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Edge Sobolev Spaces,
Weakly Hyperbolic Equations, and
Branching of Singularities

MICHAEL DREHER and INGO WITT *

Summary
Edge Sobolev spaces are proposed as a main new tool for the in-
vestigation of weakly hyperbolic equations. The well-posedness of the
linear and the semilinear Cauchy problem in the class of such edge
Sobolev spaces is proved. Applications to the propagation of singu-
larities for solutions to semilinear problems are considered.

1 Introduction

We consider the two semilinear Cauchy problems

Lu= f(u)1 (3:‘!1)(0, z) = u.‘i(z)v j=01, (11)
Iu= 00 tV), @05 =), =01 (12

where L is the weakly hyperbolic operator

L= 63 +2 Zn: A(t)c]‘(t)agazj - i /\(t)’a.-j(t)az‘az,

+ YN0, + cot) (13)

with coefficients a;;, b;, c; belonging to C®([—Tp, To), R) and A(t) = t* with
some I, € N, ={1,2,3,...}.
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1 INTRODUCTION

The variables ¢ and z satisfy (,z) € '[0, Ty) x R*; in the end of this paper we
will also consider the case (t,z) € [~To, To] X R*. The operator L is supposed
to be weakly hyperbolic with degeneracy for ¢ = 0 only, i.e.,

n 2 n
(E Ci(t)ﬁj) + Y a6 > ale, o0 >0, V(t,8).
s |

i,j=1

The choice of the exponents of ¢ in (1.3) reflects so—called Levi conditions
which are necessary and sufficient conditions for the C* well-posedness of
the linear Cauchy problem, see [8], [10]. If, for instance, the t-exponent of
the coefficient of 3;; were less than I, —1, the linear Cauchy problem for that
L would be well-posed only in certain Gevrey spaces, see [14].

We list some known results. The Cauchy problems (1.1), (1.2) are lo-
cally well-posed in C*([0,T], H*(R")) for s large enough ([9], [10]) and
C*([0, T], C=(R™)) ([1], [2])- |
Furthermore, singularities of the initial data may propagate in an astonishing
way: in [11], it has been shown that the solution v = v(t, z) of

Lv=vyg — v — (dm+1)v, =0, meN, (1.4)

with initial data v(0, z) = uo(z), v:(0,z) = 0 is given by
m
v(t,3) = Y Cjmt? (Huo)(z +1°/2), Cjm #0. (1.5)
=0

This shows that singularities of uy propagate only to the left.
Taniguchi and Tozaki discovered branching phenomena for similar operators
in [15]. They have studied the Cauchy problem

Vg — 13 gy — bt lv, =0, (Bv)(-1,2) =uj(z), j=0,1,

and assumed that the initial data have a singularity at some point zo. Since
the equation is strictly hyperbolic for ¢ < 0, this singularity propagates,
in general, along each of the two characteristic curves starting at (-1, o).
When these characteristic curves cross the line ¢ = 0, they split, and the
singularities then propagate along four characteristics for ¢ > 0. However, in
certain cases, determined by a discrete set of values for b, one or two of these
four characteristic curves do not carry any singularities.

The function spaces C*([0,T), H*(R*)) and C*([0,T],C*(R")), for which
local well-posedness could be proved, have the disadvantage that their ele-
ments have different smoothness with respect to ¢ and z. We do not know
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any previous result concerning the weakly hyperbolic Cauchy problem stat-
ing that solutions belong to a function space that embeds into the Sobolev
spaces Hf,.((0,T) x R"), for some s € R, under the assumption that the
initial data and the right-hand side belong to appropriate function spaces of
the same kind.

In this paper, solutions to (1.1) and (1.2) are sought in edge Sobolev spaces,
a concept which has been initially invented in the analysis of elliptic pseudo-
differential equations near edges, see [7], [13].

The operator L can be written as L = t~#P(t,1d;, A(t)d;), where A(t) =
fo A(t') dt’ and P(t,7,£) is a polynomial in 7, £ of degree u = 2 with coeffi-
cients depending on ¢ smoothly up to t = 0. Operators with such a structure
arise in the investigation of edge pseudodifferential problems on manifolds
with cuspidal edges, where cusps are described by means of the function
A(t). The singularity of the manifold requires the use of adapted classes of
Sobolev spaces, so—called edge Sobolev spaces.

We shall define edge Sobolev spaces H*%*((0,T) x R*), where s > 0 denotes
the Sobolev smoothness with respect to (¢,z) for ¢t > 0 and § € R is an
additional parameter. More precisely, we have continuous embeddings

Homp(Ry X R®)| 0.1, pe © H¥¥((0, T) x R")
loc(Ri- X R”)l(OT)xgn

The elements of the spaces H***((0,T) x R*) have different Sobolev smooth-
ness at ¢ = 0 in the following sense: There are traces 7;, 7;u(z) = (8])(0, z),
with continuous mappings

1
l‘ + 1

73t HY2((0,T) x R*) — H*-Pitbll—b2(Rr) g =

for all j € N, j < s—1/2. This reflects the loss of Sobolev regularity observed
when passing from the Cauchy data at ¢ = 0 to the solution. Namely, (1.5)
shows that ug € H**™(R) implies v(¢,.) € H*(R) only, since Cpm # 0.

This phenomenon has consequences for the investigation of the nonlinear
problems (1.1), (1.2). The usual iteration procedure giving the existence
of solutions for small times cannot be applied in the case of the standard
function space C([0, T'], H*(R")), since we have no longer a mapping which
maps this Banach space into itself.

However, it turns out, that the iteration approach is applicable if we employ
the specially chosen edge Sobolev spaces H*%((0,T) x R*). Roughly speak-
ing, the iteration algorithm does not feel the loss of regularity, because it has
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2 EDGE SOBOLEV SPACES

been absorbed in the function spaces. The idea to choose a special function
space adapted to the weakly hyperbolic operator has also been used in (3],
[4], and [12].

Our results are the following. We claim the H*%((0, T') x R*) well-posedness
of (1.1) and (1.2). In Section 4, we consider the hyperbolic equation from
(1.1), but with data prescribed at ¢ = —T;, and show that the strongest
singularities of the solution u propagate in the same way as the singularities
of the solution v solving Lv = 0 and having the same initial data as u for
t = —T. The propagation of the singularities of v was discussed in [15]. The
proofs of the results mentioned here can be found in [5] and [6].

2 Edge Sobolev Spaces

Details on the abstract approach to edge Sobolev spaces can be found, e.g.,
in [7], [13]. Proofs of the results listed here are given in [5].

2.1 Weighted Sobolev Spaces on R
We say that u = u(t) € H*%(R,), s€ N, § € R, if-

||u||§¢.,a(n+) = E‘/o It_s(tat)k’ll,(t”2 dt < O0.

k=0
For arbitrary s, € R, this Mellin Sobolev space #**(R,.) can be defined by
means of interpolation and duality, or by the requirement that

1 2 2, .
— 2)“|Mu(z)]|*dz < oo,
5 R“___1/2“6() |Mu(z)]

where Mu(z) = [ t*~'u(t) dt denotes the Mellin transform. (Both norms
coincide if s € N.) Furthermore, the space C35,,(R,.) is dense in H**(R,).
We introduce the notations

: v € H'(R"™™)}, n>0,

H'R, x R") = {oly o0
Hi([R, x R*) = {v € H*(R"*"): suppv C R, xR"}, n >0,

SR, xR*) = {U|R+XIR": ve SR}, n>0.

Ezample 2.1. For s > 0, H3(R,) = HY(R:) N H**(R, ).

Definition 2.2. Let s > 0, § € R and w € C*®(R;) be a cut—off function
close to t = 0, i.e., supp w is bounded and w(t) = 1 for ¢ close to 0. Then the
cone Sobolev spaces H***(R, ), H**(R,) are defined by

HA(R,) = {wuo + (1 - w)ur: up € H'(R,), m € H*A(Ry)},

2
”“||w.5(1g+) =
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2.2 The Spaces H***(R, x R")

Hy"(R,) = {wuo + (1 - wur: uo € HY(R,), w € HP™(R,)},

where Z{d;,cf;l\(ll}_ })l = P00 (R+) M 22 (s +1)+61 (R+) The space H”";’\(R.,_) is
equipped with the norm

”“"gp.m(g‘,_) = IIw'uollip(m + 11 - w)u1l|;¢o.u.m)nﬂ..aa.+1)+az.(g+) .

2.2 The Spaces H*%*(R, X R")

Definition 2.3. Let E be a Hilbert space and {x, },>o be a strongly contin-
uous group of isomorphisms acting on E with k,&,» = Ky, for v, ' > 0 and
k1 =idg. For s € R, the abstract edge Sobolev space W*(R"; (E, {k},>0))
consists of all u € S'(R®; E) such that 4 € L2 (R"; E) and

11 (1) = o €% I 80E) [ < .

Definition 2.4. Let s > 0, § € R Then we define the group {x{"'},50 by
kOw(t) = VP3P (1P1), v >0,

where 8 =1/(l, + 1), and set
HHA (R, x BY) = W (R (HYA(R, ), (59),50)),
Hy Ry x RY) = W* (R™; (Hy ™ (R,), {£7}>0))-

Proposition 2.5. (a) S(R,; x R®) is dense in H**(Ry x R*).

(b) For every fized § € R, {H***(R, x R*): s > 0} forms an interpolation
scale with respect to the complez interpolation method.

(c) Ifl, =0, then H*(R, x R*) = H*(R, x R).
(d) We have the continuous embeddings
Hmp(Ry X R*) C H**?(R, x R*) C H{{ (R x R").
The spaces H***(R, x R*) admit traces at ¢ = 0 in the following sense.

Proposition 2.6. Let s >0, € R Then, for eachj €N, j <s- 1/2, the
map S(R; x R*) = S(R"), u— (8{u)(0, z), extends by continuily to a map

T H"J;A(R... X R"') -5 Ha—ﬂj+ﬂ&l.—ﬂ/2(Rn)_
Furthermore, we have a surjective map

H R, xR = [ B AH8RRY), ue {ru}i, 1
j<s—1/2

38



2 EDGE SOBOLEV SPACES

Proposition 2.7. For s > 0, § € R, the following maps are continuous:
(a) 3y: HYWAR, x RY) - HSHAR, x R*);

(b) ¢: H*A(R, x R*) —» H*H/LAR, xR") forl=0,1,...,1,;

(c) Oz : HH WA (R, x R*) = H** R, x R*) for 1 < j < m;

(d) p: H**A (R, x R*) = H** (R, x R*) for each ¢ = ¢(t) € S(R,).
Here t' means the operator of multiplication by t'. Similarly for .

2.3 The Spaces H*%((0,T) x R™)

For T > 0, we set H*%*((0,T) x R*) = H*% (R, x Rﬂ)l(or)xnn and equip
this space with its infimum norm. There is an alternative description of this
space provided that s € N.

Lemma 2.8. Let s€ N, § € R and T > 0. Then the infimum norm of the
space H***((0,T) x R") is equivalent to. the norm ||.||, 5., where

s T
2 = T2l—1 2 - 2
lull? .7 g [0 /R 3.0 Bta(z, &) de dt,

(€Al 0Lt <t

191(t7 E) = {(E)s—l)\(t)—b'—-l 7 T.

Here we have introduced the notation te = (€)%, B=1/(l. +1).
Lemma 2.9. Fors, s’ >0,6,0 €R, andT > 0,

H**((0,T) x R*) C H*¥*((0,T) x R*)
if and only if s > 8/, s+ Bol, > & + Bo'l,.

The two conditions on s are related to the fact that the elements of the edge
Sobolev spaces have different smoothness for ¢ > 0 and ¢ = 0, respectively.

The following result provides a criterion when the superposition operators
defined by the right-hand sides of the hyperbolic equations in (1.1) and (1.2)
map an edge Sobolev space into itself. This result is related to the fact that
the usual Sobolev spaces are Banach algebras for sufficiently high smoothness.

Proposition 2.10. Let f = f(u) be an entire function with f(0) = 0, i.e,
flu) =372, fjw for allu € R. Assume that |s|+6 > 0 and min{|s], |s] +
Bbl} > (n+2)/2. Then there is, for each R > 0, a constant C,(R) with the
property that

If @, 50 < CL(B) llull, 57» 1 (@) = FO), 50 < CL(R) llu = vll, 57
provided that u,v € H***((0,T) x R") and ||ul|, 57 < R, ||v|l, 517 < R.
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3 Linear and Semilinear Cauchy Problems

Our considerations start with the linear Cauchy problem
Lu(t,2) = f(t,2),  (B{w)(0,2) =w;(z), j=0,L (3.1)

We introduce the number

Qo = 1 +sup IE (—b;(0)¢; + ¢i(0)&;)] (3.2)

§ 2\/(2 CJ(O 63)2 + Zl,] aij (O)Ei{‘l

and fix Ag = Qoh/(ls + 1) = AQolh.

Theorem 3.1. Lets, Q€ R, s>1,Q > Qo Further let wy € H*tA(R"),
w; € H**4-#(R"), and f € H"I'Q"'“((O T) x R*), where A = BQl,. Then
there is a solution w € H*92((0,T) x R*) to (3.1). Moreover, the solution
w s unigque in the space H*9%2((0,T) x R").

Remark 8.2. The parameter Ay describes the loss of regularity. The explicit
representations of the solutions for special model operators in [11] and [15]
show that the statement of the Theorem becomes false if A < A,.

Theorem 3.3. Let s € N and assume that min{s, s + SQol.} > (n + 2)/2,
where Qo be the number from (3.2). Suppose that f = f(u) is an entire
Junction with f(0) = 0. Let Q > Qo and A = BQl,. Then, for uy €
H*+A(R"), u) € H*t4-8(R™), there is a number T > 0 with the property that
a solution u € H*9*((0,T) x R*) to the Cauchy problem (1.1) ezists. This
solution u is unique in the space H*9°*((0,T) x K).

Theorem 3.4. Let s € N and assume that s — 1 > (n + 2)/2. Suppose
that f = f(u,v,vy,...,v,) is entire with f(0,...,0) = 0. Let Q > Qo
and A = BQl,. Then, for uy € H*tA(R"), u; € H**A-A(R"), there is a
number T > 0 with the property that a solution u € H*9*((0,T) x R")
to the Cauchy problem (1.2) ezists. This solution u is unique in the space
H*Q0A((0,T) x R*).

Eventually, we state a result concerning the propagation of mild singularities.

Theorem 3.5. Let s satisfy the assumptions of Theorem 3.3. Assume ug €
H*+AQol(R*), u; € H’+5Q°“‘5(R“) where Qo is given by (3.2). Let v be
the solution to

Lv=0, (8{v)(0,z)=u(z), j=0,1. (3.3)
Then the solutions u,v € H*9%}((0,T) x R*) to (1.1) and (3.3) satisfy
uw—1v € H*PA0M((0, T) x R").
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4 BRANCHING PHENOMENA

Ezample 3.6. Consider Qi Min—You'’s operator L from (1.4). Then [, =1,
= 1/2, and Qp = 2m. Theorems 3.1, 3.3, and 3.5 state that the solutions
u, v to (1.1), (3.3) satisfy

u, v € H**™*((0,T) xR), u—ve H*/22mA((0,T) x R)
if ug € H*+™(R), u, € H**™'/2(R). Proposition 2.5 then implies

u, v€ H ((0,T)xR), u—veHI?(0,T) xR).

loc

We find that the strongest singularities of u coincide with the singularities
of v. The latter can be looked up in (1.5) in case u; = 0.

4 Branching Phenomena for Solutions to
Semilinear Equations

In this section, we consider the Cauchy problems

flw),  (Bfu)(~To,z) =ews(z), j=0,1, (41)
Lv =0, (&v)(-To,z) = ewj(z), j=0,1, (4.2)

with L from (1.3), and we are interested in branching phenomena for singu-
larities of the solution ». Our main result is Theorem 4.2. ,
We know, e.g., from the example of Qi Min—You that we have to expect a loss
of regularity when we pass from the Cauchy data at {¢ = 0} to the solution
at {t # 0}. However, we also will observe a loss of smoothness if we prescribe
Cauchy data at, say, t = —Tp and look at the solution for ¢ = 0.

Definition 4.1. Let s > 0, § € R. We say that u € H*%*((—T,T) x R*)
if u(t,z) € H’“((O T) x R*), u(—t,z) € H***((0,T) x R*), and u(t,) —
u(—t,z) € HX**((0,T) x R*).

Let s_,s, > 0,6_,0, € Rand suppose that s_+80_1, = s, +B04L., 8, < s_.
We say that u € H*-*+8-#+}((=T,T) x R*) if u € H*+*+*((-T,T) x R*)
and u(—t,z) € H*-%-*((0,T) x R*). We define the norm by

lu(t, )| gro- #4880 ((~T,T)xR")

= |lu(t, )| gor s oyxmn) + [8(=1 T)|| go- -0, 1)xRm) -

This choice of the norm is possible, since H*-*-*((0,T) x R*) C
H3+5+2((0,T) x R*), compare Lemma 2.9.
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The next theorem relates branching phenomena for the semilinear problem
(4.1) with branching phenomena for the linear reference problem (4.2). This
relation between a semilinear Cauchy problem and an associated linear refer-
ence problem has already been discussed in Example 3.6. The explicit repre-
sentations of solutions in [15] show that the statements about the smoothness
of solutions in the following theorem are optimal.

Theorem 4.2. Let L be the operator from (1.3), Qo be the number from
(3.2), and suppose that min{|s. |, [s+|+BQ:L} > (n+2)/2, |5+]+Q+ >0,
8+ 21, where Q. = Qo, Q- = -1 —Qy, and s, = s_ + BQ_Il, — BQLL..
Assume that wy € H*- (R™), w; € H*-"}(R"), and that f = f(u) is an entire
function with f(0) = f'(0) = 0.

Then there is an g9 > 0 such that for every 0 < € < gy there are unique so-
lutions u,v € H*-*+9-Q+}((=T,, Ty) x R") to (4.1) and (4.2), respectively,
which, in addition, satisfy

u—v€E Ha-+ﬂ,n++ﬂ,0-,0+;4\((_To’ To) x R*). (4.3)

Remark 4.3. Due to (3.2), Qo > —1/2, which is equivalent to s, < s_. If
84+ = 8_, no loss of regularity occurs when we cross the line of degeneracy.
The case of a linear hyperbolic operator with this property and countably
many points of degeneracy (or singularity) accumulating at ¢ = 0 has been
discussed in [16].
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