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Introduction
Partial differential equations in the “usual” set-up are given on an open set (or
on amanifold) that apriori has a $C^{\infty}$ structure. However, many applications in
physics and engineering as well as in pure mathematics (geometry, topology) are
from the very beginning connected with singular geometries of the configuration
or with non-compact exits to infinity.

We will discuss some elements of the analysis on manifolds with geomet-
ric singularities, boundaries, edges, corners, etc. Atypical novelty compared
with the smooth case is that singularities lead to natural classes of degenerate
operators (that include “non-degenerate” ones as well) and to new (in gen-
eral operator-valued) principal and complete symbol structures that behave like
“semi-quantised” objects and encode specific information from the singularities,
especially asymptotics of solutions.

The author thanks the organisers of the Conference “Microlocal Analysis and
Asymptotic Analysis of PDE” , Oct. 2000, RIMS, Kyoto University, especially
Professor N. Tose

数理解析研究所講究録 1211巻 2001年 3-18
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THE GENERAL PROGRAM

1The general program
Configurations with singularities that we have in mind are special stratified
spaces (in fact, pseud0-manifolds), locally modelled by “singular” charts that
map neighbourhoods on $\Lambda f$ to corresponding model cones or wedges under nat-
ural conditions for the transition maps. Acone with base $X$ is the quotient
space

$X^{\Delta}:=(\overline{\mathbb{R}}_{+}\cross X)/(\{0\}\cross X)$ ,

i.e., {0} $\cross X$ represents the tip of the cone. Awedge with model cone $X^{\Delta}$ is a
Cartesian product

$X^{\Delta}\cross\Omega$ for open $\Omega\subseteq \mathbb{R}^{q}$ .

Amanifold $M$ with singularities contains asubset $\Lambda \mathrm{f}’$ of singular points such
that $M\backslash \mathrm{A}I’$ is a $C^{\infty}$ manifold. $M’$ itself is assumed to be singular in asimilar
sense, with asubset $M’$ of singular points, etc.

This gives us achain of spaces $M:=M^{(0)}\supset \mathrm{A}\prime I’\supset M’\supset\ldots\supset M^{(e)}\supset$

$M^{(e+1)}=\emptyset$ , such that $M^{(k)}\backslash M^{(k+1)}$ is a $C^{\infty}$ manifold for every $k$ .
An example is the closed unit cube $\mathrm{A}f$ in $\mathbb{R}^{3}$ , where $\mathrm{A}I’=\partial M$ is its sur-

face, including edges and corners, $M’$ is the system of one-dimensional egdes,
including corners, and $\mathrm{A}f’$ is the system of corner points.

The general program for the analysis of operators on $M$ includes the follow-
ing points:

\bullet Establish apseud0-differential calculus that contains the typical differen-
tial operators on $M$

\bullet Characterise adequate scales of Sobolev spaces

\bullet Study operator algebras with natural symbol hierarchies that determine
ellipticity and additional conditions on the lower-dimensional skeleta

\bullet Characterise asymptotics of solutions near the singular points.

Analogous problems are reasonable in the context of parabolicity and hy-
perbolicity.

As concrete realisations of problems with singularities we have:

\bullet Boundary value problems on spaces with piecewise smooth geometry

\bullet Mixed elliptic, transmission, and crack problems

\bullet Problems on spaces with components of different dimensions

$\bullet$ Parabolic problems in the (infinite) $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}/\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}$ cylinder, where the spatial
configularations are not smooth; here, $tarrow\infty$ behaves like an exit to
infinity

\bullet Hyperbolic problems in domains with non-smooth geometry, such as prop-
agation and reflection of singularities near conical points, edges, etc.

\bullet Asymptotics of solutions to various kinds of non-linear problems
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Each of these models has its own history; the analytic understanding in the
hyperbolic case is far from being in asatisfactory state.

The same is true of the index theory of elliptic operators on manifolds with
geometric singularities.

Acommon feature of these models is aspecific interplay between microlocal
and global information, expressed by the components of hierarchies of symbols.

In this survey we content ourselves with elliptic operators and illustrate
typical elements of the calculus for conical and edge singularities as well as for
boundary value problems. For the general background, cf. the monographs
Schulze [25], [28] or Egorov and Schulze [6]. Ageneral machinery to construct
operator algebras on (pseud0-) manifolds with higher singularities is given in
[30]. Applications to parabolic problems are given in the author’s joint paper
with Krainer [14]. Concerning edge space aspects in hyperbolicity, cf. Dreher
and Witt [4]. Non-linear problems, with singularities of various kind have been
studied by Witt [41] and in the author’sjoint paper with Vishik, Witt and Zelik
[38].

2Fuchs type operators
First recall that when $X$ is aclosed compact $C^{\infty}$ manifold, $E$ , $F\in \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}(X)$ ,
where $\mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}(\cdot)$ the set of smooth complex vector bundles on the space in the
brackets, and $A$ : $C^{\infty}(X, E)arrow C^{\infty}(X, F)$ a(classical) pseud0-differential op-
erator of order $\mu$ on $X$ , we have the homogeneous principal symbol of order $\mu$ ,
that is ahomomorphism

$\sigma_{\psi}(A)$ : $\pi_{X}^{*}Earrow\pi_{X}^{*}F$, (1)

$\pi_{X}$ : $T^{*}X\backslash \mathrm{O}arrow X$ . Ellipticity of $A$ means that (1) is an isomorphism. While
this is apurely microlocal condition,

$\dim \mathrm{k}\mathrm{e}\mathrm{r}A$ , $\mathrm{c}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}$

and index $\mathrm{i}\mathrm{n}\mathrm{d}A=\dim \mathrm{k}\mathrm{e}\mathrm{r}A-\dim \mathrm{c}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}$ $A$ are globally defined. This is, of
course, well-known, but operator families on $X$ appear as apart of the symbol
structure of operators on amanifold with conical singularities with base $X$

which gives us afirst impression on how ellipticity and the calculus as awhole
are determined by local and global data.

Amanifold $B$ with conical singularities is atopological space that contains
afinite subset $S$ (the conical points) such that $B\backslash S$ can be regarded as the
interior of a $C^{\infty}$ manifold $\mathrm{B}$ with compact boundary. For simplicity, consider
the case when $S$ only consists of one point. Then $\partial \mathrm{B}=:X$ may be regarded
as the base of acone $X^{\Delta}$ that is the local model of $B$ in aneighbourhood of
$v\in S$ . Then $\mathrm{B}$ is locally near $\partial \mathrm{B}$ modelled by $\overline{\mathbb{R}}_{+}\cross X$ ;in this connection $\mathrm{B}$ is
called the stretched manifold associated with $B$ . Let $(r, x)\in \mathbb{R}_{+}\cross X$ denote a
splitting of points on $\mathrm{B}$ near $S$ . Then the typical differential operators $A$ on $\mathrm{B}$

are those of Fuchs type, that is

$A=r^{-\mu} \sum_{j=0}^{\mu}a_{j}(r)(-r\frac{\partial}{\partial r})^{j}$ , (2)
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FUCHS TYPE OPERATORS

for convenience, written with operator-valued symbols $a_{j}(r)\in C^{\infty}(\overline{\mathbb{R}}_{+},$ $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{f}^{\mu-j}(_{Z}\urcorner$

Here, $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{f}^{\nu}(\cdot)$ denotes the space of all differential operators of order $\nu$ on the
space in the brackets, with smooth coefficients (in local representations); Diff’ $(\cdot)$

is Frechet in anatural way in all cases that we are considering in this paper.
(For the moment, we simply speak about operators acting in function spaces
rather than in spaces of sections in bundles; this can be done as well and is
straightforward.) In local coordinates $x\in \mathrm{I}$ on $X$ , $\Sigma\subseteq \mathbb{R}^{n}$ open, $n=\dim X$ ,
the operator $A$ can be locally described by asymbol of the form

$p(r,x, \rho, \xi)=r^{-\mu}\tilde{p}(r,x, r\rho, \xi)$ ,

where $\tilde{p}(r,x, \tilde{\rho},\xi)$ is smooth up to $r=0$ .
Let $p(\mu)(r, x, \rho, \xi)$ denote the homogeneous principal part of $p(r, x, \rho, \xi)$ of

order $\mu$ . Then
$\sigma\psi(A)(r,x, \rho, \xi)=p_{(\mu)}(r, x, \rho, \xi)$

is the homogeneous principal symbol of $A$ (near $(\partial \mathrm{B})$ ) in the usual sense. We
also have a“compressed” variant, namely

$\sigma\psi,\mathrm{r}(A)(r,x, \rho, \xi):=\tilde{p}_{(\mu)}(r, x, \rho, \xi)$

which is also invariant, now in the sense of afunction on as0-called compressed
cotangent bundle (realised by asimple singular modification of the standard
cocycle for the cotangent bundle).

In addition, we have the principal conormal symbol

$\sigma_{M}(A)(z):=\sum_{j=0}^{\mu}a_{j}(0)z^{j}$ . (3)

$z\in \mathbb{C}$ is interpreted as acovariable for the Mellin transform (Mu)(z) $=$

$\int_{0}^{\infty}r^{z-1}u(r)dr$;then $M^{-1}zM=-r \frac{\partial}{\partial_{t}}$ . Now $\sigma_{M}(A)(z)$ induces afamily of
continuous operators

$\sigma_{M}(A)(z)$ : $H^{s}(X)arrow H^{s-\mu}(X)$

between standard Sobolev spaces on $X$ . The principal symbol “hierarchy” of
operators of Fuchs type is

$\sigma(A):=(\sigma\psi(A), \sigma_{M}(A))$ .

Definition 1A is said to be elliptic with respect to a weight $\gamma\in \mathbb{R}$ , if
(i) $\sigma_{\psi}(A)\neq 0$ on $T^{*}(\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{B})$ $\backslash 0$ and $\sigma_{\psi,\mathrm{f}}(A)(r,x, \rho,\xi)\neq 0$ for $(\rho, \xi)\neq 0$ , up to

$r=0$,

(ii) $\sigma_{M}(A)(z)$ : $H^{s}(X)arrow H^{s-\mu}(X)$ are isomorphisms for all $z\in \mathbb{C}$ , ${\rm Re} z=$

$\frac{n+1}{2}-\gamma$ , $n=\dim X$ , for some $s\in \mathbb{R}$ .
Note that condition (i) can be formulated invariantly as non-vanishing of

$\sigma_{\psi,\mathrm{f}}(A)$ globally on $T_{\mathrm{f}}^{*}\mathrm{B}\backslash 0$ , where $T_{\mathrm{f}}^{*}\mathrm{B}$ is the compressed cotangent bundle.
Moreover, if (ii) is satisfied for an $s=s_{0}\in \mathbb{R}$ , then it holds for all $s\in \mathbb{R}$ .
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Let $H^{s,\gamma}(\mathrm{B})$ denote the weighted Sobolev space of smoothness $s\in \mathbb{R}$ and
weight $\gamma\in \mathbb{R}$ , cf. [25] or [28]. Recall that when $\omega(r)$ is any $\mathrm{c}\mathrm{u}\mathrm{t}-\mathrm{o}\mathrm{f}\mathrm{f}$ function
(i.e., $\omega(r)\in C_{0}^{\infty}(\overline{\mathbb{R}}_{+})$ , $\omega(r)=1$ in aneighbourhood of $r=0$) we set

$H^{s,\gamma}(\mathrm{B})$ $=\omega H^{s,\gamma}(X^{\wedge})+(1-\omega)H_{1\mathrm{o}\mathrm{c}}^{s}$(int $\mathrm{B}$),

for $X^{\wedge}=\mathbb{R}_{+}\cross X$ . Here, $\overline{\mathbb{R}}_{+}\cross$ $X$ is identified with acollar neighbourhood
of $\partial \mathrm{B}$ in $\mathrm{B}$ such that $\overline{\mathbb{R}}_{+}$ corresponds to the inner normal (with respect to a
Riemannian metric on $\mathrm{B}$), and $?t^{s,\gamma}(X^{\wedge})$ is the completion of $C_{0}^{\infty}(X^{\wedge})$ with
respect to the norm

$\{\frac{1}{2\pi i},\int_{1}\Gamma_{\iota}+-\gamma||R^{s}({\rm Im} z)(Mu)(z)||_{L^{2}(X)}^{2}dz\}^{1}\S$

for an arbitrary family $R^{\mu}(\tau)$ of classical parameter-dependent elliptic operators
on $X$ with parameter $\tau\in \mathbb{R}$ that induces isomorphisms $R^{\mu}(\tau)$ : $H^{s}(X)arrow$

$H^{s-\mu}(X)$ for all $s\in \mathbb{R}$ and $\tau\in \mathbb{R}$;further

Up $:=\{z\in \mathbb{C}:{\rm Re} z=\beta\}$ .

Theorem 2Let $\mathrm{B}$ be compact, and let $A$ be an operator of Fuchs type on $\mathrm{B}$ of
order $\mu$ . Then the following conditions are equivalent:

(i) $A$ is elliptic with respect to the $w$ eight $\gamma$ ,

(ii) $A:H^{s,\gamma}(\mathrm{B})arrow H^{s-\mu,\gamma-\mu}(\mathrm{B})$ is a Fredholm operator for any $s\in \mathbb{R}$ .

For the iteration of pseud0-differential calculi on spaces with higher sin-
gularities (edges, corners, etc.) it is essential to consider pseud0-differential
operators on (stretched) infinite cones $X^{\wedge}=\mathbb{R}_{+}\cross X$ . The configuration in this
case has an exit to infinity that causes specific precautions at infinity, cf. also
[28].

The weighted Sobolev spaces in this case are denoted $\mathcal{K}^{s,\gamma}(X^{\wedge})$ , where
$\omega \mathcal{K}^{s,\gamma}(X^{\wedge})=\omega H^{s,\gamma}(X^{\wedge})$ for any $\mathrm{c}\mathrm{u}\mathrm{t}-\mathrm{o}\mathrm{f}\mathrm{f}$ function $\omega(r)$ , and $(1-\omega)\mathcal{K}^{s,\gamma}(X^{\wedge})$

equals the standard Sobolev space in the sense that for $X=S^{n}$ (the unit sphere
in $\mathbb{R}^{n+1}$ ) and $X^{\wedge}=\mathbb{R}^{n+1}\backslash \{0\}$ we have $(1-\omega)\mathcal{K}^{s,\gamma}(X^{\wedge})=(1-\omega)H^{s}(\mathbb{R}^{n+1})$,
where on the right hand side of the latter relation $r=|\overline{x}|,\overline{x}\in \mathbb{R}^{n+1}$ . The
definition for general $X$ can be reduced to this case.

Remark 3Setting $(\kappa_{\lambda}u)(r, x)=\lambda^{\frac{n+1}{2}}u(\lambda r,x)$ for $u(r, x)\in \mathcal{K}^{s,\gamma}(X^{\wedge})$ , A $\in \mathbb{R}_{+}$ ,
we have a strongly continuous group of isomorphisms

$\kappa_{\lambda}$ : $\mathcal{K}^{s,\gamma}(X^{\wedge})arrow \mathcal{K}^{s,\gamma}(X^{\wedge})$

for every $s$ , $\gamma\in \mathbb{R}$ .

3Abstract edge spaces
Let $E$ be aHilbert space and $\{\kappa\lambda\}_{\lambda\in \mathbb{R}}+$ be astrongly continuous group of
isomorphisms $\kappa_{\lambda}$ : $Earrow E$ , A $\in \mathbb{R}$ . Then the abstract edge Sobolev space of
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smoothness s $\in \mathbb{R}$ (with model space E) is defined to be the completion of
$S(\mathbb{R}^{q},$E) (the Schwartz space of $E$-valued functions) in the norm

$\{\int_{\mathrm{R}’\prime}\langle\eta\rangle^{2s}||\kappa_{\langle\eta\rangle}$
\^u $(\eta)||_{E}^{2}d\eta\}^{1}\pi$

Here \^u(\eta ) is the Fourier transform with respect to $y\in \mathbb{R}^{q}$ .

Example 4Set $E=H^{s}(\mathbb{R}^{n+1})$ , $(\kappa_{\lambda}u)(\tilde{x}):=\lambda+^{1}’|u(\lambda\tilde{x})$ , A $\in \mathbb{R}_{+}$ . Then we
have Ws(Rq, $H^{s}(\mathbb{R}^{n+1})$ ) $=H^{s}(\mathbb{R}^{n+1+q})$ .

Another example is $E=H^{s}(\mathbb{R}_{+})(=H^{s}(\mathbb{R})|\mathbb{R}_{+})$ , $(\kappa_{\lambda}u)(t)=\lambda^{1}\mathrm{z}u(\lambda t)$ , $\lambda\in$

$\mathbb{R}_{+}$ , where

$\mathcal{W}^{s}(\mathbb{R}^{q}, H^{s}(\mathbb{R}_{+}))=H^{s}(\mathbb{R}^{q}\cross \mathbb{R}_{+})=H^{s}(\mathbb{R}^{q}\cross \mathbb{R})|_{\mathrm{R}^{q}\mathrm{x}\mathbb{R}_{+}}$.

Parallel to the edge spaces we have spaces of operator-valued symbols

$S_{(\mathrm{c}1)}^{\mu}(U\cross \mathbb{R}^{q};E,\tilde{E})$ ,

$U\subseteq \mathbb{R}^{\mathrm{p}}$ open (subscript “(c1)” means classical or non-classical), associated with
$E$ , $\{\kappa_{\lambda}\}_{\lambda\in \mathrm{R}}+\mathrm{a}\mathrm{n}\mathrm{d}\tilde{E}$, $\{\tilde{\kappa}_{\lambda}\}_{\lambda\in \mathrm{R}}+\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ are Hilbert spaces with given strongly con-
tinuous groups of isomorphisms. $S^{\mu}(U\cross \mathbb{R}^{q};E,\tilde{E})$ is defiend to be the subspace
of all $a(y, \eta)\in C^{\infty}(U\cross \mathbb{R}^{q}, \mathrm{C}(\mathrm{E},\tilde{E}))$ such that

$||\tilde{\kappa}_{(\eta\rangle}^{-1}\{D_{y}^{\alpha}D_{\eta}^{\beta}a(y, \eta)\}\kappa_{\langle\eta\rangle}||_{\mathcal{L}(E,\tilde{E})}\leq c\langle\eta\rangle^{\mu-|\beta|}$

for all $y\in K$ for arbitrary $K\subseteq\subset U$ , y7 $\in \mathbb{R}^{q}$ , $\alpha\in \mathrm{N}^{p}$ , $\beta$ $\in \mathrm{N}^{q}$ , with constants
$c=(\alpha,\beta, K)>0$ .

Classical symbols are based on “twisted homogeneity”, that is arelation of
the form

$f(y, \lambda\eta)=\lambda^{\nu}\tilde{\kappa}_{\lambda}f(y, \eta)\kappa_{\lambda}^{-1}$, (4)

$\lambda\in \mathbb{R}_{+}$ , $(y, \eta)\in U\cross(\mathbb{R}^{q}\backslash \{0\})$ , for afunction $f(y,\eta)\in C^{\infty}(U\cross(\mathbb{R}^{q}\backslash$

$\{0\})$ , $\mathrm{C}(\mathrm{E},\tilde{E}))$ . Asymbol $a(y, \eta)$ is said to be classical of order $\nu$ , if there
are elements $a_{(\mu-j)}(y, \eta)\in C^{\infty}(U\mathrm{x}(\mathbb{R}^{q}\backslash \{0\}), \mathcal{L}(E,\tilde{E}))$ that are homogeneous
of order $\mu-j$ in the above-mentioned sense, $j\in \mathrm{N}$ , such that for any excision
function $\chi(\eta)$

$a(y, \eta)-\chi(\eta)\sum_{j=0}^{N}a_{(\mu-j)}(y, \eta)\in S^{\mu-(N+1)}(U\cross \mathbb{R}^{q};E,\tilde{E})$

for all $N\in \mathrm{N}$ .
Abstract edge Sobolev spaces based on strongly continuous groups of is0-

morphisms on aparameter space $E$ have been introduced in [24] in connection
with edge pseud0-differential operators, cf. also Section 4below.

4The edge algebra
Let us set

$\mathcal{W}^{s,\gamma}(X^{\wedge}\cross \mathbb{R}^{q}):=\mathcal{W}^{s}(\mathbb{R}^{q}, \mathcal{K}^{s,\gamma}(X^{\wedge}))$ . (5)
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It can be proved that then

$H_{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}}^{s}(X^{\wedge}\cross \mathbb{R}^{q})\subset \mathcal{W}^{s,\gamma}(X^{\wedge}\cross \mathbb{R}^{q})\subset H_{1\mathrm{o}\mathrm{c}}^{s}(X^{\wedge}\cross \mathbb{R}^{q})$

for all $s$ , $\gamma\in \mathbb{R}$ .
The spaces of type (5) can be globally defined on amanifold $W$ with edges

$\mathrm{Y}\subset W$ . By this we understand atopological space (locally compact, para-
compact) such that $W\backslash \mathrm{Y}$ and $\mathrm{Y}$ are $C^{\infty}$ manifolds of dimensions $n+1+q$
and $\mathrm{g}$ , respectively, and every $y\in \mathrm{Y}$ has aneighbourhood $V$ in $W$ such that
there is ahomeomorphism $\overline{\alpha}$ : $Varrow X^{\Delta}\cross$ $\Omega$ for aclosed compact $C^{\infty}$ man-
ifold $X$ and open $\Omega\subseteq \mathbb{R}^{q}$ , where $\overline{\alpha}$ : $Varrow X^{\Delta}\cross\Omega$ induces diffeomorphisms
$\overline{\alpha}|_{V\backslash Y}=:\alpha:V\backslash \mathrm{Y}arrow X^{\wedge}\cross\Omega$ and $\overline{\alpha}|_{V\cap \mathrm{Y}}=:\alpha’$ : $V\cap \mathrm{Y}arrow\Omega$ (such an $\overline{\alpha}$ is called
asingular chart), and the transition maps $\beta\alpha^{-1}$ for different $\alpha:V\backslash \mathrm{Y}arrow X^{\wedge}\cross\Omega$ ,
$\beta$ : $V\backslash \mathrm{Y}arrow X^{\wedge}\cross\overline{\Omega}$ extend to diffeomorphisms

$\overline{\mathbb{R}}_{+}\cross X\cross\Omegaarrow\overline{\mathbb{R}}_{+}\cross X\cross\Omega$.

For simplicity, let us assume here that $\mathrm{Y}$ has aneighbourhood in $W$ correspond-
ing to $X^{\Delta}\cross \mathrm{Y}$;then the transition maps $(r, x, y)arrow(\overline{r},\overline{x},\tilde{y})$ may (and will) be
chosen to be independent of $r$ and $x$ for small $r$ . Instead of $W$ we mainly look
at the stretched manifold W.

By definition $\mathrm{W}$ is asmooth manifold with boundary, where the local struc-
ture near $\partial \mathrm{W}$ is given by $\overline{\mathbb{R}}_{+}\cross X\cross\Omega$ and (under our assumption) $\partial \mathrm{W}\underline{\simeq}X\cross \mathrm{Y}$.
There is then acanonical projection $\mathrm{W}arrow W$ that is adiffeomorphism int $\mathrm{W}$ $arrow$

$W\backslash \mathrm{Y}$ and locally near $\partial \mathrm{W}$ induced by $\overline{\mathbb{R}}_{+}\cross X\cross\Omegaarrow X^{\Delta}\cross\Omega$ . Locally near avv
we employ the splitting of variables into $(r, x, y)$ with covariables $(\rho, \xi, \eta)$ . Local
symbols are assumed to be edge-degenerate, i.e., of the form $r^{-\mu}p(r,$ $x$ , $y$ , $\rho$ , $\xi$ , $\eta\rangle$ ,
where

$p(r,x, y, \rho,\xi, \eta)=\overline{p}(r,x, y,r\rho, \xi, r\eta)$

for aclassical symbol $\overline{p}(r, x, y, \overline{\rho}, \xi,\overline{\eta})$ of order $\mu\in \mathbb{R}$ that is smooth up to $r=0$.
Assume, for simplicity, $\mathrm{W}$ to be compact. Then, using the local spaces (5)

we can invariantly define weighted Sobolev spaces $\mathcal{W}^{s,\gamma}(\mathrm{W}, E)$ of sections in
vector bundles $E$ on W. The bundles are assumed to be pull-backs of bundles
on $W$ under the projection $\mathrm{W}arrow W$ . There is then arestriction $E’$ of the former
bundle to Y. Analogously, we employ the notation with prime for other bundles
on $\mathrm{W}$ of the described kind.

The pseud0-differential algebra on $\mathrm{W}$ consists of block matrix operators of
the form

a $=(\begin{array}{ll}A KT Q\end{array})$ :
$H^{s}(\mathrm{Y}, J^{-})\oplusarrow$ $H^{s-\mu}(\mathrm{Y}, J^{+})\oplus$

,
$\mathcal{W}^{s,\gamma}(\mathrm{W}, E)$ $\mathcal{W}^{s-\mu,\gamma-\mu}(\mathrm{W},F)$

where $E$ , $F\in \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}(\mathrm{W})$ , $J^{-}$ , $J^{+}\in \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}(\mathrm{Y})$ . The upper left corner $\mathrm{u}.1.\mathrm{c}.A=A$ is
apseud0-differential operator with edge-degenerate symbol, plus certain Mellin
and Green operators. The principal symbol structure consists of apair

$\sigma(A)=(\sigma\psi(A), \sigma_{\wedge}(A))$ ,

where $\sigma_{\psi}(A)$ is the principal interior symbol, $\sigma_{\wedge}(A)$ the principal boundary sym-
bol. Let us illustrate the nature of the symbols for the case of edge-degenerate
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differential operators. Locally near Y in stretched coordinates (r,x,$y)\in \mathbb{R}_{+}\cross$

$X\cross\Omega$ they are assumed to be of the form

A
$=r^{-\mu} \sum_{j+|\alpha|\leq\mu}a_{j\alpha}(r,$

y) $(-r \frac{\partial}{\partial r})^{j}(rD_{y})^{\alpha}$

where $a_{j\alpha}(r,y)\in \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{f}^{\mu-(j+|\alpha|)}(X;E_{y}’, F_{y}’)$ with smooth dependence on $(r, y)\in$

$\overline{\mathbb{R}}_{+}\cross\Omega$ .
$\sigma\psi(A)(r,x, y, \rho,\xi,\eta)$ (in local coordinates $x$ on $X$ with covariables 4) is the

standard homogeneous principal symbol, where

$\sigma\psi,\mathrm{f}(A)(r,x, y, \rho,\xi,\eta):=r^{\mu}\sigma\psi(A)(r,x, y, r^{-1}\rho,\xi, r^{-1}\eta)$

is smooth up to $r=0$ . Globally, $\sigma\psi,\mathrm{f}(A)$ has an invariant meaning as ahom0-
morphism

$\sigma_{\psi,\mathrm{f}}(A)$ : $\pi_{\mathrm{W},\mathrm{f}}^{*}Earrow\pi_{\mathrm{W},\mathrm{f}}^{*}F$, (6)

$\pi \mathrm{w},\mathrm{r}$ : $T_{\mathrm{f}}^{*}\mathrm{W}\backslash 0arrow \mathrm{W}$, where $T_{\mathrm{f}}^{*}\mathrm{W}$ is the compressed cotangent bundle of W.
Moreover, the homogeneous principal edge symbol of $A$ is given by the expres-
sion

$\sigma_{\wedge}(A)(y, \eta)=r^{-\mu}\sum_{j+|\alpha|\leq\mu}a_{j\alpha}(0, y)(-r\frac{\partial}{\partial r})^{j}(r\eta)^{\alpha}$.

It represents ahomomorphism

$\sigma_{\wedge}(A)$ : $\pi_{\mathrm{Y}}^{*}\mathcal{K}^{s,\gamma}(X^{\wedge})\otimes E’arrow\pi_{\mathrm{Y}}^{*}\mathcal{K}^{s-\mu,\gamma-\mu}(X’)$ $\otimes F’$ , (7)

$\pi_{\mathrm{Y}}$ : $T^{*}\mathrm{Y}\backslash \mathrm{O}arrow \mathrm{O}$ . The operator A is said to be $\sigma\psi$-elliptic, if (6) is an
isomorphism (note that this is required uP to $\partial \mathrm{W}$).

Theorem 5Let $A$ be $\sigma\psi$ -elliptic. Then for every $y\in \mathrm{Y}$ there exists a countable
set $D(y)\subset \mathbb{C}$ such that $D(y)\cap\{z:c\leq{\rm Re} z\leq c’\}$ is finite for every $c\leq c’$ ,
such that

$\sigma_{\wedge}(A)(y, \eta)$ : $\mathcal{K}^{s,\gamma}(X^{\wedge})\otimes E_{y}’arrow \mathcal{K}^{s-\mu,\gamma-\mu}(X^{\wedge})\otimes F_{y}’$ (8)

is a Fredholm operator for all $\gamma\in \mathbb{R}$ such that $\Gamma_{\frac{\prime\iota+1}{2}-\gamma}\cap D(y)=\emptyset$, for all s $\in \mathbb{R}$ .

Remark 6 $D(y)$ is the set of all non-bijectivity points of the principal conormal
symbol of $\sigma_{\wedge}(A)(y,\eta)$ , regarded as an operator of Fuchs type on the cone $X$ ’,
namely

$\sigma_{M}(A)(y, z):=\sigma_{M}(\sigma_{\wedge}(A))(y,$z)

$:= \sum_{j=0}^{\mu}a_{j0}(0,y)z^{j}$ : $H^{s}(X)$ C& $E_{y}’arrow H^{s-\mu}(X)\otimes F_{y}’$ .

We now assume that there is a $\gamma\in \mathbb{R}$ such that $\Gamma_{\frac{n+1}{2}-\gamma}\cap D(y)=$ for all
$y\in \mathrm{Y}$ . Similarly to methods in pseud0–differential boundary value problems
we fill up the Fredholm family (8) to afamily of isomorphisms

$\sigma_{\wedge}(A)(y, \eta)=(_{\sigma_{\wedge}(T)}^{\sigma_{\wedge}(A)}$ $\sigma_{\wedge}(K)\sigma_{\wedge}(Q))(y, \eta)$ : $\oplus$ $\oplus$

$\mathcal{K}^{s,\gamma}(X^{\wedge})\otimes E_{y}’arrow \mathcal{K}^{s-\mu,\gamma-\mu}(X^{\wedge})\otimes F_{y}’$

$J_{y}^{-}$ $J_{y}^{+}$
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homogeneous in the sense

$\sigma_{\wedge}(A)$ ( $y$ , Aq) $=\lambda^{\mu}$ $(\begin{array}{ll}\kappa_{\lambda} 00 \mathrm{l}\end{array})$ $\sigma_{\wedge}(A)(y, \eta)$
$(\begin{array}{ll}\kappa_{\lambda} 00 \mathrm{l}\end{array})$ (10)

for all $(y, \eta)\in T^{*}\mathrm{Y}\backslash \mathrm{O}$ , A $\in \mathbb{R}_{+}$ . Analogous considerations are possible for edge-
degenerate pseud0-differential operators $A$ . Implicitly we assume that acertain
topological condition on $\sigma\psi(A)$ is fulfilled, $\mathrm{i}.\mathrm{e}.$

) that bundles $J^{-}$ , $J^{+}\in \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}(\mathrm{Y})$

can be chosen such that (9) are isomorphisms. In general, if that condition is
violated, we can only choose the bundles $J^{\pm}$ to be given on $T^{*}\mathrm{Y}\backslash \mathrm{O}$, whereas
in (9) they are given on $\mathrm{Y}$ itself, cf. the remarks at the end of Section 5below.

Consider the $(1, 2)$ , $(2, 1)$ and $(2, 2)$-entries of (9) in local coordinates $\Omega\cross \mathbb{R}^{q}$ ,
$\Omega\subseteq \mathbb{R}^{q}$ open. Then, multiplying them by an excision function $\chi(\eta)$ in $\mathbb{R}^{q}$ we get
corresponding entries of a2 $\cross$ $2$-matrix $g(y, \eta)$ classical operator-valued symbols
$g(y, \eta)=(g_{ij}(y, \eta))_{i,j=1,2}$ ,

$g(y, \eta)\in S_{\mathrm{c}1}^{\mu}(\Omega\cross \mathbb{R}^{q};\mathcal{K}^{s,\gamma}\otimes \mathbb{C}^{e})\oplus \mathbb{C}^{j_{-}}$, $(\mathcal{K}^{\infty,\gamma-\mu+\epsilon}\otimes \mathbb{C}^{f})\oplus \mathbb{C}^{j}+)$ , (11)

$s\in \mathbb{R}$ , where, for simplicity, $X^{\wedge}$ is omitted in the spaces $e$ , $f$ and $j_{\pm}$ are the
fibre dimensions of $E$ , $F$ and $J^{\pm}$ , respectively, and $\epsilon$ $>0$ . Associated pseud0-
differential operators Op(g)u(y) $= \iint e^{i(y-y’)\eta}g(y, \eta)u(y’)dy’d\eta$ give us (after a
globalisation by means of apartition of unity on $\mathrm{W}$ and $\partial \mathrm{W}$ ) continuous maps

$\mathcal{W}^{s,\gamma}(\mathrm{W}, E)$ $\mathcal{W}^{s-\mu,\gamma-\mu}(\mathrm{W}, F)$

$A=(\begin{array}{ll}A KT Q\end{array})$ :
$H^{s}(\mathrm{Y}, J^{-})\oplusarrow$ $H^{s-\mu}(\mathrm{Y}, J^{+})\oplus$

(12)

for all $s$ (the upper left corner is the given edge-degenerate operator $A$ itself).

Remark 7In general, $e.g.$ , in compositions of operators of the form (12) or
in parametrices (of elliptic operators) eve have to replace $A$ in the upper left
corner by $A+M+G$, where $M$ is $a$ “smoothing” Mellin operator and (locally)
$G=\mathrm{O}\mathrm{p}(g_{11})$ , where $g_{11}(y, \eta)$ is a sO-called Green symbol that appears as an
upper left corner of a symbol of the form (11).

The details of the calculus of operators of the kind (12) show that it is reason-
able to further specify the nature of the entries of (11) by requiring symbols with
values that map to subspaces of $\mathcal{K}^{\infty,\gamma-\mu}(X^{\wedge})\oplus \mathbb{C}^{j}+\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ specific asymptotics
in the first component and that the pointwise formal adjoints have analogous
properties.

An operator

$A=$ $(\begin{array}{ll}A+hI+G KT Q\end{array})$ (13)

of the described kind, where, in general, $A$ is a(classical) pseud0-differential
operator with edge degenerate symbols (in local coordinates near $\partial \mathrm{W}$) is said
to belong to the space $\mathcal{Y}^{\mu}(\mathrm{W}, g;v)$ , where $g=(\gamma, \gamma-\mu)$ are the involved
weight data and $v=(E, F;J^{-}, J^{+})$ the bundles. (Weight strips $\Theta$ in $g$ as
they are used in other expositions on edge degenerate operators are omitted,
here; we simply assume that those strips equal $(-\infty, 0]$ , i.e., they are then
superfluous. Operators of this form constitute what we call the edge algebra
(that is, the union of all $\mathcal{Y}^{\mu}(\mathrm{W},g;v)$ over $\mu\in \mathbb{R}$ and weight and bundle data

11
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where algebra operations are admitted when these data fit together. To each
$A=(A_{ij})_{i,j=1,2}\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ we have apair of principal symbols, namely

$\sigma(A)=(\sigma_{\psi}(A), \sigma_{\wedge}(A))$ ,

where \^a (A) $:=\sigma\psi(A_{11})$ is the homogeneous principal pseud0-differential sym-
bol of order $\mu$ of the upper left corner; it has aFuchs type variant $\sigma\psi,\mathrm{r}(A)$ ,
cf. formula (6), and $\sigma_{\wedge}(A)$ is the “

$\kappa_{\lambda}$ -homogeneous”principal edge symbol of
order $\mu$ that is ahomomorphism of the form (9) satisfying relation (10) (the
choice of $s$ is unessential).

Theorem 8Let A $\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ for g $=(\gamma, \gamma-\mu)$ , v $=(E, F;J^{-}, J^{+})$ and
$\sigma(A)=0$ implies that (12) is compact for every s $\in \mathbb{R}$ .
Theorem 9 $A\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ , $B$ $\in \mathrm{e}\mathrm{F}(\mathrm{W}, h;w)$ for $g=(\gamma-\nu, \gamma-(\mu+\nu))$ , $v=$
$(E_{0}, F;J_{0}, J^{+})$ , $h=(\gamma, \gamma-\nu)$ , $w=(E, E_{0;}J^{-}, J_{0})$ implies $AB\in \mathcal{Y}^{\mu+\nu}(\mathrm{W};g\circ$

$h;v\mathrm{o}w)$ , where $\mathit{9}\circ h=(\gamma, \gamma-(\mu+\nu))$ , $v\circ w=(E, F;J^{-}, J^{+})$ , and ette have

$\sigma(AB)=\sigma(A)\sigma(B)$

(with componentwise multiplication).

Remark 10 The edge algebra is also closed under formal adjoints $A^{*}$ with
respect to the $\mathcal{W}^{0,0}-and$ $H^{0}$ -scalar products and we have a corresponding $mle$

$\sigma(A^{*})=\sigma(A)^{*}$ .
The basics on edge operators are elaborated in [25], [6] or [28]. Anew version

of edge symbol calculus is given in [10].

Definition 11 An operator $\in \mathrm{e}\mathrm{F}(\mathrm{W},$ g;v) is said to be elliptic if both $\sigma\psi,\mathrm{r}(A)$

and $\sigma_{\wedge}(A)$ are isomorphisms.

The condition concerning $\sigma_{\wedge}(A)$ is an analogue of the ShapirO-Lopatinskij
condition in elliptic boundary value problems.

Remark 12 Smooth manifolds with boundary may be regarded as manifolds with
edges, where the boundary is interpreted as an edge and the inner normal (with
respect to a Riemannian metric) as the model cone of the local wedge. Classical
symbols that are smooth up to the boundary may be viewed (modulo smoothing
symbols) as particular edge-degenerate ones. So the calculus of boundary value
problems for pseudO-differential operators with and without the transmission
property can be regarded as a subcalculus of the edge algebra in general.

Theorem 13 Let $A\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ where $g=(7,7-\mu)$ , $v=(E, F;J^{-}, J^{+})$ .
Then the following conditions are equivalent

(i) $A$ is elliptic,

(ii) $A$ is a Fredholm operator (12) for some $s\in \mathbb{R}$ .

Remark 14 If (12) is Fredholm for s $=s_{0}\in \mathbb{R}$ then so is for all s $\in \mathbb{R}$ .
Remark 15 If $A\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ is elliptic, there is a parametrix $\mathcal{P}\in \mathcal{Y}^{-\mu}(\mathrm{W},g^{-1}$

where $g^{-1}=(\gamma-\mu,\gamma)$ , $v^{-1}=(F, E;J^{+}, J^{-})$ , in the sense that I $-A\mathcal{P}$ and
I $-PA$ are of $order-\infty$ in the respective classes (and as such compact in our
weighted edge Sobolev spaces)

12
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The assertion (i) $arrow(\mathrm{i}\mathrm{i})$ of Theorem 13 as well as Remarks 14, 15 may be
found in [28]. The converse $(\mathrm{i}\mathrm{i})arrow(\mathrm{i})$ has been proved in [2].

Remark 16 Let $A\in \mathcal{Y}^{\mu}(\mathrm{W},g;v)$ be elliptic, and let

$et\in \mathcal{W}^{-\infty,\gamma}(\mathrm{W}, E)\oplus H^{-\infty}(\mathrm{Y}, J^{-})$ .

Then $Au=f\in \mathcal{W}^{s-\mu,\gamma-\mu}(\mathrm{W}, F)\oplus H^{s-\mu}(\mathrm{Y}, J^{+})$ implies

$u\in \mathcal{W}^{s,\gamma}(\mathrm{W}, E)\oplus H^{s}(\mathrm{Y}, J^{-})$ .

An analogous result holds for subspaces with asymptotics, $i.e.$ , when the first
component of $f$ has (say, continuous) edge asymptotics near $\mathrm{Y}$ then the first
component of $u$ has asymptotics, too, of some type that is determined by $f$ and
the operator, cf. [25].

5Higher algebras on manifolds with geometric
singularities

As noted in the beginning (pseud0-) manifolds with geometric singularities such
as conical points, edges, boundaries, corners, etc. play arole in many applica-
tions. Let us first give alist of examples of “regular” singular spaces that directly
occur in models of mechanics, theoretical physics, etc., and let us describe the
principal symbol hierarchies in corresponding algebras. If we talk about degen-
erate symbols we refer to stretched coordinates near the singularities.

(i) Closed manifolds $B$ with conical singularities. Symbols of operators $A$ in
the “cone algebra” are

$\sigma(A)=(\sigma\psi(A), \sigma_{M}(A))$ (14)

where $\sigma\psi(A)$ is the Fuchs type homogeneous principal symbol outside
the singularity and $\sigma_{\mathrm{A}I}(A)$ is the principal conormal symbol (the latter is
operator-valued and takes values in pseud0-differential operators on the
base $X$ of the cone), cf. [23], [25], [27], [40], [17].

(ii) Manifolds $B$ with boundary and conical singularities. Symbols of opera-
tors $A$ in the cone algebra of boundary value problems are

$\sigma(A)=(\sigma\psi(A), \sigma_{\partial}(A),$ $\sigma_{M}(A))$ , (15)

where a(A), $\mathrm{c}\mathrm{r}\mathrm{M}(\mathrm{A})$ are analogues of the corresponding components in
(14) while $\sigma_{\partial}(A)$ is the boundary symbol (which is operator-valued and
acts in Sobolev spaces in normal direction to the boundary, if we talk
about the transmission property at the smooth part of the boundary), cf.
[21], [22], [5].

(iii) Closed manifolds $W$ with edges. Operators constitute the “edge algebr\"a; ;
aparticular case is the algebra of boundary value problems without the
transmission property. Symbols of operators $A$ in the edge algebra are

$\sigma(A)=(\sigma\psi(A), \sigma_{\wedge}(A))$ ;
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here $\sigma\psi(A)$ is the edge-degenerate homogeneous principal symbol and
$\sigma_{\wedge}(A)$ the homogeneous principal edge symbol. It takes values in operators
in weighted Sobolev spaces on the infinite model cone, cf. [25], [6], [28],
[27].

(iv) Manifolds W with boundary and edges. Symbols of operators A in the
edge algebra of boundary value problems are

$\sigma(A)=(\sigma\psi(A), \sigma_{\partial}(A),$ $\sigma_{\wedge}(A))$ , (16)

where subscripts indicate the meaning of components as before, cf. [12],
[31], [9].

(v) Manifolds $K$ with corners (that are locally cones where the base manifolds
have also conical singularities. There are then one-dimensional edges con-
necting the corner singularities.) Let $A$ be an element in the corresponding
“corner algebr\"a. The corner induces acorner conormal symbol comp0-
nent $\mathrm{a}\mathrm{c}(\mathrm{A})$ that takes values in the cone algebra of the local base of the
corner, while the other symbol components have asimilar meaning as
before, and we have

$\sigma(A)=(\sigma\psi(A),\sigma_{\wedge}(A),$ $\sigma_{\mathrm{c}}(A))$ (17)

for the boundaryless case,

$\mathrm{a}(\mathrm{A})=(\sigma\psi(A),\sigma_{\partial}(A),\sigma_{\wedge}(A),\sigma_{\mathrm{c}}(A))$ (18)

where $K$ has aboundary, where, in particular, the homogeneous principal
symbol \^a A) is corner degenerate in both cases (and, for boundary value
problems, has the transmission property with respect to the smooth part
of the boundary), cf. [26], [31], [30], [18], [36].

In general, if $M$ is astratified space in the sense of notation in Section 1,
there is ageneral method of building up higher analogues of the edge and cor-
ner algebras of pseud0-differential operators by an iterative method. Details
are published [30]. The idea consists of repeatedly applying amachinery, called
“conification” and “edgification” of an already achieved calculus. Conification
yields acalculus on acone, starting from an already constructed calculus on
a(compact) base space with singularities. Edgification yields acalculus on a
wedge, starting from an already constructed calculus on acone. Invariance con-
siderations and patching together such local calculi gives us operator algebras
globally on manifolds with singularities that are locally modelled by correspond-
ing local cones and wedges. Then the procedure can start again, and we reach
in this way the full hierarchy of operator algebras on stratified spaces. The
construction in [30] assumes acertain regularity of the singularities in the sense
of some transversality of intersections of faces near lower-dimensional strata.
The cuspidal case should be possible as well. Special such theories for cuspidal
cones, wedges or corners have been elaborated in [37], [34].

Aresult of [30] is that each conification step contributes an extra “conormal
symbol” and an extra weight in the Sobolev spaces. Each edgification step
contributes additional edge conditions along the new arising edge and anew
symbol that encodes ahigher analogue of the ShapirO-Lopatinskij condition in
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the elliptic case. Ellipticity of edge conditions in such asense requires that
acertain topological obstruction vanishes. This is analogous to the Atiyah-
Bott condition in boundary value problems, cf. Atiyah and Bott [1], Boutet
de Monvel [3], Rempel and Schulze [19], Seeley [39], or the author’s joint paper
with Sternin and Shatalov [35]. The methods developed in Schulze [29] may also
be applied to edge singularities, cf. the author’s joint paper with Seiler [32].

Let us finally note that ellipticity in operator algebras with symbol hierar-
chies gives rise to many interesting new elements of the index theory, and it is a
very ambitious program to express the Fredholm index in terms of the symbol
structure. This is awide field with contributions by many authors, cf. the
papers [7], [33], [8], [9], [20], [16] and the references there.

References
[1] M.F. Atiyah and R. Bott, The index problem for manifolds with boundary,

Coll. Differential Analysis, Tata Institute Bombay, Oxford University Press,
1964, pp. 175-186.

[2] S. Behm, PseudO-differential operators with parameters on manifolds with
edges, Ph.D. thesis, University of Potsdam, 1995.

[3] L. Boutet de Monvel, Boundary problems for pseudO-differential operators,
Acta Math. 126 (1971), 11-51.

[4] M. Dreher and I. Witt, Edge Sobolev spaces and weakly hyperbolic operators,
Math. Research Note 2000-009, Institute of Mathematics, University of
Tsukuba.

[5] Ju. V. Egorov, V. Kondratiev, and B.-W. Schulze, On the completeness of
eigenfunctions of elliptic boundarry problems in a domain with conical points
on the boundary, Preprint, Institute for Mathematics, Potsdam, 2001, (in
preparation).

[6] Ju. V. Egorov and B.-W. Schulze, PseudO-differential operators, singular-
ities, applications, Birkh\"auser Verlag, Basel, 1997.

[7] B.V. Fedosov, B.-W. Schulze, and N.N. Tarkhanov, On the index of elliptic
operators on a w edge, J. Funct. Anal. 157 (1998), 164-209.

[8] B.V. Fedosov, B.-W. Schulze, and N.N. Tarkhanov, On the index fomula
for singular surfaces, Pacific J. Math. 191, 1(1999), 25-48.

[9] B.V. Fedosov, B.-W. Schulze, and N.N. Tarkhanov, Analytic index for mulas
for elliptic corner operators, Preprint 2000/25, Institute for Mathematics,
Potsdam, 2000.

[10] J.B. Gil, B.-W Schulze, and J. Seiler, Cone pseudO-differential operators
in the edge symbolic calculus, Osaka J. Math. 37 (2000), 219-258.

[11] D. Kapanadze and B.-W. Schulze, Boundary value problems on manifolds
with exits to infinity, Preprint 2000/06, Institute for Mathematics, Pots-
dam, 2000, Rendiconti del Seminario Matematico dell’Universita’ e del p0-
litecnico di Torino (to appear)

15



REFERENCES

[12] D. Kapanadze and B.-W. Schulze, Crack theory and edge singularities,
Preprint, Institute for Mathematics, Potsdam, 2000.

[13] V.A. Kondrat’ev, Boundary value problems for elliptic equations in d0-
mains with conical points, Trudy Mosk. Mat. Obshch. 16 (1967), 209-292.

[14] T. Krainer and B.-W. Schulze, Long-time asymptotics for parabolic opera-
tors in the pseudodifferential cone algebra approach, Preprint 99/12, Insti-
tute for Mathematics, Potsdam, 1999.

[15] R. Lauter and J. Seiler, Pseudodifferential analysis on manifolds with
boundary -a comparison of $b$ -calculus and cone algebra, Advances in
Partial Differential Equations (Approaches to Singular Analysis) (J. Gil,
D. Grieser, and Lesch M., eds.), Oper. Theory Adv. Appl., Birkh\"auser
Verlag, Basel, 2001 (to appear).

[16] M. Lesch, Operators of Fuchs type, conical singularities, and asymptotic
methods, Teubner-Texte zur Mathematik, vol. 136, B.G. Teubner Verlags-
gesellschaft, Stuttgart-Leipzig, 1997.

[17] R.B. Melrose and G.A. Mendoza, Elliptic operators of totally characteristic
type, Preprint, MSRI, 1983.

[18] V.S. Rabinovich, B.-W. Schulze, and N. Tarkhanov, Boundary value prob-
lems in domains with corners, Preprint 99/19, Institute for Mathematics,
Potsdam, 1999.

[19] S. Rempel and B.-W. Schulze, Index theory of elliptic boundary problems,
Akademie-Verlag, Berlin, 1982.

[20] G. Rozenblum, On some analytical index formulas related to operator-
valued symbols, Preprint 2000/16, Institute for Mathematics, Potsdam,
2000.

[21] E. Schrohe and B.-W. Schulze, Boundary value problems in Boutet de Mon-
vel’s calculus for manifolds with conical singularities I, Advances in Par-
tial Differential Equations (PseudO-Differential Calculus and Mathematical
Physics), Akademie Verlag, Berlin, 1994, pp. 97-209.

[22] E. Schrohe and B.-W. Schulze, Boundary value problems in Boutet de Mon-
vel ’s calculus for manifolds with conical singularities If Advances in Partial
Differential Equations (Boundary Value Problems, Schr\"odinger Operators,
Deformation Quantization), Akademie Verlag, Berlin, 1995, pp. 70-205.

[23] B.-W. Schulze, Ellipticity and continuous conormal asymptotics on mani-
folds with conical singularities, Math. Nachr. 136 (1988), 7-57.

[24] B.-W. Schulze, PseudO-differential operators on manifolds with edges, Sym-
posium “Partial Differential Equations”, Holzhau 1988, Teubner-Texte zur
Mathematik, vol. 112, Teubner, Leipzig, 1989, pp. 259-287.

[25] B.-W. Schulze, PseudO-differential operators on manifolds with singulari-
ties, North-Holland, Amsterdam, 1991

16



REFERENCES

[26] B.-W. Schulze, The Mellin pseudO-differential calculus on manifolds with
co ners, Symposium: “Analysis in Domains and on Manifolds with Sin-
gularities” , Breitenbrunn 1990, Teubner-Texte zur Mathematik, vol. 131,
Teubner, Leipzig, 1992, pp. 208-289.

[27] B.-W. Schulze, PseudO-differential boundary value problems, conical singu-
larities, and asymptotics, Akademie Verlag, Berlin, 1994.

[28] B.-W. Schulze, Boundary value problems and singular pseudO-differential
operators, J. Wiley, Chichester, 1998.

[29] B.-W. Schulze, An algebra of boundary value problems not requiring
ShapirO-Lopatinskij conditions, Preprint 99/24, Institute for Mathematics,
Potsdam, 1999, J. Funct. Anal, (to appear).

[30] B.-W. Schulze, Operator algebras with symbol hierarchies on manifolds with
singularities, Advances in Partial Differential Equations (Approaches to
Singular Analysis) (J. Gil, D. Grieser, and Lesch M., eds.), Oper. Theory
Adv. Appl., Birkh\"auser Verlag, Basel, 2001 (to appear).

[31] B.-W. Schulze, Operators on corner manifolds, J. Wiley, (in preparation).

[32] B.-W. Schulze and J. Seiler, A Toeplitz analogue of the edge algebra,
Preprint, Institute for Mathematics, Potsdam, 2001 (to appear).

[33] B.-W. Schulze, B. Ju. Sternin, and V. Shatalov, On the index of differential
operators on manifolds with conical singular ities, Ann. Global Anal. Geom.
16 (1998), 141-172.

[34] B.-W. Schulze, B.Ju. Sternin, and V.E. Shatalov, An operator algebra on
manifolds with cusp-type singular ities, Preprint MPI 96-111, Max-Planck-
Institut, Bonn, 1996.

[35] B.-W. Schulze, B.Ju. Sternin, and V.E. Shatalov, On general boundarry
value problems for elliptic equations, Sbornik:Mathematics189,10 (1998),
1573-1586.

[36] B.-W. Schulze and N. Tarkhanov, Pseudodifferential operators on manifolds
with corners, Preprint 2000/05, Institute for Mathematics, Potsdam, 2000.

[37] B.-W. Schulze and N.N. Tarkhanov, Ellipticity and parametrices on man-
ifolds with cuspidal edges, Geometric Aspects in Partial Differential Equa-
tions (B. Booss-Bavnbeck and K. Wojciechowski, eds.), Contemporary
Mathematics, vol. 242, Amer. Math. Society, Providence, R.I., 1999,
pp. 217-256.

[38] B.-W. Schulze, M.I. Vishik, I. Witt, and S.V. Zelik, The trajectorry at-
tractor for a non-linear elliptic system in a cylindrical domain with piece-
utise smooth boundary, Rendiconti Accademia Nazionale delle Scienze detta
dei XL Memorie di Matematica e Applicazioni 117, vol. XXIII, fasc. 1,
pp. pagg. 125-166.

[39] R. Seeley, Topics in pseudO-differential operators, C.I.M.E. Conference
on pseud0-differential operators, Stresa 1968 (Cremonese, Rome), 1969,
pp. 167-305.

17



REFERENCES

[40] J. Seiler, The cone algebra and a kernel characterization of Green operators,
Advances in Partial Differential Equations (Approaches to Singular Anal-
ysis) (J. Gil, D. Grieser, and Lesch M, eds.), Oper. Theory Adv. Appl.,
Birkh\"auser, Basel, 2001 (to appear).

[41] I. Witt, Non-linear hyperbolic equations in domains with conical points,
existence and regularity of solutions, Math. Research, vol. 84, Akademie
Verlag, Berlin, 1995

18


