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Summary note on the moduli of punctured tori and related
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1 Setting of the problem, due to Keen, Rauch and Vasquez
[KRV]

Let us consider an elliptic curve with Legendre module ¢
E(t) : y* = z(z - 1)(z — t),

and suppose E(t) = C/L for a certain lattice L = Z + Zr on C. Let E'(t) = E(t) — {00} be the
one point punctured torus. We have

E'(t) = H/G,,

for some discrete group Gy acting on the upper half plane H. Gy is generated by two elements B;
and Bj those correspond to a homology basis of E(t). We set p = trace(B;),q = trace(Bs),r =
trace(B1Bz). The triple (p,q,r) is called the Fricke parameter for E'(t). We are requested to
get an explicit description of the Fricke parameter in terms of the complex moduli t.

This problem is studied mainly by [KRV]. We are interested in it because it is the simplest
case of the study of the moduli space of punctured Riemann surfaces and at the same time
is a first step for the study of modukar functions for a quadrangle group. We do’t show any
essentially new result on this original problem than those of [KRV]. But we show some relations
between this problem and the theory of deformations for Fuchsxan differential equations w1th an
apparent singularity.

2 Lamé equation

Let us consider the universal covering space H of C — L, and let pr be the natural projection.
By taking the quotient we have the isomorphism H/Go ~ (C — L)/L.

Theorem 2.1 ( Keen, Rauch and Vasquez [KRV])
Let v be a local inverse of pr : H — C— L. Then v(¢) is given by a ratio of two independent
solutions of

d?w

T+ 106D + @ @

for some nice constant C(L). We have

MC(\L)=C(L) Aec*,c()=C(L). 2.2)
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Note that this is a differential equation on the elliptic curve C/L with unique regular singu-
larity at 0 ( the orbit of 0 under L) and its monodromy group is equal to Gp.

— Relation to the Fuchsian differential equation on P! —

Set 21 = p(¢). Let us change the differential equation (2.1) into the form

n" +p(z1)n' +q(z1)n =0, n(z1) =w(()) (2.3)
in terms of the variable z;. So (2.1) is transformed to

d?n

1 + 1 + 1 dn C+2z
d 2

1—e1 21 —e€ 71— e3’ dz1 16(z1 — e1)(z — e2)(z —e3)

+ %( n=0. (2.4)

Here we used the convention ey = p(1/2), e2 = p(7/2), e3 = p((1+7)/2). By the transformation
= (ez — e1)x + e; we obtain

2+ P34 Qe H i =0,
1 1 1 1
P((L') 1 'x__'t')a
Qe H) S e H (2.5)

16z(z—1) z(z—-1)(z—¢t)
where t = (e3 — €1)/(e2 — e1) and

(e3 —e1)(e2 — 63)H
ey — €1

C=-e3+

(2.5) is the general form of the Fuchsian differential equation with the Riemann scheme

0 1 t 00
( 0 0 0 1/4) . (2.6)
1/2 1/2 1/2 1/4

- Reduction of the problem -
Now our problem can be devided in two problems
[Problem 1]:
Describe the Fricke parameter in terms of the nice constant C in (2.1).

[Problem 2]:
Describe the nice constant C (that is equivalent to describe the nice accessary parameter H)
in terms of the moduli variable ¢ in (2.5):

3 Hermitian condition

We investigate the [Problem 2] in a little bit different aspect.
For the moment we suppose t € R and t <0 < 1 < 00. Let zg be a reference point in H. Let
7; be a circuit on C — {t,0,1} around ¢ starting from zo (i = ¢,0,1,00). Let A; be the circuit
matrix of the equation (2.5) with respect to a fixed system of independent solutions at z = xyo.
Let G be the projective monodromy group of (2.5), and set By = AgA¢, B2 = A1Ao, B3 =
By By = A;A;. Let G denote the subgroup of G generated by the system {Bi, B2}.

Definition 3.1 The triple (p,q,7) = (Trace(B:), Trace(B2), Trace(B3)) is called the Fricke
parameter for the Fuchsian differential equation (2.5).



45

Proposition 3.1 In the above situation we have the following normal form of the system
{A¢, Ao, A1} in the conjugacy class.

_(1 0 _ (a1 a2 _ (b b ) :
Ao—(o —1)’A1_ (02 —-01)’At— (bs —b (3-1)
with the condition
a2 + a2 =1,b% + bybz = 1,
a2(b2 - b3) = +2i. (3.2)

We have the exception of the system

a=(o 5)m=(0 5)a=( 5) (3:3)

Remark 3.1 1) We note that the accessary parameter H determines the monodromy group G
and the subgroup Go. The conjugacy class of G determines the Fricke parameter up to signature,
conversely the Fricke parameter determines G uniquely up to the change of by and bz (but it
determines unique Gy).

2) If H(t) is a nice accessary parameter for the moduli t mentioned in Section 2, the group
Gy coincides with the descrete group Go for E'(t).

3) The parameter H is nice for t if and only if the group Gq is a Fuchsian group. Especial-

ly, if the system {A¢, Ao, A1} has an invariant Hermitian form <(l) _01), we obtain the nice
parameter.

4) If t is real and H 1s nice, the Schwarzian image of H by (2.5) makes a Poincaré quadrangle
with indez (2,2,2, 00).

Proposition 3.2 The system (3.1) with (3.2) preserves the Hermitian form
(o 1)
0 -1

ai,ia, b € R, by = —E. (3.4)

if and only if we have

4 Fricke parameter

Proposition 4.1 ([KRV])
For a nice parameter H(t) we have
(0) p* + ¢ + 1% —pgr =0,
(i) q(r) =p(-1),7(7) = p(—135)»
(i) w(p) = (3,3,3), (i) = (2v2,2v2,4),
(i) (R(r) =0) = {pg = 2r},p(R(7) = -1/2) = {g=rh (| 7|=1) = {p= g}

Remark 4.1 The property (0) is valid also for the equation with any accessary parameter H (t).

— Application of Hill’s method —
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We suppose the lattice L takes the form L = Zr + Znik The equation (2.1) can be regarded
as an equation for real functions %‘; + Q(z)u = 0 with real variable £ and the periodicity
Q(z + ) = Q(z). By the Fourier expansion we have

d%u s '
) + (6o +2 Z O, cos(2nz))u = 0. (4.1)

n=1

We note that the solution may not be periodic.
-Floquet transformation-
Let u;,u2 be a system of independent solutions at z = 0. Then we have

ui(z+m)\ _ uy(z)
(}iz($+7r)) =¥ (uz(x))
with F € GL(2,C) (4.2)

The above transformation F' is called the Floquet transformation. This is nothing but the circuit
transformation C = ApA;, and we note F € SL(2, C).
Let us consider the eigen function for F' in the form

u(z) = et* i bpe?™z, (4.3)

n=—0oo

So F ou(z) = e*"u(z), and we have the eigen value e#™. Consequently we have another eigen
value e~#", and

Trace(F) = Trace(C) = e#™ + e ¥, (4.4)

Let (4.3) substitute in (4.1), then we have the following system of infinite number of linear
equations for {b,} :

o0
(B+2n0)2%n + D Ombpom =0, n=0,+1,%2,... (4.5)

m=-—00

We define a formal determinant

(u+2P-00 gy g,
2200 27—§o —09
c oy —0 ip+0)°—fo =
A(ip) = Det e e |
- = -2’6 _~_ .,

- e 2780 5’:55

%]

(4.6)

Q|
D
=
l-
lle -
o

Theorem 4.1 (Hill, see also Whitacker-Watson 19.4) We suppose that 6y does not take the
form 4m? and that ° | 6, | is convergent. Then A(iu) converges, and it holds

A(ip) = A(0) - sinz(-;-m'u)/ sin2(%1r\/0_o). (4.7)
Consequently e#™ is an eigen value if and only if we have
A(0) — sinz(%m'u)/ sinz(%w\/%) =0 . (4.8)

As an easy corollary of this theorem we have
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Theorem 4.2 (see also Keen, Rauch and Vasquez [KRV])

Trace(F) =2 — A(0) sin2(%1r\/§(;) (4.9)

Remark 4.2 Suppose T is pure imaginary. Then t and C(L) take real values. The Lamé
equation (2.1) can be considered as a Hill’s equation by restricting it on the real azis ( but
rewriting in terms of o functions. In that case the Trace(F) becomes to be the first trace p of
the Fricke parameter. We can proceed this method to get the traces q and r. Even for a general
accessary parameter we get real values for p and q, but in general we obtain r with complex
values. We can’t see from that formula the criterion that r to be a real number.

5 R-H problem of moving singularity type

We consider the following problem. Set a Riemann scheme
0 1 t oo ,
0 0 0 1/4) o (5.1)
1/2 1/2 1/2 1/4

for a Fuchsian differential equation

Y + po(z,t)y’ Jr/QO(w,t,Ho/)y =0 )
1-1/2 1-1/2 1-1/2
pO(x)t)— z + z—1 + z—t
1/16 ~  t(t—1)Hy
z(z—1) z(x—1)(z—1)

go(z,t, Ho) = (5.2)

without apparent singularity. Let us regard (¢, Hg) to be the deformation parameter of (5.2).
Any representation of (P — {0, 1,¢,00},*) on GL(2, C) admitting the Riemann scheme (5.1)
appears as a monodromy group of (5.2) ?

5.1 Relation with the equation with an apparent singularity

Set a Riemann scheme with an apparent singularity £ = \

0 1 t A oo *
( 0 0 0 0 1/4) (5.3)
~-1/2 1/2 1/2 2 1/4 ’

for a Fuchsian differential equation

¥ +p(z,t, )y +q(z,t,\, p, H)y = 0. .(5.4)

0 1 ¢t A oo
( 0 0 0 O Poo ) (5.5)
6 2

we have the corresponding differential equation with

For more general Riemann scheme

1—ky 1-— 1-6 1
Ko  1-k1

p(z,t) = z r—1 -t -\



48

K #¢— 1)H A — Dy
(z—1) zz-1(=z—-1t) zz-1)(z-N

H= t(t — 1) [’\(A - 1)(A - t)l‘z - {"‘-'0(A - 1)(A - t)+
KA — 1) + (0 — DA — 1)} + s(A —2)],
K= %(No + K51+ 60— 1)2 - chgo (5.6)

Q(xvt$H) = p

for the coefficient function. Here u and H are accessary parameters, and H is described in terms
of ¢, \, u by the fact that A is non-logarithmic singularity. At this moment our Riemann scheme
requires —kp =K1 =0 =1/2,k5 = 0.

Proposition 5.1 Let us fiz t, and suppose | A |< €. The solution u(z,\) of (5.4) atz =0
is holomorphic on U — {0}x | A |< &, where * means the universal covering. So u(z,0) is a
solution of (5.4) .

Remark 5.1 We can not perform this procedure in case x = 0 is a logarithmic singularity.

5.2 Isomonodromy deformation
Suppose we have t # 0,1,00 and A # 0,1,¢,00. The isomonodromy defermation of (5.4) is given
by the Hamiltonian system

d\_OH du _ _OH (5.7
Now we consider (5.7) in the tublar neiborhood {| A |< €} x (¢, u) — space. Let us take an initial
data (¢, A\, 1) = (0,0, o) , then we can find the integral curve by following (5.7).

Proposition 5. 2 For any initial data (¢, )\, u) = (£0,0,u0) (to # 0) the integral curve inter-
sects the azis A = 0 transversally, so any monodromy group of (5.2) is obtained as the one of
an isomonodromic deformation of (5.4).

[Proof]. We have

8H ' 8H 9

E(taoﬂ‘) —t/Z,'—'gx(t,o,ﬂ) = —1/16""(“—/“ t)' (5-8)
So it holds %(t,O,u) #0 for t # 0.

q.e.d.

Remark 5.2 This Proposition offers a mapping from the monodromy space of (5.2) to that of
(5.4). According to the Riemann-Hilbert correspondence this map induces the natural injective
map to the complezx variety of the set of representations of m(P — 0,1,%,00,%). It seems to be
an open mapping. So our problem in the beginning of this section will have the positive answer.

6 Some comments

(1) In the Riemann scheme (5.3) we can let A move to the infinity. This process is visualized by
the deformation X — 0 using the transformed variable and singularity : ' = t/z, N’ = t/\. So

we have
0 1 t N o
(0 0 0 O —1/4) . (6.1)

0 1/2 1/2 2 1/4
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In that limit procedure we don’t have the Proposition corresponding to Prop. 5.1. The Hamil-
tonian equation reduses a system corresponding the logarithmic derivative of a certain hyperge-
ometric differential equation on A’ = 0. So the integral orbit for the system does not go out from
the wall \' = 0, and its orbit does not mean the isomonodromy. We don’t know the meaning of
this degenerate eqation.

(2) Let us consider the isomonidromy orbit of (5.4) for the nice accessary parameter. We
always have a fixed monodromy group. Suppose ¢ is real, then the nice parameter H is also real.
Its image of the upper half plane by the Schwarz map differs depending on the value of H. We
don’t know what happens during this deformation for the figures of Schwarz map.

(3) It is quite difficult to proceed the observation of (2). We prefer to consider more basic
case. Namely the hypergeometric differential equation with an apparent singularity. There are
articles by Klein [K], Schilling [S] and Ritter [R] those study this problem. Also we regard it a
simplest case study of the differential equation which induces a quadrangle group.

(4) Let us fix two Riemann schemes they are mutually contiguous, and let P (z) and P2(z) be
the solutions. So these two functions have multibaluedness with the same monodromy behavior.
If we take the linear combination a P; (x)+bPa(z), it satisfies a differential equation with the same
monodromy. Klein [K] appointed that this differential eqation will have the apparent singularity
and vice versa. So we are interested where we have the apparent singularity depending on a, b.
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