W1>°(0, Ty; H%(0,1)),
6y € W12(0,Ty; L?(0,1))NL>®(0,Ty; H'(0,1)), ox € W'2(0,Ty; L%(0,1))NL®(0, Ty; H'(0,1))
satisfy (1.3) ~ (1.9) with T = Ty in the usual sense.

By using the Banach’s fixed point theorem we can easily prove this lemma, because 01,
is Lipschitz continuous. So, we omit its proof. Form now on, we give some uniform estimates
for approximate solutions with respect to A € (0,1] and ¢t € (0,7], 0 < T < oo.

Lemma 2.7. Let T >0 and Ty, = min{T,T»}. Then, there ezists a positive constant
M, depending only on T, L, v, p, ¢, |uolm2(0,1), [Volr2(0,1) and |oo|r2(0,1) such that

|u,\t(t)|%2(0,1) + qu\wz(t)li%o,l) < M1 fO?" te (O,T)‘] and X € (0, 1],

T
/ |U,\TI(T)|%2(O,1)dT <M )€ (0, 1],
0
|oA(®)|F201) < My for t € (0, T»] and X € (0,1].
Proof. Similarly to that to [8; Lemma 4.1] we can obtain the above estimates. a

The following lemma shows the uniform estimate for L*-norm of o, by using the classical
result (cf. [10]).
Lemma 2.8. (cf. [10; Theorem 7.1, Chapter 3]) There exists a positive constant My
independent of A € (0,1] such that ' :

loa(t,z)| < My for (t,z) € Q(T)) and X € (0, 1].
Lemma 2.8 is not a direct application of [10; Theorem 7.1, Chapter 3|. But, in a similar

way to that of [10; Theorem 7.1, Chapter 3] we can obtain the L>-estimate for o,. The
following lemma is easily proved thanks to Lemmas 2.7 and 2.8.
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Lemma 2.9. There exists a positive constant Ms, depending only on M,, x and
|U0lH1(0’1), such that

Olwra0yiz20) + 163 im0,y < Ms for A € (0,1].

Lemma 2.10. There exists a positive constant My such that
laAEILz(Q(f‘A)) <M, fore (0, 1].

Proof. Let X € (0,1]. Multiplying (1.5) by o — fa(6x, €x) and integrating it over [0, 1] yield
the conclusion of this lemma. ' O

Next, we give a lemma on the other uniform estimates for u,.
Lemma 2.11. There ezxists a positive constant My such that

Iu,\tz(t)liz(o,l) + Iumz(t)ﬁz(o,l) <M; for0<t<T\and\e (0,1],

T
/ furtea () Brodt < M for A€ (0,11,
0

This lemma is quite easy, so we omit the proof.
Lemma 2.12. There exists a positive constant Mg such that

oA }ion) < Ms  for 0 <t < Ty and X € (0,1],
Ts
/(; |a,\¢(t)|%2(0’1)dt < Mg for )€ (0,1],

2
/ 10130 (1), €(8); 02(8)) Bao.ydt < Mg for A€ (0,1].
0

We can prove this lemma in a similar way to that of [8; Lemma 4.2]. Hence, we omit the
proof. At the end of this section we show the uniform estimates for uy;zzz-
Lemma 2.13. There ezists a positive constant M, such that

[untas () 32(0,1) + [Urzzze () Fagoy < My for 0 <t < T and X € (0, 1),

T
/ Iu;\mm(t)ﬁz(o,l)dt < M; for )€ (0,1].
0

By Lemma 2.12 it is easy to prove Lemma 2.13. Next, we show a global existence of
approximate solutions.
Lemma 2.14. LetT > 0 and X € (0,1]. Then, (P)\ admits a unique solution on [0, T].
Proof. Let A € (0,1], T > 0 and [0,T)) be a maximal interval of existence of a solution of
(P)x. We assume that T < T. Lemma 2.6 with the help of Lemmas 2.7 ~ 2.13 implies that
we can extend the solution beyond 7). This is a contradiction. ]

Finally, we give a proof of the existence of a solution of (P). The most important part of
the proof is quite similar to that of [8; section 5).
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Proof of existence. Let A € (0,1], T > 0 and {uy,0x,0,} be a solution of (P)x on [0, T
because of Lemma 2.6. The argument of the previous section implies that there are a
subsequence {);} of {A}, and functions u, 8, o and £ on Q(T) such that

uj = uy, = u weakly* in L>(0,T; H4(0,1)),
weakly in W12(0,T; H3(0, 1)),
weakly* in WL (0, T; H2(0,1)),

oj =0y — 0 weakly in WH?(0,T; L*(0,1)),
weakly* in L°°(0,T; H'(0,1)),

in C(Q(T)),
0, := 0\, > 0 weakly in W%(0,T; L*(0,1)),
weakly* in L>(0,T; H'(0,1)),
& = 0I);(05,€5;05) = & weakly in L*(Q(T)) as j — oo,

where €; = u;;. The above convergences guarantee that {u, 0, o} satisfy (S1) and (S2) except
for (1.2). Hence, by Remark 1.1 it is sufficient to show that f,(6,e) < o < fa(f,¢€) a.e. on.
Q(T) where € = u, and (1.1). On account of Lemma 1.1 we have

[0 — fa(05,€)]t — [fa(05,€5) — 0] = A& — 0in L*(Q(T)) as j — oo.

This convergence yields that f,(0,¢) < o < f4(6,€) a.e. on Q(T).
Next, let z be any function in L?(Q(T)) satisfying f,(0,¢) < z < fa(0,¢) a.e. on Q(T)
and put '
zj = max{min{fa(0),€;), 2}, fa(6;,€;)}-
It is clear that f,(;,&;) < zj < fa(0;,¢;) a.e. on Q(T) and z; — z in L*(Q(T)) as j — oo.
Accordingly,

& (25 — oj)dzdt — &(z — o)dzdt as j — oo.
Q(T) Q(T)

On the other hand,

&x;(zj — oj)dxdt <0  for each j.
Q(T)

Therefore, we obtain (1.1). O
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