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Reaction-diffusion systems have served as a pradigm to model various pattern formation
phenomena in nature. Since almost all patterns observed in nature are usually recognized
as an interface between two (or more) bulk states of differing properties, much attention
has been given in recent years to the study of interface dynamics in reaction-diffusion
systesm. In such a study, one usually derive systems of equations governing the dynamics
of interfaces, called interface equations. There are many aspects in dealing with pattern
formation phenomena in terms of interface equations. From a mathematical standpoint,
the following are major ones:

(1) How to derive interface equations from the original reaction-diffusion systems

(2) To show the well-posedness of the interface equations thus obtained.

(3) To study the quantitative and qualitative behaviors of the solutions to the interface
equations.

(4) To establish rigorous relationships between the results obtained in item (3) and the
properties of solutions to the original reaction-diffusion systems.

In regard to items (1) and (4), one must keep in mind that there may be more than
one set of interface equations, according to the temporal scale employed in the reaction-
diffusion system.

Our purpose in this article is to show an example in which interface equations are derived
from a geometric variational problem. We also show that non-degenerate equilibria of the
interface equations give rise to an equilibrium solution of the original reaction-diffusion
systems with the information on stability being inclusive. Schematically, our results may
be described in the following way.

o Reaction-Diffusion System
— Geometric Variational Problem
— Find non-degencrate critical points
— Equlibrium solutions to Reaction-Diffusion System.

In §1, we deal with scalar equations with spatially inhomogeneous reaction terms. The
results in this section are equally valid for gradient systems. In §2, we gencralize the
results in §1 to non-gradient systems of reaction-diffusion equations with homogeneous
reaction terms. In §3, we outline basic ideas in the proofs of main results.
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1. SCALAR REACTION-DIFFUSION EQUATIONS

Let us consider a spatially inhomogeneous reaction-diffusion equation

62% = Au - f(u,z,¢) (z€DCRY, t>0),

(1.1)
: Oou

on
In (1.1), D is a smooth bounded domain and n stands for the inward unit normal vector on

0D. The nonlinear term f(u,z, €) is assumed to be smooth and derived from a double-well
potential W (u, 2, €):

=0 (x€dD,t>0).

(1.2) f(u,z,€) = 93/%"“—62

with u = ¢*)(z, €) denoting the locations of two wells and u = ¢\%(z, ) denoting the
intermediate zero of f, satisfying

(1.2-a) oz, €) < ¢V(z,€) < ¢ (z,e) 2 €D.

When the layer parameter € > 0 is small, it is known [2] that the solution of (1.1) with
an initial condition in appropriate class develops internal layers in a short time and that
the location of the layers (called interfaces) moves according to certain law of motion. In
the latter stage of dynamical behavior, the difference in the values of potential at the two
wells plays an important role. Let us denote the difference at each z € D by I(x):

o+ (z)
(1.3) I(z) :=/ f(u,z,0)du
&(=)(x)

=W(¢(+)(x),.'v, 0) — W (67 (), z,0)

where ¢ (2) = ¢F)(2,0) (cf. (1.2-a)).
Under the situation above, it is known that the boundary value problem

#Q, ,
(1.4) dr? d'r
lim, 10 Qo(7) = (),  Qo(0) = ¢O(z)

has a unique solution (Qo(7; ), c(x)), where € D is regarded as a parameter. The
potential difference I(x) in (1.3) is related to the local wave speed c(x) as follows.

(1.5) I(x) = c(x) /_ : (%E—z)zdr.

Let us rescale time in (1.1) such that the differential equation assumes the following
form.

—£(Qo,2,0) =0 T € R,

(1.1-f) e% = e2Au — f(u,,¢€).

The interface equation for this problem is given by
(IE-f) V(x;T(t)) = c(a) xeT(t), t>0,
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where V(x;T(t)) stands for the normal velocity of I'(t). For a given interface ', we
denote by Dgf) and DI two components of D\T, and let v(z;T) stand for the unit

normal vecotor on T pointing into D) (cf. Figure 1). The normal velocity V/(z;T(t))
is always measured along v(z;I'(t)). Here and in what follows, we always treat the cases

FIGURE 1. T divides D into two parts, D{f) and D(r+)-

where interfaces stay uniformly away from the boundary 0D of doamin.
From the standpoint of investigating the existence of equilibrium internal layer solu-
tions, it is natural to ask the next question:
If the interface equation (IE-f) has a smooth equilibrium solution I', then does
(1.1) have a family of equilibrium solutions with transition layers on I" for small
e> 07
It turns out that the answer to this question is rather delicate. In [3], Fifé and Greenlee
prove that the answer is affirmative if the condition

V.c(x) F-v(x, <o zel

is fulfilled, where I' is a smooth equilibrium solution of (IE-f), namely, ' = { = €
D | ¢(x) = 0 } which, we suppose, is a closed manifold of codimension 1. Moreover,
the solution thus obtained is a stable equilibrium of (1.1). The equilibrium solution
u(x, €) has the following behavior for each dy > 0:

o )(z) z € DL\
limu(x, €) = uniformly,
¢ (z) =ze€ D{j)\p(do)

where I'4) stands for the dp-neighborhood of . It is of crucial importance to note that
the normal vector v above is pointing into the region where the solution u assumes values
close to '), Since ¢(x) = 0 on T', the condition above says that in the two regions away
from the interface I' the solution takes values close to absolute minima of the potential
W (u,z,0).

On the other hand, it is also pointed out in [12], in the context of the same question
for a system of reaction-diffusion equations, that if, on the other hand, the condition

V.c(x) reu(m,l") >0 «ax€l
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is the case, then there may exist infinitely many internal laryer solutions which exhibit
sharp transitions near I'. In radially symmetric cases, the validity of the latter statement
has been established in [13]. By examining the proof in [12] and interpreting it in our
situation, we can state the following criterion on the existence of equilibrium internal
layer solutions.

Criterion 1: Let T’ be a smooth equilibrium solution of (IE-f). If it is non-
degenerate in the sense that the spectrum of the linearized operator

Lp:=¢ (Ar + I§ K,-(a:)2> @0+ (V,.c(:v)’r-u(:c,]f‘)) ¢ x€Tl,

i=1

defined on T', is bounded away from zero uniformly in € € (0, €] for some ¢y > 0,
then (1.1) has a family of solutions with internal transition layer on I'. In the
above, AT is the Laplace-Beltrami operator on I' and «; Gj=1,...,N=1)
stand for principal curvatures of I'.

Since AT is a non-positive oprator, it is apparent that if Vzc(:c)l -v(2,T') < 0 then the
spectrum of the operator L¢ is bounded away from zero uniformly in ¢ > 0. Hence the
criterion above is compatible with the result given by Fife and Greenlee [3].

Let us consider the following situation.
Al I(z) =0 on D, or equivalently, ¢(z) = 0 on D.

If A1 is the case, there arises two kinds of degeneracy:
(1) Any closed manifold T' C D of codimension one is an equilibrium of (IE-f)

(2) The corresponding linear operator L¢ in the Criterion 1 reduces to ¢ times the
Jacobi-operator on I' and hence it has many small eigenvalues converging to 0 as
€ — 0, making the criterion above powerless. :

Therefore, we need first to establish a selection principle to identify possible equilibrium
interfaces.

Along the line of arguments employed in Nakamura et al. [6], onec can show that the
interface equation for (1.1) is given by

(1.6)  V(2;T(t) = —&(x; T(2)) - V;fl’(i()"’) + :f(?) z€eD(t), t>0,

where k(z;T") stands for the sum of principal curvature of I' and
(1.6-a) ) .
m(z) = / ” (BQ—Oa(:—-Q> dr €D (unit transition momentum at ),
(1.6-b)
a(z) = / f(Qo(T; 2), 2,0) =222 aQO( ) ——"2dr x€D (excess-encrgy of order ¢).

We now assume that the followmg conditions are fulfilled.
A2 The interface equation (1.6) has a smooth equilibrium solution I C D.
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A3 The equilibrium T is non-degenerate in the sense that the linear operator
A defined below does not have 0 as its eigenvalue:

N-1

(1.7) Ap(z) :=m(x) (Ar + Z h?j(fb)2) o(z) + Vrm(z) - Vrp(z)

+ (~A(ED)Viem(z) - V2m(z) + V(@) p(z)  z €T,

where Vr is the gradient operator on I'.

We have:
Lemma 1.1. The operator A is self-adjoint and its eigenvalues are all real:
(1.8) o(A)={}52 CR, A>A>...> ) = —oo,
where only distiné¢t eigenvalues are‘listed. The multiplicity of A; is denoted by m; > 1.

Let us now define a functional F(I') by

(1.9) F(I) = /F m(z)dST — fp _a(e)z  (@Dr=T,

r

where dS! stands for the surface element on T.

Lemma 1.2. The Euler-Lagrange equation for F is given by

(1.10) —k(z;D)m(x) — V,om(z) + ofz) =0 x €T,
and the second variation of F is described by Ay defined in (1.7).

Note that (1.10) is the equation for equilibrium solutions of the interface equation (1.6).
Our main result is

Theorem 1.3 ([7]). Under the conditions A1, A2, and A3, there exist ¢¢ > 0 and a
family of equilibrium solutions u(x,€) of (1.1), defined for € € (0, €], such that for each
do > 0 fized

(1.11) lim u(w, €) = uniformly,
¢M(x)  ae D\

where Dg-i) are two regions (C D) separated by T and T(%) stands for the dg-neighborhood
of L.

Moreover, if \g < 0 then u(z, €) is asymptotically stable, and if A, > 0 > A4y for some
integer k > 0 then u(x, €)is unstable with instability index equal to 2;‘.':0 m;.

Conclusion. Non-degenerate critical points of the functional F in (1.9), if reg-
ular enough, give rise to equilibrium solutions of (1.1). The index of the critical
point is equal to the dimension of the unstable manifold of the equilibrium so-
lution. It is an amusing fact that the formulac (1.6) and (1.7) naturally appear
in matched asymptotic expansions.
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The proof of Theorem 1.3 depends on the methods developed in [13, 13] (matched
asymptotic expansions). When m(z) = 1 and a(z) = 0, the same result as Theorem 1.3
was first obtained by [5] for stable case, by using I-convergence and related variational
techniques. Our theorem extends those in [5] to cover unstable cases. Theorem 1.3
prompts the resolution of the following.

Geometric Variational Problem 1.
Find critical points of the functional F in (1.9).

We call this problem geometric because the unknown I' is a geometric object.

2. SYSTEM OF REACTION-DIFFUSION EQUATIONS

We now move on to deal with reaction-diffusion systems.

( Ou 1
i eAu — ;f(u,v,e)
(xeD, t>0),
(2.1) . ov = DAv + g(u,v,€)
ot
Ou v
\ a—n—O—a—ﬁ (a,EaD,t>0).

The first equation in (2.1) looks almost identical to (1.1), if we replace « in the latter by
v(z). We assume in this section that the nonlinear term f(u,,€) is smooth and derived
from a double-well potential W (u, v, €):

OW (u,v,¢€)
Ou

with v = h*)(v,€) denoting the locations of two wells, while u = h(®(v,€) stands the
intermediate zero of f(-,v,¢), satisfying

(2.2) f(u,v,€) =

(2.2-a) R )(v,€) < RO, e) < K (v,e) wveR.

Similar to scalar case, the difference in the values of potential at the two wells will play
an important role in describing the dynamics of (2.1). Let us denote the difference at
each v by J(v):

h(+)(v)
(2.3) J(v) = / f(u,v,0)du
h

(=)(v)
=W(hP)(v),v,0) — W(h{)(v), v,0)

where h®)(v) = h®)(v,0) (cf. (2.2-2)).
It is known [2] that the solution of (2.1) with appropriate initial conditions develops
transition layers in short time, and that the interface evolves according to the following
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system of interface equations:

(IE-a) V(z;T(t)) = c(v(z,t)) (z€l(t), t>0),
(IE-b) v = DAv + g™ (v, 2; T(t)) (z € D\I'(¢), t > 0),
(IE-c) dv(z,t)/on=0 (2 €0D, t>0),
(IE-d) ['(0) =Ty, v(x,0) = vo(x) (z € D),

(IE-e) v(+,t) € CY(D) N C*(D\I'(t)).

The function g* in (IE-b) is defined by

g~(v) =g(h(v),v) if € DY)
g (v, 2; T(t)) =

gt(v) =g(hM(w),v) if z€ Dgf("i)).

The condidion in (IE-e) is called a C!-matching condition.

It is also known [2] that the problem (IE) is well-posed and that its solutions do ap-
proximate the motion of the internal layer solutions of (2.1) on finte time intervals [0, T¢]
(although T, — oo as € — 0). Since for ¢ > 0 the approximation is valid only on finite
time intervals in general, some of asymptotic information on the solutions of (2.1) may
not be captured by only analysing the behavior of solutions of (IE-a,b,c,d). For example,
the results in [2] do not answer the following question:

If (IE-a,b,c,d) has an equilibrium solution (o, v(z;Ty)), then, does (2.1) have
a corresponding equilibrium solutions for small e > 07
The equilibrium solutions of (IE-a,b,c,d) have to satisfy

0 = c(v(=; Ty)) (z € To),
0=DAv+g(v,2;T9)  (z € D\Iy),
dv(z, I'y)/on =0 (z € OD)
’U('; Fo) € Cl(ﬁ) N CQ(D\F())

Let us denote by v* a zero ¢(v): ¢(v*) = 0. Therefore, they are a solution of the following
free boundary problem:

(FB-a) 0= DAv +g"(v,a;Ty) (= € D\I'),
(FB-b) v(z;To) =v" on Ty, Ov(z;Ty)/0n=0 on 9D,
(FB-c) v(+;Tg) € CY(D) N CHD\Ty).

Note that the nonlinearity ¢*(v, z;I'p), in general, has a jump discontinuity along I'y. The
free boundary problem can be reformulated as:

Geometric Variational Problem 2.
Find critical points v(-;T") of the functional F(v;T'):

F(v;T) = / (%D|Vv|2 - G”(v,ar;f‘)> dx
Jp \4

(With G (v, 2;T) :=/ g*(s,m;I‘)ds).

vlﬂ

Then identify Ty so that v(a;Ty) = v~ on T.
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For the sake of argument, let us assume that the free boundary problem (FB-a,b,c) has
a regular solution (V*(x),Ip). Then it was shown in [12] that the knearized eigenvalue
problem defined for p(z) (x € I'p) and ¢(2) (x € D):

. p+ (v)qr, z €Ty,
0

N~1 .l
(BVP-1) Jp=e (A“ 3 W)Z) p+e() )
Jj=1

(EVP-2) Mg =DAg+g;(V'(z),%;T0)g— [glp®br, €D

plays an important role. In (EVP-1), ¢/(v*) is the derivative at v = v* of ¢(v) with respect
to v.
In (EVP-2), [¢*] stands for the jump of g* on Iy:

[97] = g(A P (v"),v") — g(R ) (v7), v"),

and the symbol ér, stands for the Dirac-delta function supported on I'y. Therefore (EVP-
2) should be interpreted in distributional sense. By writing it in weak form and integrating
by parts, one can recast (EVP-2) as concisely as

(EVP-2') Mqlr, +[g"lp=0 €Ty,

where II, is the Dirichlet-to-Neumann map defined by

vy (2 NE
Mig(z) := My q(z) + O} g(z) := aa,;\(i;)) - ac’;:;\((x))

(.’B € Io)

in which v (z) are solutions of the following problem:

DAv* + gy(V*(z),z;To)vt = 0*  (ze D, DuDE) = D\Iy),
vi(z) =q(x) (v €Ty,
ovi(x)
on

Under the condition g, < 0, one can show that II, is invertible for Re A > —\( for some
Ao > 0.

The following criterion has been established in [12)].

=0 (xe€dD).

Criterion 2 If the linear operator 4¢, defined by

W Apime[ A+ 3 wi@h ) o4 ¢ 2CE] po oty et
et v(z) Iro 0 '

is invertible uniformly in € > 0, then (2.1) has a family of equilibrium solutions
exhibiting transition layers on I';. Note that this operator A¢ is obtained by
substituting (EVP-2’) with A = 0 into (EVP-1).

When ¢/(v") < 0, it is in fact shown in [12] that the eigenvalues of (L) are bounded
away from 0 uniformly in € > 0. If, on the other hand, ¢/(v*) > 0 is the case, then the
opeartor A¢ has many small eigenvalues conveging to zero as € — 0.
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We denote by (Qo(7;v), ¢(v)) the solution of (1.4) with z, ¢*), and ¢(® begin replaced
by v, A (v), and ~O(v). Similar to (1.5), ¢(v) and J(v) are related as

~ 2
,_ * [ 0Qo(T;v)
J(v) := c(v) /_oo (—297_———> dr.

Let us now consider the following situation:
B1 J(v) = 0 for v € R, or equivalently, ¢(v) = for v € R.

Under the condition B1, the first equation (IE-a) decouples from others and the inter-
face equations reduce to

(IE-a’) Mt)y=To (t20),

(IE-b) vy = DAv+g*(v,z; T") (z € D\T, t > 0),
(IE-c) : ov(z,t)/O0n=0 (z € 8D),

(IE-d’) v(z,0) = vo() (z € D),

(IE-e) v(-,t) € CY{D)N CAD\D).

This equation is a gradient system associated with the potential

E(v) E/D (—§-|V,,.v(1r)|2 — G(v(m),a:;F)) dz
(with G(v,z;T) := /Ov g*(s,m;f‘)ds) ,

and hence its solutions converge to an equilibrium solution as t — oo.
In order to state our problem succinctly, let us define a set S of interfaces.

(24) §= {I‘ C D | Tis an N — 1 dimensional, smooth, connected, closed manifold }

Lemma 2.1. Under the condition B1, assume that

4 *v)<0 wveR.
dv
For each T € S, the problem
0=DAv+g*(v,;T) (v € D\I)
(BVP-1)
Jv(z)/0n =0 (x € OD)
(BVDP-2) v(-) € CY(D) N C*(D\I).

has a unique solution vr(x).

We encounter again a degenerate situation.

(1) Lemma 2.1 says that under the condition B1 the interface equation (IE-a,b,c,d)' has
a continuum of equilibrium solutions {vr | € S }.

(2) Morcover, for each member vr of the family, the operator A¢ does not satisfy the
requirement in Criterion 2.
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Therefore, under the condition B1, the interface equations (IE-a,b,c,d) do not capture
essential dynamics of (2.1). To find a refined set of interface equations, we rescale time
and consider (2.1) in the following version:

ou 1
E = Au— e—g-f(u!vi €)
(2.5) 5 (x €D, t>0)
v 1
il (DAv + g(u, v, e))

with the same boundary conditions as in (2.1).

Following the procedures employed in Nakamura et al. [6], one can show that the
interface equation for (2.5) is given by

_ Voem(vra)) + a(vr))

(2.6) V(z; () = —k(z; (1)) ze(t), t>0,

m(vre)  m(vr)
where
~ 2

(2.6-a) m(v) = / (%a(%ﬂ) dr ve€R  (unit transition momentum at v),

—00

A(+) (v)
(2.6-b) av) = / f(u,v,0)du veR  (excess-energy of order ¢).

h(=)(v)

The well-posedness of (2.6) has been established in [1].

We now assume that the following conditions are fulfilled.
B2 The interface equation (2.6) has a smooth equilibrium solution I € S.

B3 The equilibrium I' is non-degenerate in the sense that the linear operator
B defined below does not have 0 as its eigenvalue:
N-1
(2.7)  Byp(x) :=m(vr) (Ar + ”j(ﬂ’)2> ¢(x) + Vrm(vr) - Vrp(z)
j=1
g*(vr) + g~ (vr)
2D

+ [%] (_”(""; D)m'(vr) — m"(vr)Vopor + Vura('vl")) 5 ()

+ (m’(vr)Arvr + - m"(vr)|vu,~l’r|2 + V,,,.a'(vr)>',-9

gl m'(v _ -

where
g*(v) = g(h®(v), v).
Although the operator B looks quitc complicated, it enjoys the following property.

Lemma 2.2. The operator B is self-adjoint and its eigenvalues are all real:
(2.8) oB)={X}2CR,  AN>X>...>)\ - —o,

where only distinct eigenvalues are listed. The multiplicity of A is denoted by m? > 1.
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Remark 2.3. The operator B is self-adjoint only when the interface I' € § is connected.
If I has more than one connected components, the operator B may not be self-adjoint.

Let us now define a functional F,(T') by
(2.9) F,(T):= /m(vp)de —/ a(vr)dz,
r D)

where vr is the solution given in Lemma 2.1.

Lemma 2.4. The Euler-Lagrange equation for F, is given by

(2.10) —k(z;T)m(vr) — V,om(vr) + ofvr) =0 =z €T,

and the second variation of F, is described by By defined in (2.7).
Our main result for system (2.1) is:

Theorem 2.5. Under the conditions B1, B2, and B3, there exist ¢¢ > 0 and a family
of equilibrium solutions (u(z,€),v(z,€)) of (2.1), defined for € € (0, €], such that for each
Clg >0 ﬁﬂ’)@d

lir_% v(z,€) = vr(z) um’f(;rmly on D,

A (or(2)) DO\T)
Ii;% u(z,€) = ' uniformly on ,
e— h(+)('vr(3:)) ’Dgf)\l"(d")

where 'D%i) are two regions (C D) separated by T' and T'(%) stands for the dy-neighborhood
of T.

Moreover, the eigenvalues of B determine the stability of the equilibrium solutions:

e If X3 < 0, then the solution is asymptotically stable.

o IfX; > 0> A, for some integer k > 0, then the solution is unstable with instability

indez equal to Z;‘f:() ms.

This theorem makes it meaningful to establish some methods to deal with the following
problem.

Geometric Variational Problem 3.
Find critical points of the functional F; in (2.9).

Remark 2.6. Even if the interface I" has more than one connected components, the state-
ment of Theorem 2.3 is still valid, except for the stability properties. In such a situation,
the operator B is not self-adjoint and may have complex eigenvalues. Moreover, consid-
ering the diffusion coefficient D as a bifurcation parameter, one may be able to detect
Hopf-bifurcations of interfaces. In fact, it is confirmed in [14] that the Hopf-bifurcation
of interfaces can occur in the following system

Ju 1
—é?_AU—? (u,v,€)
(2.11) (re€D, t>0)
@ _1 (—Av + g(u, v, €)
o €\ e hnde
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with (v) # 0 which is very similar to (2.5). The interface equations for (2.11) is given by
V(z;T(t)) = —k(z;T(#) + (v )o(z;T()) (€ T(t), t20)
—DAv(x;T(t)) = P(z; I'(¢)) (z € D\I'(¢), t>0)
dv/0n=0 (x€ 0D, t>0)
[(0) =Ty, u(x;T(0)=w(z) (2x€D)
o(5T(t)) € CAD\I())NCY(D)  (t20),
where

— (= z (-)
P(w;T) = { j,ﬁﬁ.; El ; 2@3 -

In a series of works [8, 9, 10, 11] on one dimensional reaction-diffusion systems, Nishiura
and his co-workers have established a powerful method called the Singular Limit Eigen-
value Problem method (SLEP-method, for short) to determine the stability property of
equilibrium transition layer solutions. The basic structure of the method is concisely
expressed in the following diagram.

Singular
- — Limit -
Reaction-Diffusion System =0 Interface Equation

Linearization ; Linearization
Singular
- - - Limit
Linearized Eigenvalue Prolbem _6 SLEP-System
€ —

FIGURE 2. Relationship between reaction-diffusion system and SLEP-system.

First construct an equilibrium transition layer solution to the reaction-diffusion system
and linearize the system around it to obtain an eigenvalue problem. The singular limit
of the eigenvalue problem is called the SLEP-system which contains full information on
the stability of the equilibrium. Moreover, Nishiura et al. show that the SLEP-system
is also obtained by first passing to the singular limit of the reaction diffusion system to
obtain an associated system of interface equations and then linearizing the latter around
its equilibrium.

Our results fit pricisely into the same framework. We first find an equilibrium to the
system of interface equations and linearize it to obtain a SLEP-system. Then our assertion
is that if the SLEP-system thus obtained is non-degenerate, then the equilibrium .of the
system of interface equations gives rise to an equilibrium transition layer solution of the
reaction-diffusion system. Moreover, the SLEP-system also carries the full information on
the stability of the transition layer solution. We also point out the following facts which
are guiding principles in our proof.

o The interface equations are nothing but the lowest order C'-matching conditions.
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e The SLEP-system is the principal part of the higer order C!-matching conditions.

Geometric Variational Problem

Find Critical Points
Singular

Limit
—_—
e—0

. Find equilibria
Stability Existence _ o
Information Linearization

Non-degenerate

Reaction-Diffusion System Interface Equation

Lincarized Eigenvalue Prolbem <—>T SLEP-System
€

FIGURE 3. Non-degenerate equilibra of the interface equations give rise
to transition layer solutions of reaction-diffusion system and their stability
properties are completely determined by SLEP-system.

3. OUTLINE OF PROOF

The proof consists of three steps:

(1)

Construction of highly accurate approximate solutions Ug,, via the method
of matched asymptotic expansion. The conditions A2 and A3 (resp. B2 and B3)
allow us to find C!'-matched approximate solutions with arbitrarily high order of
accuracy. As pointed out at the end of the previous section, A2 (B2) is the lowest
order Cl-matching condition, and A3 (B3) allow us to find higher order C'-matched
approximations. Once an approximate solution is constructed, the original problem
is then written as

‘CC'Y?"’NC(I‘P) +R =0,
where L is obtained from the original problem by linearization around the approx-
imate solution, N() stands for nonlinear terms containing quadratic and higer
order terms in ¢, and R¢ measures how well the approximation satisfies the original
problem.
The spectral analysis of £¢. The linear operator £ in general has small eigenvalues
that go to zero as € — 0, called critical eigenvalues. In the present situation, these
critical cigenvalues are of order O(e?), and when divided by €2 they are essentially
the cigenvalues of the SLEP-system. Therefore, A3 (B3) gnarantees that the linear
operator £¢ is invertible, although it has small eigenvalues that converge to zero as
e — 0. ’ ‘
To establish the solvability of (3.1). Since the lincar part £y is small, O(€?),
one neceds to make the contribution of the nonlinear term N *(y) smaller than the
lincar part. This, in turn, is possible if the remainder term R is small enough, say,
|R<|| = O(¢®) in the present situation. Thus onc obtains the true solution U* very
close to the approximate one. Now the linearization of the original problem around
the genuine solution U¢ is a very small perturbation of £¢, and hence the stability
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properties of U*¢ is completely determined by the SLEP-system which has already
been analized in the previous Step (2).

The stragegy descirbed above seems to have a wide range of applicability in dealing
with transition layers and interfaces. The same idea has been successfully applied in other
situations [4, 13].
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