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Abstract

This paper deals with the existence problem of optimal growth
with recursive utility in acontinuous-time model without convexity
assumptions. We consider ageneral reduced model of capital ac-
cumulation and provide an existence result allowing the production
technology to be nonconvex and the objective functional to be non-
concave and recursive. The program space under investigation is a
weighted Sobolev space with discounting built in, as introduced by
Chichilnisky. The compactness of the feasible set and the continuity
of tlte objective are proven by the effective use of the $\mathscr{B}^{\underline{9}}- \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}_{\mathrm{o}}^{\sigma}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ .
Existence follows from $\mathrm{t}1_{1}\mathrm{e}$ classical Weierstrass theorem.
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1Introduction
This paper deals with the existence problem of optimal growth with recursive
utility in acontinuous time model without convexity assumptions. We con-
sider ageneral reduced model of capital accumulation allowing for noncon-
vex technology and an objective functional that is nonconcave and recursive.
The program space under investigation admits unbounded programs, but the
growth rate of the programs is bounded by acertain discounting function.
The space of this type is described by aweighted Sobolev space with discount-
ing built in, which is identified with an $\ovalbox{\tt\small REJECT}^{2}$-space. Therefore the compactness
of the feasible set and the continuity of the objective functional are proven by
the effective use of the $\mathscr{S}^{2}$-convergence. Existence follows from the classical
’VVeierstrass theorem.

The analysis of recursive preferences was initiated by Koopmans (Ref. 1)
in adiscrete-time framework. (For arecent treatment of Koopmans’ recur-
sive utility in discrete-time, see the monograph of Becker and Boyd (Ref. 2) $)$ .
Uzawa (Ref. 3) extended Koopmans’ discrete-time concept of recursive util-
ity to continuous-time. Epstein (Ref. 4) and Epstein and Hynes (Ref. 5) in-
troduced generalizations of Uzawa’s recursive utility function to analyze the
global dynamics, and Epstein (Ref. 6) axiomatized agenerating function that
ensures the existence of arecursive utility. An essential feature of the recur-
sive functional form is that the rate of time preference is endogenized in its
structure. The first rigorous treatment of the existence problem for the case
of recursive utility is that of Becker, Boyd, and Sung (Ref. 7). The proof of
their existence theorem, however, relies on the convexity of the technology
and the concavity of the recursive integrand. Unlike the case of time additive
utility, the recursive objective functional generally involves the nonconcave
integrand in its nature, and so the concavity assumption is too strong. The
purpose of this paper is to overcome this difficulty.

In the case of time additive utility, there exist two important works with
nonconvexity: Chichilnisky (Ref. 8) and Romer (Ref. 9). Chichilnisky in-
troduced the weighted Sobolev space endowed with the $\mathscr{S}_{2}$-norm topology,
and demonstrated the $\mathscr{S}_{2}$-norm continuity of the objective and the $\mathscr{S}_{\underline{9}}$-norm
compactness of the feasible set without any convexity $\mathrm{a}_{\kappa}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$. Romer
employed an $\mathscr{S}_{1}$ -space endowed with weak topology under mild convexity
assumptions. Although Romer’s existence theorem relies on the concavity of
the objective functional, it is imposed only on the highest order derivative in
the objective functional. This concavity assumption is quite weak in prac-
tice. Consequently, Romer’s existence result permits us to consider abroad
class covering many economic problems with nonconvexities. Unfortunately,
Romer’s argument cannot be extended directly to the case of recursive utility.
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In optimal control and the calculus of variations, existence problems with-
out convexity assumptions have been investigated by various authors. It is
shown that when the control systems and the integrand in the objective
functional are linear in the state variables, existence is guaranteed under the
standard assumptions [see Cesari (Ref. 10, Chapter 16)]. Since the proof is
based on the convexification of the control set, linearity plays an essential
role in demonstrating existence. Without imposing any linearity conditions,
Carlson (Ref. 11) treats the existence problems by approximation. Carlson
transforms an original nonconvex problem to aconvexified relaxed problem
in which existence is guaranteed, and shows that for any optimal solution of
the relaxed convexified problem, there exists asequence of admissible tra-
jectories of the original problem that converges uniformly to the optimal
solution of the relaxed convexified problem. Note that the program space
of the above existence results is the set of all locally absolutely continuous
functions endowed with the weak topology.

This paper deals with the weighted Sobolev space that was first intr0-
duced by Chichilnisky (Ref. 8) to the growth theory literature. There exist
two useful topologies on the weighted Sobolev space: the $\mathscr{S}^{2}$-norm topol-
ogy and the weak topology. Chichilnisky demonstrates an existence result
under the $\mathscr{L}^{2}$-norm topology for the case of time additive utility without
convexity assumptions. In the weak topology of the weighted Sobolev space,
Maruyama (Ref. 12) provides an existence result for the case of time additive
utility under convexity assumptions. $1\mathrm{V}\mathrm{e}$ engage ourselves with the $\mathscr{L}^{2}$-norm
topology as in Chichilnisky and prove an existence theorem for the case of
recursive utility, which involves anonconcave integrand, without convexity
assumptions. Our existence theorem can be applied to the nonconvex prob-
lem with increasing returns, as studied in Davidson and Harris (Ref. 13) and
Skiba (Ref. 14), and to the recursive utility along the lines of Uzawa (Ref. 3),
Epstein and Hynes (Ref. \={o}), and Epstein (Ref. 4).

2Description of the Model
Weighted Sobolev Space. Let the interval $I=[0, \infty)$ be atime horizon.
We denote by $\mathscr{S}^{\underline{9}}(I, \mathbb{R}^{n})$ the set of all measurable functions $f$ : $Iarrow \mathbb{R}^{n}$

such that $\int_{0}^{\infty}||f(t)||^{\underline{9}}dt<\infty$ , and by $\mathscr{C}^{1}(I, \mathbb{R}^{n})$ , the set of all functions from
I to $\mathbb{R}^{n}$ that are differentiable on an open interval that contains $I$ . Let
$\delta$ : $Iarrow \mathbb{R}$ be ameasurable function such that $0<\delta(t)\leq 1a.e$ . $t\in I$ and
$. \int_{0}^{\infty}\delta(t)clt<\infty$ . Define the inner product on $\mathscr{C}^{1}(I, \mathbb{R}^{n})$ by

$(f, g)_{\delta}:= \int_{0}^{\infty}\delta(t)(f(t)g(t)+j(t)\dot{g}(t))dt$
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for $f,$ $g\in \mathscr{C}^{1}(I, \mathbb{R}^{n})$ . The norm on $\mathscr{C}^{1}(I, \mathbb{R}^{n})$ is given by $||f||_{\delta}:=(f, f)_{\delta}^{1/2}$ A
weighted Sobolev space with the density function $\delta$ is defined by

$\Psi_{\delta}^{1,2}(I, \mathbb{R}^{n}):=\{f\in \mathscr{C}^{1}(I, \mathbb{R}^{n})|\delta^{\frac{1}{2}}f, \delta^{\frac{1}{2}}j\in \mathscr{S}^{2}(I, \mathbb{R}^{n})\}$ .

Under the norm $||\cdot||_{\delta}$ , the space $\psi_{\delta}^{1,2}(I, \mathbb{R}^{n})$ is aseparable Hilbert space [see
Kufner, John, and $\mathrm{F}\check{\mathrm{u}}$c\’ik (Ref. 15, Theorem 8.10.2) $]$ .

Technology. We consider ageneral reduced model of capital accumulation.
There are $n$ capital goods in the general model economy. The technology is
described by acorrespondence $\Gamma$ : $I\cross \mathbb{R}_{+}^{n}arrow 2^{\mathbb{R}^{n}}-+$ . We mean by $y\in\Gamma(t, x)$

that, given capital stock $x$ at time $t,$ $y$ can be accumulated as additional
capital. We call $\Gamma$ the technology correspondence. The graph of $\Gamma$ is denoted
by $D$ :

$D=\{(t, x, y)\in I\cross \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}|y\in\Gamma(t, x)\}$ .
We assume that the $t$-section of $D$ ,

$D(t)=\{(x, y)\in \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}|(t, x, y)\in D\}$ ,

is nonempty for any $t\in I$ .

Program Space. The program space under consideration is asubset of
the $\backslash \mathrm{v}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{e}\mathrm{d}$ Sobolev space $\psi_{\delta}^{1,2}(I,\mathbb{R}^{n})$ . Acapital accumulation program, $k$ :
$Iarrow \mathbb{R}_{+}^{n}$ , is an element of $\mathscr{M}_{\delta}^{r1,2}(I, \mathbb{R}^{n})$ . We restrict the capital accumulation
program to the class such that its derivative has auniform Lipschitz bound:
$||\dot{k}(t+h)-\dot{k}(t)||^{2}\leq hL(t)$ for any $h>\mathrm{O}$ for agiven measurable function
$L$ : $Iarrow \mathbb{R}$ with $\int_{0}^{\infty}\delta(t)L(t)dt<\infty$ . Define

$\mathscr{C}_{L}^{1}(I, \mathbb{R}^{n}):=\{f\in \mathscr{C}^{1}(I, \mathbb{R}^{n})|||j(t+h)-j(t)||^{2}\leq hL(t)\forall h>0\forall t\}$ .

Then the program space $\mathscr{K}$ is defined by $\mathscr{K}:=\Psi_{\delta}^{1,2}(I, \mathbb{R}^{n})\cap \mathscr{C}_{L}^{1}(I, \mathbb{R}^{n})$ .

Recursive Objective Functional. Social welfare is described by autility
function $u$ : $I\cross \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}arrow \mathbb{R}$ and adiscounting function $\theta$ : $I\cross \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}arrow \mathbb{R}$.
The recursive objective functional $U:\mathscr{K}arrow \mathbb{R}$ is given by

$U(k)= \int_{0}^{\infty}u$ ( t, A(t), $\dot{k}$ (t)) $\exp(-\int_{0}^{t}\theta(s, k(s),\dot{k}(s))ds)dt$ .

An essential feature of this functional form is that the rate of time preference
is implicit in its structure. Note that if the discounting function 0is constant,
this functional form reduces to time additive utility.
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Optimal Program. Define the set of feasible programs from an initial
capital stock z $\in \mathbb{R}_{+}^{n},$ $\ovalbox{\tt\small REJECT}(z)$ , by

$\ovalbox{\tt\small REJECT}(z):=\{k\in \mathscr{K}|\dot{k}(t)\in\Gamma(t, k(t))a.e. t\in I, 0\leq k(0)\leq z\}$.

Then the programming problem $P(z)$ is defined by

$P(z)$ : $V(z)= \sup\{U(k)|k\in g(z)\}$ .

Here $V$ is the value function. Aprogram $k^{*}\in \mathscr{M}_{\delta}^{r1,2}(I, \mathbb{R}^{n})$ is called an optimal
program to $P(z)$ if $k^{*}\in \mathrm{e}\ovalbox{\tt\small REJECT}(z)$ and $U(k^{*})=V(z)$ .

3Existence of an Optimal Program
In this section we prove the existence of an optimal program. The proof
of the existence theorem is based on the classical Weierstrass theorem: the
feasible set is compact and the objective functional is continuous in the norm-
topology of the program space.

To ensure existence, we need the following conditions on the preferences
and the technology:

Preference Conditions.

(P-1) t $\vdash+u(t,$x, y) is measurable for any (x,$y)\in \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}$ and (x,$y)\vdasharrow$

$u(t,$x, y) is continuous for any t $\in I$ .

(P-2) There exist ameasurable function $\alpha$ : $Iarrow \mathbb{R}$ and constants $\beta_{1},$ $\sqrt 2\geq 0$

such that $|u(t, x, y)|\leq\alpha(t)+\beta_{1}||x||^{2}+\sqrt 2||y||^{2}$ for any $(t, x, y)\in I\cross$

$\mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}$ and $\int_{0}^{\infty}\delta(t)\alpha(t)dt<\infty$ .

(P-3) t $\vdasharrow\theta(t,$x, y) is measurable for any (x,$y)\in \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}$ and (x, y) $-\neq$

$\theta(t,$x, y) is continuous for any t $\in I$ .

(P-4) $\exp(-\int_{0}^{t}[\inf_{(x,y)\in \mathbb{R}_{+}^{n}\cross \mathbb{R}_{+}^{n}}\theta(s,$ x,$y)]ds)\leq\delta(t)$ a.e. t $\in I$ .

Condition (P-1) states that the utility function $u$ is aCarath\’eodory function.
Condition (P-2) states that $u$ satisfies the growth condition, which is standard
in control theory when $\delta(t)\equiv 1$ . In condition (P-3) we require that the
discounting function 0is also aCarath\’eodory function. Condition (P-4)
implies that the discount rate is uniformly bounded from above on the feasible
programs:

$\exp$ $(- \int_{0}^{t}\theta(s, \mathrm{A}(s)$ , $\dot{k}(s))ds)\leq\delta(t)$ a.e. t for any k $\in\ovalbox{\tt\small REJECT}(z)$ .
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In the time additive case $\theta\equiv\rho$ for constant $\rho>0$ , this condition is always
satisfied for $\delta(t)=\exp(-\rho t)$ .

Technology Conditions.
(T-1) $0\in\Gamma(t,$x) for any (t,$x)\in I\cross \mathbb{R}_{+}^{n}$ .

(T-2) x-\rangle $\Gamma(t,$x) is aclosed-valued and upper semicontinuous correspon-
dence for any t $\in I$ .

(T-3) There exists ameasurable function $\mu$ : I $arrow \mathbb{R}$ such that $||y||^{2}\leq\mu(t)$

for any y $\in\Gamma(t,$x) and (t,$x)\in I\cross \mathbb{R}_{+}^{n}$ , and $\int_{0}^{\infty}\delta(t)\int_{0}^{t}\mu(s)dsdt<\infty$ .

Condition (T-1) is the assumption that allows afree disposability of produc-
tion activity. This implies that the program $k(t)\equiv z$ is feasible and hence
$\iota\ovalbox{\tt\small REJECT}(z)\neq\emptyset$ for any $z\in \mathbb{R}_{+}^{n}$ . Condition (T-2) is standard in growth theory.
Condition (T-3) imposes boundedness on the set $\Gamma(t, x)$ . Conditions (T-2)
and (T-3) together imply that the correspondence $x-\rangle$ $\Gamma(t, x)$ is compact-
valued and upper semicontinuous for any $t\in I$ .

Theorem 3.1. For any initial capital stock $z\in \mathbb{R}_{+}^{n}$ , there exists an optimal
program to $P(z)$ .

4 Conclusions
The choice of aprogram space and arelevant topology is important in order to
establish an existence result. The program space of Becker, Boyd, and Sung
(Ref. 7) is the set of all locally absolutely continuous functions endowed with
the weak topology. The program space of this paper is the weighted Sobolev
space with the density function endowed with the $\ovalbox{\tt\small REJECT}^{2}$-norm topology. In
the nonrecursive case in which 0is constant, the necessary and sufficient
condition that the objective functional is upper semicontinuous in the weak
topology of the program space, is that $u$ is aCarath\’eodory function that
satisfies the standard growth condition, and $u$ is concave with respect to $y$

[see Marcellini (Ref. 18)]. Therefore, as long as the program space is endowed
with the weak topology, convexity assumptions are obviously indispensable.

In general, strengthening atopology makes it harder for sets to be com-
pact, but easier for functions to be continuous. By considering the norm-
topology on the program space, which is stronger than the weak topology,
we do not rely on the concavity of the integrand for the argument of the con-
tinuity of the objective functional, so the continuity argument is relatively
simplified. This is due to one of the significant properties of the $\mathrm{C}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{h}\acute{\mathrm{e}}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{r}\}’$

function that is known as the theorem of Krasnoselskii. From this result we
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can ensure that the recursive objective functional is continuous in the norm
topology of the program space. To the contrary, in order to guarantee the
compactness of the feasible set, as ademerit, we must impose somewhat
stringent conditions on the boundedness of the technology as in (T-3). The
argument of compactness, however, is relatively simplified by the effective
use of the $\mathscr{S}^{2}$-convergence.
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