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CONVERGENCE OF FORMAL SOLUTIONS OF SINGULAR FIRST
ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF
TOTALLY CHARACTERISTIC TYPE

EHBRESTHERFEMER B B9 (AKIRA SHIRAI)
GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY

1. INTRODUCTION

Let (t,z) = (t1,... ,t4,Z1,... ,Tn) € C?x C" be (d+n)-dimensional complex variables
(d=>21,n>1).
We consider the following first order nonlinear partial differential equation:

’

d n
> aij(@)tidu+ Y bi(z)0z,u + c(z)u
ij=1 k=1

(1.1) 4 = }: dl(x)tl + fK+1(t, z,u, {6tju}7 {a’tku})a
=K

u(t, z) = O(|t|"),

\

where |t| = t; + - - - +tq, K is a fixed positive integer satisfying K > 2 and a,;(z), bx(z),
c(:c) and d;(z) are holomorphic in a neighbourhood of the origin, and fx.1(t,z,u, 7, §)
(r = (7;) € C?, £ = (&) € C") is also holomorphic in a neighbourhood of the origin
with the following Taylor expansion:

fK+1(t’x’ua T, E) = Z qurs(x)tpunré-s,

Ipl+Kg+(K-1)|r|+K|s|>K+1

where ¢ € Z>o = {0,1,2,...}, p = (p1,... ,pa) € (Zzo)d, r=(r,...,rqa) € (Z>0)?,
S = (31, e ,Sn) € (Zzo)n,

lpl=p1+-+pa, Irl=ri+---+ra, [s|=8514--+sn,
and
d d n
P = H tjpj’ = H Tjrj’ gs — H é-ks;c_

This eqauation seems to be a natural extension of totally characteristic type studied by
Chen-Tahara ([CT]) to several time-space variables.
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Here we remark that the assumption K > 2 implies 9,,u4(0,0) =0 (j = 1,2,...,d)
which assures that (0,0, u(0, 0), {8;,u(0, 0)}, {0,4(0,0)}) belongs to the domain of defi-
nition of fx11(t, z,u,T,§).

Now our first theorem is stated as follows:

Theorem 1. Let {)\;}4_; be the eigenvalues of the matriz (ai;(0)). We assume that
bp(z) #0 and b(0) =0 for k =1,2,... ,n, and let {ux}?_, be the eigenvalues of Jacobs
matriz of (bi(z),... ,ba(z)) at x = 0. Then the formal power series solution of (1.1)
exists uniquely and converges if the following conditions are satisfied:

There exists a positive constant og > 0, such that

d n
(1.2) Y Al + > pemi| > oo(Jl] +|m|)  (Poincaré condition),
=1 k=1
and
d n
(1.3) YNl + > memi +¢(0) #0  (Non-resonance condition)
i=1 k=1

hold for all (I,m) € (Zx0)® x (Zxo)™ with |l| > K and |m| > 0.
Remark 1. It is easy to show the following proposition.
The conditions (1.2) and (1.3) imply that

d n
> Aily + D ke +¢(0)] 2 o (|I] + m))
j=1 k=1

(1.4)

holds by some positive constant ¢ > 0 for all (I,m) € (Zx0)? x (Z>o)" with |I| > K and
|m| > 0. In the proof of Theorem 1, this condition will be used instead of (1.2) and
(1.3). O

Next, we consider the following general equation:

f(t, z,u(t,x), {Ou(t, )}, {0, ult,x)}) =0,

(1.5) ’
u(0,z) = 0.

Assumption 1. f(t,z,u,7,£) (7 = (1;) € C4%, € = (&) € C") is holomorphic in a

neighbourhood of the origin, and is an entire function in 7 variables for any fixed t, z, u

and £. Moreover we assume that
(1.6) £(0,2,0,7,0)=0

for x € C" near the origin and T € C4, which is a generalization of the definition of

singular equations defined in [MS].
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For the equation (1.5), we do not know whether or not the equation has a formal

solution in general. Therefore, we assume the following:

Assumption 2. The equation (1.5) has a formal solution of the form

(1.7) Zgo] i+ Y wmt's™ € C[lt, z]].

|l}>2,|m|>0

By the existence of a formal solution, {¢;(z)} satisfy the following system formally:

(1.8) f(0,2,0,{p;(z)},0) =0 (trivial relation),
and
(19) o flt,zu(t, ), (B ult )}, (B ult, )})

1 t=0

- Z—{m, 2.0, {23}, 0) + 20,20, {p,(2)}, Ola)
+Z oL(0,2,0 (@)} 032 @) =0, for i=1,2,....,d

The formal solution of this system is not convergent in general. Therefore, we assume

Assumption 3. The coefficients {¢;(z)} are all holomorphic in a neighbourhood of the
origin of C".

Remark 2. In the case d = 1 (d is the dimension of ¢ variables), a sufficient condition
for the formal solution of (1.9) to converge has been already obtained by Miyake-Shirai
[MS]. In the case d > 2, we give a sufficient condition for the formal solution of system
(1.9) to be convergent, which will be given by Theorem 3 in Section 5, but for a while
we consider the problem under Assumption 3 for simplicity of our arguments. O

Now we put a(z) = (0, z,0, {¢;(z)},0) for simplicity, and define

(1.10)
0? o*f n 92 op;
A5(0) = o3 (al) + (Do) + 3 5 (a(a) 52 ().
fori,j=1,2,...,d. Moreover we define
(1.11) Bi(z) := 6 ( (z)), fork=1,2,...,n

Remark 3. The functions Aij(:c) and By(x) correspond to a;;(z) and bg(z) in Theorem
1, respectively (see (1.13) below). O

Here we assume that the equation is of totally characteristic type, that is,
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Assumption 4. By(z) # 0 and Bx(0) =0, for k=1,2,... ,n.
Now our second theorem which is our main result is stated as follows:
Theorem 2. Suppose Assumptions 1, 2, 8 and 4. Let {/\j}f=l be the eigenvalues of
(A;;(0)), and let {ux}?r_, be the eigenvalues of Jacobi matriz of the vector (Bi(z)) at
z = 0. Then the formal solution (1.7) is convergent if the following condition is satisfied:
There exists a positive constant o > 0, such that,

n

112 >l + 3 pmi -+ 3 (a(0) > a1 + ),

k=1
holds for all (I, m) € (Z0)? x (Zxo)™ with |I| > 2, |m| > 0.
Remark 4. We put v(t,z) = u(t,z) — Z;-Ll @;(z)t; as a new unknown function. By
Assumptions 1, 2, 3 and 4, we can easily see that v(t,x) satisfies the equation of the

following form:

( d 8f
> Ay(z)t; 8t1v+ZBk x)0r, v + o 50 (a(z))v
i,j=1 k=1
(113) 3 = Z dl(x t + f3 t’xa’va {6tjv}’ {a’ckv})’
ji=2
u(t,z) = O([t]).

This is an equation considered in Theorem 1 in the case K = 2. Therefore, it is sufficient

to prove Theorem 1 in order to prove Theorem 2. O

2. REDUCTION OF THE EQUATION

As is mentioned in Remark 4, it is sufficient to study the equation (1.1).
By the assumption of Theorem 1,
)\1 51 M1 W1
A? 8b1,...,b) H2 e
(ai;(0)) ~ . 7 a_(__" ~ . ,
.. 6d—1 (1'1,... ..
)‘d Hn
where §;, vy =00r1(1<j<d-1,1<k<n-1).
Then by transforming the variables, (1.1) is reduced to the following form:

(2.1) (A+Aw(t,z) = Y afz)t + Zﬂn )t:0:,v + ¥(x)v

jll=K 1,7=1

+Z§0k al'kv+fK+1(t z,v,{0,,v}, {0, v}),
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with v(t,z) = O(|t|¥), where

d n
A= Z /\jtjatj + Z ,ukxkazk + C(O),
j=1 k=1

J._

d-1 n—-1
A= Z 5jtj8t,+1 + Z ukmkaxk“, :

j
and oy(x), Bij(z), 7(x) and ¢k (z) are holomorphic in a neighbourhood of the origin, and

satisfy Bi;(z) = O(|zl), ¥(z) = O(|z]) and @i(z) = O(|z/?), and fx41(t,z,u,7,€) is a
holomorphic function which has a similar Taylor expansion with fx,i(t,z,u, ,&).

In the following sections, we shall prove the existence and convergence of the unique
formal solution of (2.1).

3. PREPARATION TO PROVE THEOREM 1

Let C[t, 2] m be the set of homogeneous polynomial of degree L in t variables and of
degree M in z variables, that is,

Clt,zlLm = {fLM(t,$) = z fimt'z™

[l|=L, |m|=M

flmec}-

For the operator A + A, the following lemma holds:
Lemma 1. For all L > K and M > 0, the operator

A+A: Clt,zlpm — Clt,z)Lm

is invertible. Moreover, if the majorant relation fip(t,z) < F x (t; + - + tg)%(z1 +
o+ za)M (fm(z) € Clt, z]Lm, F > 0) holds, then we obtain the following majorant
relation:

(3.1) (A+A) M frm(t,T) < Fxti+-+t)(z+- - +2,)M,

C
L+ M
where C > 0 is a positive constant independent of L and M.

Proof. We define a norm of up (¢, z) € Clt, z]1 p by
llurml| := inf{C >0 | urm(t,z) K C(ty + -+ td)L(.’El + -+ xn)M}

We remark that C[t, z]. » becomes a Banach space by this norm.
First, by (1.4) it is easily checked that A is invertible on C[t, x| »s and
1
o(L+ M)

holds for the operator norm of A~ on Cl[t, z]. .

(3-2) IA7H] <
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Next, since urp(t, z) < |lurm||(t1 + -+ - + ta)“(z1 + - - - + z,)M, we have

d-1
Aurm(t,z) < D L|G| - [lurwl|(ty+ -+ +ta) (@ + -+ 2)™

ji=1
n—1
+ Z Mlvg| - [lurnml|(tr +--- + td)l‘(;p1 4.4 l‘n)M
k=1
< {Ba- pay 161+ M=), pax ) »

XHULM”(tl + - '+td)L(:L‘1 + .. +zn)M

Here we make a change of variables by t; = sj‘lrj, zr = € 1y, then 0; and vy (the
components of nilpotent part of Jordan canonical form) turns to €d; and evy, respectively.
Therefore, by choosing € sufficiently small, we may assume that the components of
nilpotent part are small enough. Hence we may assume that

o

(33) max léjl < _7 max Il/kl < m

j=1,...d-1 2(d — 1) k=1...,n-1

Then
o(L+ M)

2 ”uLM”(tl+"'+td)L(.’l‘1+---+zn)M

AULM(t, CL") <

holds, and we obtain
o(L+ M)
< ——,
laf < ==

Therefore, the operator norm of AA~! is estimated by

_ 1 o(L+M) 1
Y < ==-<1.
1A s T3 5 3 <

By using the Neumann'’s series, we can see that A + A is invertible and the norm of the

inverse operator is estimated by

2 1
A < Z
IA+2) 7 < Z 7=

which we want to prove since C = 2/ is independent of L and M. O

Now, we define some notations, which are used in the proof of Theorem 1.

Definition (1) Let (t,z) € C? x C" (d > 0, n > 0) be complex variables. For formal

power series f(t,z) = Y0, mi>0 fimt'z™, we define

Ifltz)= > |fimlt'z™

11120, |m|>0
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(2) Let (t,X) € C¢ x C (d > 0) be complex variables. For formal power series
F(t,X) = Zjyso, m>o0 fmt' XM, we define the shift operator S by

SHEX) = Y fuatix® = {EX)ZFE0)

t|=0, M>0 X

Remark 5. The following facts are easily shown:

o f(t,z) < |fI(¢ 2);
e If f(t,z) and g(¢, X) are convergent power series, then |f|(¢,z) and S(g)(t, X) are also

convergent. 0

4. PrROOF OF THEOREM 1

First, we prove a unique existence of formal power series solution.
Let

u(t,z) = Z Umtic™ = z up(t,x) = Z urm(t, T)

2K,\|m|20 Lz2K L>K,M2>0

be a formal solution of (2.1)‘, where

um(t,z) = Y. umt'a™ € Clt, z].u,
[l]=L,im|=M

ur(t,z) = Y w(z)t = Y urm(t, ).
=L M>0

We put P = A + A for simplicity. We substitute u(t,z) = X5k ur(t, ) into (2.1),

then we have the following recursion formula:

Pug(t,z) = 3 az)t + Z Bij (x)t:0y, uk (t, )
=K ‘ i,j=1
) +y(z)uk(t,z) + Z k()0 uk(t, ),
k=1
Pu(t, z) Z Bij(x)ti0ur(t, z) + v(z)ur(t, z) + ZSOk(x Oz, uL(t, x)
i,j=1 k=1
\ +GL(t’ z, {up}K$p<La {atjup}K§p<La {6xkup}KSp<L), for L > K,

where G (t,z,(,T,£) is a polynomial of (¢, ¢, T, §).
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First, we consider the case L = K. We substitute ug (¢, ) = X pr>0 ukam(t, z) into the

above recursion formula, we have

( PuKo(t,IL‘) = Z al(O)tl,
l|l=K
d M
£ P’U,K]u(t, l‘) = z OZINI(.’L')tl—f' Z Z fj(x)tiatjuK,M_p(t, iL')

ll|=K i,j=1p=1

M n M

+ Z VP (z)uk,m—p(t, T) + Z Z ‘Pi(x)amkuK,M—pﬂ(u ),
\ p=1 k=1p=2

where we put

a(z) = of(z), of(z) = 3 auma™,

M>0 |m|=M
Bi(z) =3 B (z), BY(x)= 3 Bijmz™,
M>1 Im|=M
v(z) = A; M(z), YM(z) = | IX_: YmZ™,
er(z) = Y e (), eR(Z) = D Qrmz™
M>2 |m|=M

By Lemma 1, we know that the solution sequence {ug (¢, )} ar>0 exists uniquely. More-
over, by the same argument, we see that {upr(¢t,z)} (L > K) exist uniquely. These

show that the formal solution exists uniquely.

Next, we prove the convergence of the formal solution. We put U(t,z) = Pu(t,z) as
a new unknown function. By Lemma 1, the equation (2.1) is reduced to the following

equation:
d
(41) Ult,z) = Y afz)tt+ > Bij(z)t:0, P~ U (t, z)
[l|=K ij=1

+y(z)P7U(t, ) + Xn: k()0 P7IU(t, 1)
k=1

+frs1(t,z, PIU(t, ), {0, P7U(t,z)}, {0, P7'U(t, 2)}).

We know that (4.1) has a unique formal solution of the form

Utz)= Y Upta™= Y Ut,z)= > Upm(t,z).

=K, m|>0 L>K L>K,M>0
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In order to get a majorant series of U(t,r), we prepare some majorant series for the
coefficients of (4.1). Weput T =1t; +---+ta, X =1+ -+ Zn, and choose

Y a(@)t < AX)TH, Bij(z) < 185(X, ..., X) = XBy(X),

N=K

1z) < V(X ..., X) = XG(X), @) < eel(X,. ., X) = X*®p(X),

fen(t z,u,7,8) < |fxsl(T,. .., T, X, X, u, 7, €)
= Fgn(T,X,u,T,§£)
- > Fyars(X)TPut77¢",
Ipl+ K g+(K—1){r|+K|s|>K+1
where A(X), B;;(X), G(X) and ®(X) are holomorphic in a neighbourhood of X =0,
and Fx41(T, X,u,T,€) is also holomorphic near (T, X,u,7,£) = (0,0,0,0,0).
Now, we consider the following equation:

(4.2) w(T,X) = AX)T¥+C i‘ X B;;(X)w(T, X)

+OXG(X)W(T, X) + C Y. X?8,(2)(t, 2)S(w)(T, X)
k=1

e (T.X,Cw, {C—:,i”} {es@)}),

where C is a positive constant appeared in Lemma 1.
Let w(T, X) = E >k m>0 woam(T, X) be the formal solution of (4.2). By the construc-
tion of (4.2), we can easily check that U(t, z) < w(T, X) by the next lemma.

Lemma 2. For two formal power series U(t, z) and w(T, X) satisfying
Ut,e)= 3. Uwm(tz) <w(,X)= Y  wnTXY,
L>K,M>0 L>K,M>0
the following majorant relations hold:
(1) P7WU(t, r) < Cw(T, X),
(2) t:8,, P71U(t, z) < Cw(T, X),
(3) 8, P7'U(t, z) K M,
(4) 8, P"U(t, z) < CS(w)(T, X).
Proof. By using Lemma 1, we can prove this lemma easily. First, (1) is proved as
follows:

PWUtz)= ) P lWUimtz) < Y, ¢
L2K,M>0 L>kmso L+ M

winTEXM « Cw(T, X).
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Secondly, (2) and (3) is proved as follows:

tﬁtjP'lU(t, (L') = Z tiatj P_IULM(t, .’E)
L>K,M20
< Y cL wipnTEXM <« Cw(T, X);
L>K,M>0 L + M
8tjP—lU(t,ZB) = Z BtjP_lULM(t, IL‘)
L>K,M>0
CL _ Cw(T, X)
< wLMTL lXM < —,'.
o I T

Finally, (4) is proved as follows:

3sz’1U(t, IE) = 8ka_1ULM(t, 1‘)

vV

CM

Ly M-1

<

L>K,M>0

nglzl

This completes the proof. O
Since w(T, X) > 0, we have

(4.3) XS(w)(T, X) =w(T,X) —w(T,0) < w(T, X).
Let us consider the following equation:

(4.4) o(T,X) = AX)T¥ +CXh(X)v(T, X)
Cv

+Freir (T, X, Cv, {T} , {CS(U)}) ,

with v(T, X) = O(T¥), where h(X) = ¢._; Bi;(X) + G(X) + -, ®x(X). Then the
following majorant relation is obvious:

w(T, X) < v(T, X).
We put y(T, X) = v(T, X)/T as a new unknown function. By substituting this into
(4.4), we see that y(T, X) satisfies
(4.5) y(T,X) = AX)T¥'+CXh(X)y(T, X)

+% Fyx11 (T, X, CTy, {Cy}, {CTS(v)}),

with y(T, X) = O(TX-1).
We decompose the formal solution y(T, X) as follows:

y(T, X) = 1 (X)TE ! + o (X)T* + TK (T, X).
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We remark that y;(X) and y,(X) are holomorphic functions in a neighbourhood of
X = 0. Indeed, y;(X) and yo(X) are given by

__AX)
y1(X) = T=CXh(X)’

1

1-CXh(X) Fpars(X){Ca (X)}7M{CS (1) (X))} .

Ipl+Kg+(K-1)|r|+K|s|=K+1

y2(X) =

These are holomorphic functions in a neighbourhood of X = 0.
In this case, z(T, X) satisfies the following equation:

(46) 2(T, X) = CXh(X)2(T,X) + H(T, X, Tz(T, X), TS(2)(T, X)),
' 2(0,X) =0,

where

1

H(T, X,m,m) = TR+ [FK+1(T, X, Cyn(X)TH + Cyp(X)THH + CTHmy,
{Cyi(X)TE 4 Cyp(X)TK + CTH 1},
{CS)(X)TX + CS(ya) (X)TH*' + CT*np})]

- > Fogrs(X)(Cya (X)) (CS (1) (X)) .

Ipl+Kq+(K-1)|r|+K|s|=K +1

Remark 6. The order of zeros in T variable of H(T, X,CTz(T, X),CTS(z)(T, X)) is
greater than or equal to 1. O

In order to prove the convergence of z(T, X), it is sufficient to show the following:

Lemma 3. There exists a small positive constant € > 0 such that z.(p) = 2(ep, p) is

convergent in a neighbourhood of p = 0.

Proof. We substitute T' = p and X = p into (4.6) and by using the relation (4.3), we

have
pS(2)(ep, p) < z:(p).
By this relation, the following majorant relation also holds,

TS(2)(T, X)|r=cp.x=p = €pS(2)(€p, p) <K €2:(p).-

Here we consider

(4.7) ¥(p) = Cph(p)¥(p) + H(ep, p, eptp(p), e(p))-
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In the right hand side of (4.7), we decompose H(ep, p,eptp(p), eyp(p)) into the term of

¥(p) and otherwise as follows:

H(ep,p, eob(0), (o)) = sg—gw, 0,0,0)%(p) + H(ep, o, cotb(p), e9(p)).

We remark that the following fact holds:

0H
W(sp, P Ep’([), 51/)) 050 =0.
We put (0H/012)(0,0,0,0) = Ko > 0, then (4.7) is rewritten by
(4.8) (1 - eKo)¥(p) = Cph(p)¥(p) + Hlep, p,epp(p), e9(p)).

We choose € > 0 with 1 —eK{ > 0. Then by using the implicit function theorem, we can‘
see that (5.8) has a unique holomorphic solution %(p) with 1(0) = 0 in a neighbourhood
of p = 0. Moreover we can see z.(p) < ¥(p).

Thus we complete the proof of Lemma 3. (]

5. SOLVABILITY OF THE SYSTEM (1.9)

In this section, we give a sufficient condition for the formal solution of the system (1.9)
to be convergent. Recall that (1.9) is

(19) L 0,2,0,40:@},0 + 50,50, (0:),00:(2)

ot;
+k§1 aék(oyx’07{<p.7(1")}’0) axk _’0, 1—1,2,... ,d,

By Assumption 4 of Theorem 2, the condition

of _ _
—8—6—;(0,0,0, {(,OJ(O)},O)—O, k= 1727"' y T

was assumed.

Let o(x) = *(p1(z), ... ,pa(z)) be the unknown functions. We put ¢(0) = *(¢9,...,
3) € C? as the constant term of ¢(z). We substitute ¢;(z) = ¢} +1;(x) into the system
(1.9), and by restricting at x = 0, we see that {cpg} satisfies the following system:

of 0 of 0 0_ L
(5.1) at, (0,0,0, {(pj},()) + au((), 0,0, {(pj}, 0)p; =0, i=12,...,d.

This system has some roots by the assumption of the existence of a formal solution, and

we fix such {0}
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For such fixed {9}, we see that {1;(x)} satisfies the system of the followir

Q
[
~n

Y ()
Lk

—(0,0,0, {43}, 0% (9) 32 2)

(52) (0,0,0, {8}, 0)z o

M=
QEﬂ:

>
i
—-
-
It
[
(S
g
~

QD
<}
Ly

+
NE
M=

Y
o
Q

Tp

(0,0,0, {¢5}, 0)¢i(z)

Ed
Il
—

-]
Il
—

+
1= §’|33

r—’H

ataf(ooo{sa;’}m 300,00, {61,006} 1,(2)

n 62 2f 0 0

= (degree in z is greater than or equa.l to2), ¢=12,...,d

This system is written as follows for simplicity,
n n awg
(5:3) > )@ m—(w Y Z biotp(2) 5, -(2)
k=11=1 k=1p=1

+ci(r) + Z dzpwp x) + Z €Ty
=1

= (degree in z is greater than orequalto 2), i=12,...,d,

where

62
QA = 6§ f

o*f

(0 0,0, {‘Pg} 0) bkp ag a,r

—=2-(0,0,0, {¢},0),

0
= 20,0000,
62
oudr,

o*f

0
6t1'a (0 O 0 {Lp }70)‘pi,

dip =

(0,0,0,{¢},0) +

a2f 2

cu = o=(0,0,0,{631,0)+ 5(0,0,0,{43),0)6t
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Here we decompose 9;(z) into 9;(z) = ¥i(z) + m(z) (¥i(z) = Tho, Vs, m(z) =
O(|z|?)). We substitute this into the system (5.3) and obtain

AL "/"z a771
(54) I (a @)+ 52, ))
n 2 31’/71‘ 37h'
DN IMACERAC) (—axk @+ 20 ))

+C(7Zi(x) +ni(z)) + Z dtp "pp ) + Mo (z)) + Z €Ty

1=1
= (degree in z is greater than or equal to 2), i=1,2,...,d.

By picking up the degree 1 part on the both sides, we see that {4;(z)} satisfy the

following system:

(5.5) i i akl-'rl -73) + Z Z bkpd)p(x) 3% ( )

k=11=1 =1p=1

+ehi(z) + Z dipibp(z) + Z eqr; = 0,
=1
fori=1,2,...,d.
By the existence of a formal solution, (5.5) has some solutions {1;(z)} of linear func-
tions, and we fix such {¢;(z)}.
For fixed {9} and {4;(z)}, we see that {7;(z)} satisfy the following system:

n o n o d
(5.6) >N (akl +> bkp¢pz) zzank( x) + eni(z) + E (d,p + Z bkp¢1k) np(z)
k=11=1 p=1
= (degree in z is greater than or equal to 2.), i1=12,...,d.

We remark that the degree 2 part in the right hand side of this system does not include
{ni(z)}.

The following theorem holds:

Theorem 3. Let (Axi)ki=12,. » be a matriz defined by

d
(Akl)k,l=1,2,... n = (akl + Z bkpwpl)
k,l=12,...

p=1
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Let {ki}?_, be the eigenvalues of (Axi)ki=1,2... n- If there exists a positive constant og
such that the condition

n

z KrpMmg
k=1
holds for all m = (my,... ,my,) € (Z3o)* with |m| > 2, then the formal solution of the

system (1.9) is convergent in a neighbourhood of the origin.

> aolm|, (Poincaré condition)

Remark 7. Let (Bip)ip=1.2,.. 4 be a matrix defined by
(Bip)ip=12,...d = (dip +> bkpl/fik) ,
k=1 i,p=12,..,d

and let {%‘}?:1 be the eigenvalues of (Bip)ip=1,2,...d-

By the same argument in Remark 1, we have

n
(5.7) ) kkmy + ¢+ wj| > glm|, by some ¢ >0, and j =1,2,...,d,
k=1
for large m, which will be used in the proof. O

6. PROOF OF THEOREM 3

The proof of Theorem 3 is the same method of the proof of Theorem 1 in case that the
unknown function is a vector values. However, there are some difference in the detail.

Therefore, we introduce only the outline of the proof of Theorem 3 in this section.

Step 1. By taking a linear transformation of the independent variables and a linear
transformation of the unknown functions, (5.6) is reduced to the following form:

wy(z)
(6.1) (A+A+B)
wy(z)
Ay A wi ()
= : + . +B :
Ay A wq(z)

Yimi=2 @1,mT™ + g3,1(z, w(z), O, w(z))

- )

Y im=2 Gd,mZ™ + g3.4(z, w(x), Sw(z))
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where w;(z) (j = 1,2,... ,d) denote new unknown functions after linear transformations
and
0 (4]
n n-—1 .. ) ., .
Aj = anxkaxk + ¢+ wj, A= ngxkaka’ B= . ,
k=1 k=1 ‘. ed—l
0

where €; and e; denote the nilpotent components of the Jordan canonical forms of the
matrices (Ax) and (Bp), respectively, and

g3i(z,n,¢) = > gff}.,x“nﬁ ¢
lod+211+171>3

Step 2. We define C[z]a by Clz]y = {X|mj=pr Umz™ ; um € C}, and define a norm of
u(z) = “(ur(z),. .. ,uq(z)) € (Clz]ar)? by

|lul] == inf{C > 0; u(z) K Clxy+ - +z,)M, i=1,2,...,d}.

By the same argument in the proof of Lemma 1 and by Remark 7, we can prove the
same results of Lemma 1 for the operator A + A + B.

Step 3. By the same method in the previous sections, we can construct a majorant
equation whose formal solution is a majorant function of the all unknown functions of
the system. Finally, by the implicit function theorem, we prove the convergence of the

formal solution of the majorant equation.
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