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The Borel Sum of Divergent Barnes
Hypergeometric Series and its Application
to a Partial Differential Equation

Kunio Ichinobe (T%E #{5k)
Graduate School of Mathematics, Nagoya University

(ZLBEMEMRR, £ HBAE)

1 Introduction and Results

We shall treat of the divergent Barnes hypergeomtric series ,Fp,_; (p < q) which is defined

by
a 2. (@), 2™
1.1 F,_(a;v;2) = F,_ 12 ] = ———, z€C(,
(1.1) oFp-1(a;7; 2) qpl(,y ) 2 (),
where a = (a1,-++,04) € C% v = (y1,---,%-1) € CP~! and we use the following
abbreviations

q

(@n =11, ()= T O

£=1

with (¢), = I'(c+n)/T(c) (c € C) and T' denotes the Gamma, function.

Throughout this paper, we assume v; ¢ Z, for all j to make sense of this series and
we also assume oy & Zo for all j to avoid the trivial case where Z<o = {0, -1, -2, ---}.

We are concerned with the Borel summability of this divergent series (1.1). In the
previous papers [Ich] and [MI], we gave an explicit form of the Borel sum of this divergent
series (1.1) and its analytic continuation around the origin, which were given by a linear
conbination of ,Fy_;. The explicit formula of the Borel sum means the rediscovery of
Barnes original one obained in [Bar], from the view point of Borel summability. In the
proof of previous papers we employed the Barnes type integral representation for the
generalized hypergeometric function which is Borel transform of the divergent series (1.1).

In this paper we shall give another proof by employing the Euler integral representation
for the same function.

Before stating our results, we shall prepare some notations and definitions (cf. [Bal]).

Forde€ R, >0 and p (0 < p < 00), we define a sector S = S(d, 5, p) by
S(d,B,p) :={z€C;|d— argz| < g,O < |2| < p},

where d, 3 and p are called the direction, the opening angle and the radius of S (d, B, p),
respectively.
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For k > 0, we define that 4(z) = Y32, un2" belongs to C[[2]]1/x, which is called the
formal power series of Gevrey order 1/k, if there exist some positive constants C' and K
such that for any n we have

lug| < CK™T (1 + %) .

Let k > 0, 4(z) = 3020 5 un 2" € Cl[z]l1/x and u(z) € O(S). Here O(S) denotes the set
of holomorphic functions on a sector S. Then we define that

u(z) = 4(2) in S,

if for any closed subsector S’ of S, there exist some positive constants C' and K such that
for any N we have

u(z) — z_l Up2"

n=0

< CKM|2MT (1 + %) , z€8.
For k > 0, d € R and 4(z) € C[[2]li/x, we define that @(z) is k-summable in d

direction or Borel summable for short if there exist a sector S = S(d, 8, p) with 8 > 7 /k
and u(z) € O(S) such that u(z) = @(z) holds in §.

Remark 1

(i) If B < 7/k, then there are infinitely many u’s satisfying u(z) = 4(z) in S(d, 8, p)
for any d and some p > 0.

(i) If B > m/k, then a function u(z) as mention above does not exist in general, but
it is unique if it does exist. In this sense such a function u is called the Borel sum of @ in
d direction, or the Borel sum for short.

In what follows, we use the following abbreviations.

a+s=(+sa;+8,,0;+8)€CI, &= (01, ,Q_1,%41, ", Q) € ci Y
q q
() =[] T(a), T(&5)= [I T(cs).
=1 t=1,tj

Now we put f(2) = (Fp—1(ct;¥; 2) € C[[2]]q-p. Then our first result is stated as follows.

Theorem 1.1 (Borel sum)
Assume that o; — a; € Z (i # j). Then f(z) is 1/(q — p)-summable in any direction
d such that d # 0 (mod 27) and its Borel sum f(z) is given by
Coy [ T(a+s)[(-5)
2mi J1 T(v+s)
9 ) - —1)P¢
CMZCQ‘Y(J) x (_Z)—a,-pF_l ( aja1+a.7 Y ,£L> ,

= 1+aj—aj A

12)  f(2)

(—z)fds
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where z € S(m, (¢ — p + 2)m, o0) and

_ Iy o _ Do) (@ — o)
(1.3) Coay = T(o)’ Coy(j) = CETA
Here the path of integration I Tuns from —ioco to +i00 on the imaginary azis in such a
manner that the poles of I'(a + s) are on the left side of I and the poles of I'(—s) are on
the right side of I.

Next, our result for the analytic continuation of the Borel sum f is stated as follows.

Theorem 1.2 (Analytic Continuation of Borel sum)
Under the same assumptions as in Theorem 1.1, we have

S={() = f(ze™)
_ Cyy Ia +s) s
- 2mi iT(v+s)T(1 + s)z ds

q Ca y o ) 14+ a; — —1)P¢
_ Ca’YZ +(5) P ( Q; a;j—v  (=1) ) ’
=1

(1.4)

"~ T(oy)T(1 — ) R

where z € S(0, (g — p)m,00) and Cqy, Coy(j) and the path of integration I are the same
ones as in Theorem 1.1, respectively.

Remark 2 In the case o; — a; € Z for some 7 and j, we can prove the similar results to
Theorems, where the logarithmic terms appear (see [Ich]).

2 Proof of Theorem 1.1

In order to prove Theorems we use the following lemma for the Borel summability.

Lemma 2.1 Let k > 0, d € R and 4(z) = T2 gun2™ € C[[z]]li/x. Then the following
three propositions are equivalent:
(1) @(2) is k-summable in d direction.

(2) Let g(C) be the formal k-Borel transformation of 4(z)

2.) 90 = (Be)(©) = 3 rr <™

which is holomorphic in a nighbourhood of { = 0. Then g({) can be continued analytically
in S(d, e, 00) for some positive constant € and satisfies a growth condition of exponential
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order at most k there, that is, there exist some positive numbers C and 6 such that we
have

(2.2) 19(¢)I < Cexp{8[¢|*}, ¢ € S(d, e, 0).

In this case, the Borel sum u(z) is obtained after an analytic continuation of the following
Laplace integral

(2.3) u(z) = (Lxg)(2) := ;12/000(‘1) e_(C/")kg(()d(C")

where z € S(d, 3, p) with B < 7/k and p > 0 and the path of integration is taken from 0
to oo along the half line of argument d.

(3) Let j >2 and ky > 0,---,k;j > 0 satisfy 1/k = 1/ky + --- + 1/k;. Let h({) be the
following iterated formal Borel transformations of 4(z)

(2.4) h(¢) = (B, o+ 0 By,3)(().

Then h({) holds the same properties as g({) above. In this case, the Borel sum u(z) is
obtained after an analytic continuation of the following iterated Laplace integrals

(2.5) u(z) = (Lg; 0+ - 0 Ly, h)(2).

The equivalence of (i) and (ii) is given in [Bal] and the equivalence of (iii) with others
is proved in [Miy].

Proof of Theorem 1.1. Let h(({) be the (g—p) times iterated formal 1-Borel transformations
of f(2)

(26) MO = GO = o L, %1 56).

This series is convergent in |{| < 1. Then we can see that h({) € O (C\ [1,00)) and h(¢)
has at most polynomial growth as { — oo, because h(() satisfies a Fuchsian equation with
singular points {0,1,00}. Therefore f(z) is 1/(g — p)-summable in any direction d such
that d # 0 (mod 27) and the Borel sum f(z) is given by the following iterated Laplace
integrals and its analytic continuation

_ 1 foo(d) S 1 foo(d) 82
(2.7) f(z) = ;_/0 exp (——z-) dsl—/o exp( 3_1) dsg---

81
' oo(d) oo(d)
ex — / exp (—s"""l)dsq—p—l - / exp (-— S )h(C)dC,
Sq-p-2 70 Sq-p-2 Sq-p-1 70 Sq-p-1

where d = arg{ = args; # 0 (mod 27) and |d — arg z| < /2. By a change of variables

(28) —=u, —=U2 -y, T =Up-1, = Ug—p,)
2 51 Sq-p-2 Sq-p-1
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oo(a) 00(0) 00(0) _
(2.9) f(z) = / e “duy / e “duy - - - /0 e " ?h(uz)du,—p,
0 0

where a = d —argz (Ja| < 7/2) and v = u; - ug - - - Ug—p.
To caluclate these integrals, we employ the Euler integral representation of h({) which
is given by

—1 -2
(2.10)  R() = C H/ ;%9711 — t;)" ™ 1dt; H/O ;4971 = t;) " dt;
j=1"0 j=p
1
X / tq_laq—l_l(l - tp_l)—aq—l(l - t()_athq_l,
0
where t =t; - t5---t,_; and

r r(1
(2.11) Co= — @) ) .
j=1 F(aj)r(’)’j - aj) Hj:p I‘(aj)I‘(l - O‘j)
Here in order to make sense of these integrals in (2.10), we assume the following integra-
bility conditions

(212) Rey;>Reo; >0(j=1,---,p—1), 0<Req;<1(j=p,---,q—1).

Moreover we assume )
(2.13) 0<Reqg,<1.

We remark that we can remove such restrictions at the end of proof.
Then we obtain the following fundamental formula for the Borel sum

00(0) 00(0) oo(0)
(2.14) f(2) = Cy / e “duy / e “dug--- / e Y rdu,_p
: 0 0 0
p—-1 -1 1
x ] f t; %71 —t;)% %t I / t; %71 — ;) dt
§=1"0 j=p”"

oo(a)
X / e (1 — tuz)"*du,.
0

In order to calculate the last integral, we give the following lemma.

Lemma 2.2 Let 0 < Re 8 < 1. Then we have
u By — (6 - —2)8
(2.15) /0 e (1 — zu)Pdu = o /TI‘(ﬂ + s)['(s + 1)I'(—s)(—z)*ds,

where a = (d —argz) (0 < d < 27) with |a| < 7/2 and the path of integration I runs
from k —i00 to Kk + to0 with —Re B < k < 0.
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Proof of Lemma 2.2. First, we notice

(2.16) (1-zu)? = {F('B } /I‘(ﬂ+s)F( s)(—zu)’ds.

Therefore by substituting this formula into the left side of (2.15) and exchanging the order
of integration, we obtain the conclusion. )
By using Lemma 2.2 and exchanging the order of integrations in (2.14), we have

(2.17) f(2) = 207:; _T(1+ s)I'(ag + 8)I'(—s)(—2)°ds

oo(O) co(0) 00(0)

X / e "uy’duy / e "uz’dug - - - / e Py, ldug_p
0 0 0
p-1

XH/ ta_,—1+s 7,-aj—ldt H/ ta_,—1+.9(1 ) a’dt

Coy I‘(a + s)I'(—s)
2ms I'(y +s)

( )sds7

where C,, is the constant given by (1.3). Here the path of integration I; runs from
K1 — 100 t0 K3 + 100 with — min{e;} < k; < 0 and it is possible to take such ;. Finally,
by changing the path of integration I, into I in Theorem 1.1, we can remove the restriction
(2.12) and (2.13) for the parameters o and 4, so we obtain the desired first formula (1.2)
of integral representation for the Borel sum. In addition, by residue theorem, we obtain
the desired the second formula (cf. [Ich, Theorem 2.1}). O

3 Proof of Theorem 1.2

Proof of Theorem 1.2. From (2.14), we get the following formula
omi 0o(0) —ug 00(0) —us o(0) _
(3.1) f(2)— f(ze*™) = Co/ e du2/0 e du;;---/o e Yrdu,_,
X ]'[/ ;%1 (1 —t;)W % dt; 1'[/ ;%71 (1 — t;) "% dt;

j=1
X — e (1 - tuz)"%duy,.
/c'+(tu1z) ( ) !
where the path of integration C,(X) with X = tujz starts at co on argu; = —arg X,

encircles the point u; = X! in the positive direction and returns to the starting point.
In order to calculate the last integral, we give the following lemma.
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Lemma 3.1 Let 0 < Re 8 < 1. Then we have
oo(a) o
(3.2) /c+(z) e (1 —zu)Pdu = /0 e {(1 —2u) P —(1- zuez’“)‘ﬁ} du

1 s
'I—‘(—ﬂ‘)' /,I,I‘(ﬂ + S)Z dS,

where a and the path of integration I are the same ones as in Lemma 2.2, respectively.

Proof of Lemma 3.1. Since we notice that (1 — zu)~? is univalent in u on |u| < |z|, we

can prove (3.2) in the same manner as in Lemma 2.2. O
By using Lemma 3.1 and exchanging the order of integrations in (3.1), we have
2mi Co s e~ %ig
(33) £(2) = £ = Fek5 / (e + s)z ds Hf s du,
j=2

-1
X H/ £ 271 — ) N de H/ £ 710 (1 — ;) dt,
=170 i=p”°

INa+s)
IR T(y+s)I(1+s)

Z2°ds,

where the path of integration I, is the same one as in (2.17). Therefore, by changing the
path of integration, we can remove the restriction (2.12) and (2.13) for the parameters.
This is the desired first formula (1.4) of integral representation and by using residue
theorem we obtain the desired second formula (cf. [Ich, Theorem 2.2]). O

4 Appliction to a Partial Differential Equatioh

In this section, we shall give an application to a partial differential equation of Theorem
1.2. Let us consider the following Cauchy problem.

{ Ofu(t, z) = Ou(t, z),

(4.1) u(0,z) = p(z), FHu(0,z)=0(1<j<p-1),

where t,z € C, p < q and the Cauchy data ¢(z) is holomorphic in a neighbourhood at
the origin.
This Cauchy problem has a unique formal power series solution in ¢-variable

4.2 alt, z () (1) —.
(4.2) )= r;)w )(pn)!

Miyake [Miy] proved that the formal solution (4.2) of (4.1) is Borel summable in
d direction in t-plane if and only if the Cauchy data ¢(z) satisfies the following two
conditions:
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(i) the Cauchy data ¢(x) can be continued analytically in g sectors
d + 2
(4.3) Qp, g d,¢) U S (” +q Y ,oo)

for some ¢ > 0.
(ii) the Cauchy data ¢(z) has the growth condition of exponential order at most

q/(g — p) in Q(p, ¢;d, €).

Under the above conditions, we get the integral representation of the Borel sum of
(4.2) by using the kernel function as follows.

Theorem 4.1 (Integral representation of Borel sum)
Under the conditions (i) and (ii) for the Cauchy data ¢(z), the Borel sum u(t,z) o
the formal solution (4.2) of the Cauchy problem (4.1) is given by

(4.4 uta)= [ @, Ok(t, )C,

where -

(4.5) ®(z,¢) = ;)go(z + (w?), w = exp(2mi/q),
j=

and the kernel function k(t, () is given by

_ m 1+j/g-p/p (-1)P7¢
40 k60 = SBE DaGIx A (1+a/q—(q/q), X )

j=0
where g
(4.7) - L%
and p = (1,2,---,p)’ q= (1,2,“',(1), qu___ P(p/p) Dm( ) = F((Q/Q)J'_j/Q)

I'(q/q)’ T(p/p—il9)
Proof of Theorem 4.1. Let v(s,z) be the (g — p) times iterated p-Borel transforms in
t-variable of the formal solution (4.2)

_ _ ) (z) s
(4.8) v(s, T) = (( B,)*~Paf., 33)) nZ_; (pn)! (nl)a-»’
By Cauchy’s integral formula, for sufficiently small |s| and |z| we have
_ Ly ger0E @ (#)"
(4.9) v(s,z) = 5~ }I(Cl—r ¢ nz_% (pn)!(nl)e—» ((q) «

_ 1 p(z+¢)
= m b T om0,

2w
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where 7 > /(q?/p?)|s?| and h(s,() = oFy-1(q/q;p/p,1,---,1;Y) with Y = ¢?/p? - sP /(9.
Here we notice that h(s, ) has ¢ smgular points in (- plane at q roots of (7 = (q?/p®)sP for
a fixed s # 0 with args = d. We put a = (q9/p®)/9sP/9 (the root with argument dp/q),
and we denote by [0, a] the segment joining the origin and a. Since we notice that h(s, ()
is univalent in C¢ \ U‘};},[O, aw’] (outside of ¢ segments), we can deform the contour of
integration for (4.9) as follows.

(4.10) o(s,3) = —— / welpd/a ‘I’(‘” <) {h(s,¢) = h(s, Cw)} de.

2me
Hence the Borel sum u(t, z) is given by the following iterated Laplace transforms of v(s, z)

(411)  u(tz) = (L) Pv(,2)) (1)

L L e 20
2w Jo ¢

This observation shows that the kernel function k(t, {) is given by

{1y (R(-,€) = h(-, Cw™)) } (D)dC.

(4.12) k(t,¢) = {((c )1PR) (-, ¢) = ((£p)7PR) (-, ¢w™) } (1)-

Now, we shall prove that the function h(s,{)/( is an iterated formal Borel transforms
of the formal solution of the following Cauchy problem for the adjoint equation

Bult, ¢) = (—9c)ult,C),
(4.13) { w(0,0) = 1/¢, Bu(0,0) =0 (1<j <p—1).

This Cauchy problem (4.13) has a unique formal solution

; _ (gn)! (t”>
(414 (00 = ;3 &
- ¢oh l(q i ﬁré) = o,

where X is given by (4.7). Let g(Y) = ((Bl)q—p f) (Y). Then we can see that

(4.15) g(Y) =h(s,¢), ((£1)*Pg) (X) = ((£,)*Ph(-, ) (2).

Hence, by letting f(X) be the Borel sum of f(X), we have f(X) = ((£1)9?g) (X) and
the Borel sum e(t, ¢) of &(t, () is given by

(4.16) e(t, ) = 77(X).
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Thus we can see that the kernel function k(t, ¢) is given by

(4.17) BtQ) = oeo{elt,O) — elt, (e}
1 1 27 — A94P q
= %xz{f(X)—f(Xe )b X =g/t

Therefore by using Theorem 1.2, we get the kernel function k(t, {) which is given by (4.6).
This completes the proof of Theorem 4.1. 0

References

[Bal] W. Balser, From Divergent Power Series to Analytic Functions, Springer Lecture
Notes, No. 1582, 1994.

[Bar] E. W. Barnes, The asymptotic expansion of integral functions defined by generalized
hypergeometric series, Proc. London Math. Soc., (2) 5 (1907), 59-116.

[Ich] K. Ichinobe, The Borel sum of Divergent Barnes Hypergeometric Series and its
Application to a Partial Differential Equation, to appear in Publ. Res. Inst. Math.
Sci. 37 no. 1.

[Miy] M. Miyake, Borel summability of divergent solutions of the Cauchy problem to non-
Kowalevskian equations, Partial differential equations and their applications (Wuhan,
1999), 225-239, World Sci. Publ. River Edge, NJ, 1999.

[MI] M. Miyake and K. Ichinobe, On the Borel summability of divergent solutions of

parabolic type equations and Barnes generalized hypergeometric functions, Strikaiseki
kenkytiisho Kdkyiroku, Kyoto Univ. No. 1158. (2000), 43-57.



