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1 Introduction

In order to investigate the structure of a group G, we tried to study the
set Mon; (G) of all monomials over G. We can naturally define two distinct
operations of such monomials. One is based on an ordinary multiplication
of G and another is based on substitution. A monomial over G can also
be regarded as a function over G. Such a recognition shows that the set
of all monomials over a group and certain subsets of it have some algebraic
structures. Actually Mon;(G) forms a group under ordinary multiplication
and it also forms a monoid under substitution. In this paper we gave a
special attention to a subset SMon; (G) of Mon; (G) each of whose element
sends the identity of G to itself. SMon,; (G) and its certain quotient set form
semi-distributive ring (SDR) and the group algebra Z[G] respectively. In
the former part of this paper, some algebraic properties of SMon;(G) as an
SDR are discussed. Using Mon; (G) we defined a topology over G. In order
to visualize inclusion relation of these closed sets, we defined a semi-lattices
and a lattice whose point is a closed set of the topology.The main purpose of
this paper is to show the relationship between the shape of the lattice and
the structure of the group.



2 Preliminary

Let G be a group and F,, be a free group which is generated by n invariants
Xi,...,X,. We regard a monomial over a group with invariants Xj,... , X,
as an element of the free product G* F;, of a group G and a free group F;,,. We
denote the set of all monomials over G with n invariants by Mon,(G) which
is the same set to G * F,. For elements f(X) = (123)X%(23)X 1, ¢(X) =
(132)X1(23) of Mon;(Ss3), two different operations “-” and “ o ” can be
defined naturally as follows;

F(X) - g(X) = (123)X2(23) X1 (132) X~(23),

g(X)- f(X) = (132)X~1(23)(123)X2(23)X ! = (132) X ~}(12)X2(23)X 1.

Hence it is clear to see 1 = 1¢ is the identity element of Mon, (S;) and
f(X)™ = X(23)X72(132), and g(X)™" = (23)X(123).

f(X)og(X) = f(g9(X))=(12)X"%(23)X and
9(X) o f(X) = g(f(X))=X"1(23)X*(12).

It is clear to see that X is the identity element for the operation “o”.Therefore
we can see that Mon; (S3) forms a group under the operation “ -” with the
identity element 1 and forms a monoid under the operation “o ” with the
identity element X. But it is not easy to analize the algebraic structure of
Mon,(G), so we are going to investigate certain subsets and quotient set of
Mon,,(G) with which we are able to deal more easily. Take it for granted to
call f(X)-g(X) and f(X) o g(X) the ordinary product and the composition
product of f(X) and g(X) respectively.

Definition 1 Let G be a group, X, ... , X, be invariants. F, is a free group
generated by X;,...,X,_1 and X,.

(1) Mon,(G) denotes the set of all monomials over G, which is the same
thing to the free product G * F;, of G and F,,.

A general form of an element f(X) of Mon,(G) is as follows;

01 Xa X ---a,X%qg or
a

b

o0 ={

where aj,a2,---a, € G- {1}, ag,a1,a €G, e, ---,e, € Z—{0}.

(2) For an element f(Xi,...,X,) of Mon,(G), deg; f(X) is defined to be
the sum of powers of invariant X; which appear in f(X).
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(3) For an element f(X) of Mon,(G), deg f(X) is defined to be the sum
7 deg; f(X) of deg; f(X)’s for all i.

Note that an element f(X) = f(X;,... ,Xy) of Mon, (G) can be regarded
as a mapping of G™ to G when an element ((g1, ... , gn) of G™ is substituted
into f(X).

Example 1 Let G be the dihedral group Dyg of order 10. An element f(X1, X,)
(13524) X7 1(12)(35) X2 of Mona(Dyp) sends an element ((12345), (14253)) of
Dm X DlO to (14)(23)

(4) SMon,(G) stands for a normal subgroup of Mon,(G) defined by
SMon,(G) = {f(X) = f(X1,..-,Xn) € Mon,(G)|f(1,...,1) =1}

It is obvious that SMon,(G) is a normal subgroup and a submonoid of
Mon,(G) under operations “: ” and “ o ” respectively. We write this situation
that (SMon,(G), - ) forms a subgroup of (Mon,(G), - ) and (SMon,(G), o)
forms a submonoid of (Mon,(G), o ). Seeing an element of Mon,(G) as
a function or a mapping of G® to G, it is observed that two distinct ele-
ments f(X) and h(X) are possible to work as the same function, namely
f(g1,---,9n) coinsides with h(gy, ... ,gn) for any element (g;,... ,gn) of G™.
This fact urges us to divide Mon,(G) into some classes each of which is a
collection of elements which stand for the same function of G" to G. In order
to formulate the situation above, we define I,,(G) and PMon,(G) as follows.
I.(G) is a subset of Mon,(G) any of whose element f(X) = f(Xi,...,Xn)
satisfies that f(gi,...,9,) = 1 for any element (gi, ... , g,) of G*. PMon,(G)
is defined to be a quotient group Mon,(G)/ I,.(G) of Mon,(G) by I,(G) and
it is claer that each equivalent class is a collection of the same functions on
G. PSMon,(G) can be defined in the same way:

PSMon,(G) = SMon,(G)/ 1.(G).

Following propositions show the structures of PMon;(G)for some known

group G.

Theorem 1 Let G be an abelian group. Then PMon,(G) is isomorphic to
Zwp % G- ~

Remark 1  For a dihedal group Doy of order 2p for a prime p,

PSMon; (Dyp) is isomorphic to Z, x (Z2 : Zs).

Theorem 2 Let G be a group. PMon;(G) ~ G x --- x G (|G|times) if and
only if G ~ Zy or G i3 a non abelian simple group.



3 Semi Distributive Rings

Definition 2 Let R = (R, -, o) be a set in which two distinct operations are
defined. R = (R,-,0) is said to be a left SDR if R satisfies following four
conditions ‘
(1)(R,-) forms a group with the identity 1g,

(2)(R, o) forms a monoid with the identity X,

(3)1goa=aolg = 1g holds for any a € R,

(4)Left distributity holds, namely

(z-y)oz=(zxoz)(yoz) for any z,y and z € R.

In order to see the some analogues of considerations which appear in
ordiary ring theory, we give definitions of an ideal, homomorphisms of SDR,
and the homomorphism theorem for them as follows.

Definition 3 Let R be an SDR. A subset I of R is said to be an 1deal of R
if I satisfies following three conditions:

(1)I is a normal subgroup of (R, )

(2)RoloRCI,

(3)(a-I)o(b-I) C (aob)-I for any a,b € R, equlvqlently ao(b-i)-1 C (aob)-1
for any ¢ € I and a,b € R.

Following three are examples of an ideal of an SDR.
(i)An ideal of an arbitrary ring.
(i) The commutator subgroup [SMon,(G)", SMon, (G)"] is an ideal of an SDR
SMon,(G)"™.
(iii) For a rational integer m, the inverse image deg(mZ) of an ideal mZ of
Z is an ideal of an SDR SMon; (G).

Definition 4 Let A and B be SDR’s. A mapping ¢ of A to B is said to be
an SDR homomorphism if ¢ preserves two operations “ ” and “o” and sends
the identity element of A to that of B.

Note that a kernel of ¢ is an ideal of A. A proposition which is similar
to the homomorphism theorem for an ordinary ring holds as follows.

Theorem 3 Let A and B be SDR’s and ¢ be an SDR homomorphism of A
to B, then the image of ¢ is isomorphic to the quotient SDR A/ ker ¢ as an
SDR, i.e. Im ¢ ~ A/kery. as an SDR.

Following are some fundamental properties of SMon, (G).
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Theorem 4 Let U(SMon,; (G)) be the set of invertible elements of (SMon; (G), o),

then U(SMon; (G)) is isomorphic to Zy x G.

Corollary 1 Let G and H be groups as an SDR PSMon, (G) is isomorphic
to PSMon, (H) as an SDR if and only if G is isomorphic to H as a group.

Theorem 5 Let G and H be groups. PSMon,(G x H) is isomorphic to
PSMon; (G) x PSMon;(H) as an SDR if and only if exp(H®) is prime to
exp(G?).

Theorem 6 SMon;(G)® is isomorphic to Z[G] as an SDR.

4 Topologies on G defined by some set of
monomials

In this section we will try to consider some topologies ,semi-lattices and
lattices which are defined by a set A of monomials. Take it for granted to
choose SMon; (G) as such A which woud reflect the strcture of G. Roughly
speaking, a closed set of the topology considered here is a set of solutions of
an equation which is defined by an element of SMon, (G).

Definition 5 Let A be a subset of Mon;(G). We define the set of solutions
Solg(A) of equations each of which is defined by an monomial of A as follows

Solg(A) := {g € G|f(g9) =1 for any f(z) € A})

Let A be a subset of SMony(0). F, is defined to be the collection of solution
set of any subset A of A defined as follows

Fop i= {Solg(A)|A C A}

Definition 6 F, is defined to be the weakest topology which contains F,p as
a collection of closed sets.

Example 2 Let o, T be generations of Zy, Zg respectively and Ay, Ay be
SMon; (Z,), SMon;(Zy) respectively. Then Fop, and F,p, can be drawn as
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Theorem 7 Let G® stand for G/[G,G] for a goup G. If |G*®| is prime to
|H®|, then

Fsmony(GxH) S homeomorphic to  Fsmon;(¢) X FsMon(H)

Definition 7 Let (L, C) be a poset with binary relation C.

i) (L, Q) is said to be a semi-lattice if L has the greatest lower bound z Ay
for any pair of elements ¢ and y of L.

ii) A semi-lattice (L, C) is said to be a lattice if L has the least lower bound
z Vy for any pair of elements ¢ and y of L.

Remark 2 Let C be an inclusion relation.

i) (FosMony(G)» C) forms a semi-lattice-and is denoted by L)
i) (FsMoni(c), C) forms a lattice and is denoted by L(g).

Definition 8 Let L and K be lattices. A mapping o : L — Kis said to be a
(lattice)homomorphism if
(zAy) =2 Ay’ and (zVy)’ =2°Vy°

for any pair of elements x,y of L.

A lattice homorphism o is said to be a lattice isomorphism if it is bijective.A
semi-lattice homomorphism and a semi-lattice isomorphism can be defined
similarly. L ~ K stands for that there exists a (semi)lattice isomorphism
betwen two (semi)lattices L and K.

Following propositions are the main theorem of this paper which stand
for a relation between the shape of a (semi)lattice and the structure of the
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Theorem 8 i) G is an abelian p-group such that exp(G) = p° for some
positive integer e if and only if Lo(G) is isomorphic to the following
semi-lattice.

e
e—1

b)Y

./
~

1
0

In this case, Lo(G) is isomophic to L(G) as a lattice.

ii) G is a finite p-group if and only if Lo(G) is ispmorhpic to the following
semi-lattice.

<— unknown

h9Y
«

L(G) is also isomorphic to a lattice which is drawn as above. Whereas
it does not always imply that Lo(G) is isomorphic to L(G) as a semi-
lattice.

iii) G is an abelian group such that exp(G) = p§'p3® - - - pir for some prime
pi (pi # pj if i # j) and some integer e; if and only if Lo(G) is isomorp
to the following semi-lattice.

€ e (4
Jel_l 62—1 6,—1
~~ X ~~ X e o e X ~

2 2 2

1 1 1

0 0 0

In this case Lo(G) is not isomorphic to L(G) as a semi-lattice for r > 2.
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