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Abstract

We summarize a recent development of the study of sophisticated
learning with emphasis on learning to optimize.

1 Introduction

In the last decade, the theory of learning in games has intensively been
studied. Many researchers have investigated learning dynamics including fic-
titious play and replicator dynamic. However, those learning rules are naive
in the sense that those cannot adjust to even simple patterns, so that some
researchers recently consider sophisticated learning as an important issue to
study. It is natural to think that Bayesian learning is a candidate of sophis-
ticated learning. In fact, Kalai and Lehrer (1993) study Bayesian learning in
infinitely repeated games and show that the grain of truth condition implies
Bayesian learners eventually play a Nash equilibrium path. This approach,
however, has two problems. First, it is unclear how the grain of truth condi-
tion or other similar conditions is related to sophisticated learning. Second,
as Nachbar (1996) shows, Bayesian learning players with the same degree of
sophistication may fail to satisfy the grain of truth condition each other.

Another approach is proposed by Foster and Vohra (1993): they introduce
a concept of calibrated learning and construct a calibrated .learning rule.
Their leaning rule is explained by the following example: suppose that a
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player or forecaster, who follows the learning rule, predicts a probability of
rain, say p;, at the beginning of every period. Now fix any p and pick up
periods in which a player predicts p; = p. Then, empirical distributions
of rain in those periods always converge to p: the prediction is empirically
correct. The Foster and Vohra learning rule is calibrated to empirical data
in this sense. They consider repeated games where every player takes the
leaning rule, and show that the path converges to a correlated equilibrium.
Inspired by their work, Fudenberg and Levine (1995) and (1999) introduce a
concept of the universal consistency and show that smooth fictitious play has
the universal consistency property. In the following, I summarize Fudenberg
and Levine's work and then explain Noguchi (1999) that develops their work
to study the problem of learning to optimize against many regularities.

2 The Model

We consider one player who plays an infinitely repeated game against an
opponent, where he may observe only a past history of actions in each period;
the opponent may be a machine, nature, or consist of multiple players. The
player’s (resp. opponent’s) pure action in a stage game is denoted by a (resp.
y) and a set of all player’s pure actions (resp. all opponent’s pure actions)
is finite, denoted by A (resp. Y). A set of probability distributions over S
is denoted by A(S). A € A(A) (resp. m € A(Y)) denotes the player’s mixed
action (resp. the opponent mixed action). u(\,7) is written for the player’s
expected utility of a stage game. Histories of the repeated game consist of
sequences of actions by the player and his opponent. A finite history with
time length T is denoted by hr = (a;,%1,- - - ,a7, yr) and an infinite history
is denoted by ho = (a1,¥1, @2, ¥s, - - - ); we define hg = 0. Let H denote a set
of all finite histories and H,, denote a set of all infinite histories.

Our player takes an action on the basis of a past history in every period, so
that his strategy may be represented by a behavior strategy o : H — A(A).
A set of all player’s behavior strategies is denoted by Bp. We assume that
the player does not know about any opponent characteristic except that the
opponent plays a behavior strategy and takes an action in Y at each period.
An opponent behavior strategy is denoted by p and a set of all opponent
behavior strategies is denoted by Bop.
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3 Universal Consistency

A word “consistency” has several definitions in the learning literature. We
first describe a definition of consistency in statisitics and then introduce that
in the economic context. In statistics, the consistency means that prediction
averages asymptotically coincide with empirical frequencies. For example,
consider sequences of two possible states, rain and no rain. Let y,(R) be a
prediction of rain at the beginning of period t and D; an empirical frequency
of rain up to period ¢{. Then, the consistecy criterion requires that

Zi:l Hs

: — Dy — 0, ast — o0, a.s.

This criterion is unsatisfactory because the criterion cannot deal with
regulariteis. Suppose that the weather is very cyclical, for example, it is rain
in even periods and it is no rain in odd periods. Let a prediction always
give 50 — 50 probability. That is, the prediction is so naive that it does not
learn the weather simple pattern. However, it is clear that the prediction
passes the consistency criterion. Note that this criticism may be applied to
the Foster and Vohra learning rule.

Fudenberg and Levine (1995) introduce the universal consistency in the
economic sense (precisely its definition dates back to Hannan (1959)).

Definition 1 A behavior strategy o is said to be e—universally consistent, if
for all opponent strategies p

21_11'1010 sup V(D(hr)) — = Z (as,9s) <€, a.s.,

where D(hr) is an empirical distribution of all opponent actions up to period
T and V(D(hr)) = max{u(}, D(hr)) | A € A(A)}.

We need to give several remarks. First, the criterion is concerned with
optimization, not prediction. Second, the criterion is universal in the sense
that it requires single behavior strategy pass the criterion for all opposing
behavior strategies. Third, a target in the criterion is a maximum payoff
against an empirical distribution up to the current period, so that realized
average payoffs eventually becomes at least as high as the minmax payoff in
a stage game. Those mean that the criterion may be interpreted as a safety
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criterion in the sense that the player’s strategy does not perform very poorly
against any opposing behavior strategy.

Fudenberg and Levine (1995) show that smooth fictitious play, that is, a
smooth approximate best response against an empirical distribution of past
opponent actions, is universally consistent.

Proposition 1 (Fudenberg and Levine (1995)) For any € > 0, a smooth
fictitious play is e—universally consistent.

It is important to note that a very simple strategy such as smooth ficti-
tious play has the property. Unfortunately, this criterion may be criticized by
the same argument as in the statistical definition: it does not assure a plausi-
ble optimality against even very simple patterns. To understand it, consider
a repeated matching pennies game where an opponent takes an alternating
strategy:

H1T7H7T1H1T)H)Ta H7T’H1T1'HvT)H)T1 H1TvH)T)"°

Then, the universal consistency criterion only assures that player’s aver-
age payoffs may attain the minmax payoff 0. However, when the player is a
little smart, he may recognize the simple pattern and try to adjust to it, so
that he must earn much more payoffs than 0. It means that the universal
consistency is too weak to evaluate sophisticated learning behaviors.

4 Conditional Universal Consistency

Fudenberg and Levine have been aware of the weakness, and then they pro-
pose “conditional” universal consistency (1999). They show that conditional
smooth fictitious play has the conditional universal consistency property un-
der mild assumptions. Let us explain conditional (smooth) fictitious play. It
is just a (smooth approximate) best response to conditional empirical dis-
tributions. For example, suppose that a player consider samples should be
separated according to even and odd periods. It may be represented by a
classification rule R that is defined as a partition of H. In this example,
R = {7e,7,}, where v, = {h; | t is even} and 7, = {h; | t is odd}. Then,
conditional fictitious play on R is a (smooth approximate) best response to
an empirical distribution of past odd period samples in any odd peirod and a
best reponse to an empirical distribution of past even period samples in any
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even period. In a general case, a class in a classification rule R is called a
category, denoted by 7; if a past history hr € v, we say that 7 is active in pe-
riod T+ 1. We assume that each 7 has prior samples represented by a vector
dg; ng = Zd?r,y is called a prior sample size for 4. Thus, when a past history
hr_, belongs to <, a player considers that a current period T is y—active.
He collects observed samples d,(hr-1) in past y—active periods and plays a

(smooth approximate) best resposne to an empirical distribution D, (hr-,)

~ 0
of prior and observed samples conditional on v: D,(hr-1) = ﬁ::—:i;j:&-,

where n,(hr-1) = >_ dyy(hr-1); D,y(hr) denotes an empirical distribution
only of observed samples in «y—active periods.

Proposition 2 (Fudenberg and Levine (1999)) Suppose that a classification
rule (R, (df)yer) satisfies the following two assumptions:

(1) lim K (br) =0 for all ho € Hy, and (2) supnd < oo
T—o0 T ~ER

where K®(hr_,) is the number of categories that have been active up to period
T. Then, for any € > 0, a conditional smooth fictitious play on R satisfies
the conditional untversal consistency: for any opposing behavior strategy p
. 1 .
Tl‘—u;go sup ”EZ_-I Zn}"V(D’Y(hT)) - Zu(asv ys)" <§g, a.s.

s=1

where ny. is the number of times that v is active up tp period T' and V (D, (hr)) :

max{u(}, D,(hr)) | A € A(A)}.

However, the conditional universal consistency is still weak to evaluate
a sophisticated player’s behavior, although it is very useful to prove propo-
sitions in the next section: the target 3 ) .z 77V (D,(hr)), a maximum
average payoff against conditional empirical distributions on R, might not
be an upper bound to time average payoff, even if an opponent plays a simple
regular strategy. The following example explains it:

Example 1 Suppose that a player’s payoff matriz is:

L M R
U 3 — 3 3
D - 3 3 - 3
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Let the player’s classification Tule be R = {ygp,Yar}, where yp = {h: | v, =
R or L} and vy = {h: | y+ = M}. Assume, however, that his opponent
follows a cyclical behavior LMRLMRLMR - --. Even though a conditional
smooth fictitious play on R is supposed to perform well according to the
conditional universal consistency criterion, the conditional fictitious play on
R generates only time-average utility 20 + %3 = 1 by proposition 2. If the
player is smart, then he could receive 53 + %3 + %3 = 3 as his time-average
utility by switching to a cyclical behavior, UDUUDUUDU ---. It ts hard to
believe that the smart player takes the conditional fictitious play on R forever.

The example suggests (1) we need a stronger criterion of time-average
utility especially for regular opponent strategies and (2) if a player wants
to learn his opponent strategy, then his classification rule should be more
sophisticated (or finer) than a conditioning rule of the opponent strategy in
some sense.

5 Optimal Properties of Conditional Fictitious

Play

Taking into account the weakness of the consistency, Noguchi (1999) intro-
duces two strong criteria: time average optimality and conditioning class
optimality. The first criterion requires that a player may eventually obtain
almost as high time-average payoff as if he knew a true opposing behavior
strategy. The second one insists that a player may eventually obtain almost
as high payoff as if he knew a true opposing behavior strategy. Then, he
construct an “optimal” classification rule for each of those criteria and shows
that conditional smooth fictitious play on the optimal rule pass the strong
criterion for all regular opposing strategies. We shall explain those criteria
and optimal classification rules.

5.1 Time average optimality

Recall the defect of the consistency: a target might not be an upper bound
to time average utility. We shall intorduce a strong criterion to resolve the
problem: time-average optimality.
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Definition 2 A behavior strategy 0 : H — A(A) is called e—optimal in the
average sense for S C B, if forallpe S

T-1 T
. 1
Jim sup flz V(p(ha)) = Y u(as,4s)] <&, piiop) — a.5.
8=1

8=0

where p, ;) i a probability distribution on H, generated by o and p, and
V(p(h,)) is a mazimum payoff against p(h,).

In this definition, we put average maximum payoff against a true op-
ponent strategy as a target, instead of that against empirical distributions.
Note that it is an asymptotic least upper bound of time average utility: for
any player’s strategy o and opposing strategy p,

1 T-1 T
lim inff[z V(p(hs)) = > u(a,,ys)] >0, as.

Tooo 8=0 s=1

and the equality holds a.s. for & with o(h,) € argmax{u(\,p(h,)) | A €
A(A)} for all h, € H. It is easily obtained by combining the strong law
of large numbers and a fact that V(p(hs)) = u(A, p(hs)) for all X € A(A).
Hence, if time average utility is almost as high as the target, a player, who is
concerned with time average utility, has no incentive to change his behavior,
so that the weakness of the consistency is resolved. However, we cannot hope
the best result for the time average optimality criterion if a player has no
weakly dominant action in a stage game: there is no single strategy that
is optimal in the average sense for all opposing strategies; when there is a
dominant strategy, the optimality is alway obtained by playing the dominant
action.

Proposition 3 Assume that there is no weakly dominant action in a stage
game. Then, for some €9 > 0 there exists no eo—optimal behavior strategy
for all opponent behavior strategies.

Although it is impossible to obtain the best result, it is worthwhile study-
ing a player’s optimal strategy for many opponent behavior strategies. In-
deed, we may show that there exists a time average optimal strategy for all
opposing strategies generated by a countable family of finitely conditioning
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Definition 3 (1) A conditioning rule is a partition of H, denoted by P. An
element of a conditioning rule is called a conditioning class, denoted by 5. A
conditioning rule P is said to be finite if the number of classes in P is finite.
(2) A conditioning rule of a behavior strategy p is a partition, denoted by P,,
that is generated by the following equivalent relation:

hy ~ hg <> p(he) = p(hs)

The mized action pg conditional on a class [ is uniquely defined by p; =

p(h’t)l ht € ﬂ

Definition 4 We say that a behavior strategy p is generated by a family of
conditioning rules Q, if a conditioning rule of p belongs to 2, that is, P, € (.

Proposition 4 For any countable family of finitely conditioning rules {P:i}2,

there exists a classification Tule Ry such that for any € > 0 some conditional
smooth fictitious play on Rq is e—optimal in the average sense for all behavior
strategies generated by the family {P;}Z,.

This proposition implies that conditional smooth fictitious play is optimal
in the avearge sense for all regular opposing strategies because conditioning
rules of regular strategies are at most countable; regular strategies are those
that have computable finitely conditioning rules (see Noguchi (1999) for its
formal definition).

Instead of giving a rigorous proof, we will explain a basic idea of con-
structing an optimal rule Ry. It is based on a given family {P;}32,; without
loss of generality, we may assume that {P;}32, is ordered by the fineness as
partitions: P; < Py forall i (P; < Py VB € PidB € Pi(B C B)). A
key is that a player makes use of each P; as a temporary classification rule
in some periods. That is, R represents the following player behavior: at the
first stage he starts with employing P; as a temporary rule. But he has an
incentive to change finer conditioning rules because a true conditioning rule
might be finer than P;; the player could not receive the maximum average
payoff against a true strategy if he got stuck in P; and the true rule were finer
than P (recall example 1). The argument may be applied to any period and
any conditioning rule he employs in that period: there is always possibility
that a true conditioning rule might be finer than a current employed one.
Therefore, he employs finer and finer rules as time proceeds. But he wants
to change the rules very slowly. Delayed changes of temporary rules allow
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the player to obtain enough samples for each rule, so that if his employing
rule is finer than a true one, he could have a good prediction on the true
opponent strategy and obtain the maximum average payoff to it. The player
employs finer and finer rules, and eventually employed rules are finer than
a true one. It means that the player may eventually obatin the maximum
avearge payofl.

5.2 Conditioning class optimality

Even the time average optimality may be weak as a behavior criterion of
a sophisticated player. The weakness is that the time average optimality
criterion may ignore a performance of a player’s strategy in active periods of
a conditiong class whose frequency vanishes relative to all periods. Consider
a repeated matching pennies game where a player always plays heads and
his opponent plays the following regular strategy:

H,T,H,H,T,H,H,H,T,H,H,H,H,T,H,H,H,H,H,T,'“

That is, the frequency of playing tails diminishes regularly as time proceeds.
The player suffers the worst outcome —1 whenever the opponent plays tails,
although tails are played regularly. However, the player’s strategy passes the
time average optimality criterion for this opponent strategy because periods
of the worst outcome asymptotically vanish relative to all periods. If the
player is smart, then he would be aware of the regularity and very likely to
play tails when his opponent plays tails. The example suggests that we need
a stronger criterion in order to capture sophisticated behaviors: a criterion
that assures an optimality in each conditioning class. We shall only give the
definition of the conditioning class optimality for a case of finitely conditioned
strategies, that is, strategies whose conditioning rules are finite (see Noguchi
(1999) for a general case).

Definition 5 A behavior strategy 0 : H — A(A) is called e—optimal in the
classwise sense for S, if for any opponent strategy and any conditioning class

BeP,

: 1 )
Th—?;o sSup V(pﬁ) ) Z u(as+11ya+1) <Eg, Zf'"qﬁ' — 00, a.S.
oot

where ng is the number of B—active periods up to period T' and V(pg) is a
mazimum payoff against pg.
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This optimality criterion assures that a player may eventually obtain
almost as high payoffs as if he knew a true opponent strategy, and the above
problem is resolved.

Proposition 5 For any countable family of finite conditioning rules {P;},
there exists a classification rule Ry such that for any e > 0, some conditional
smooth fictitious play strategy on R, is optimal for all behavior strategies
generated by the family, i.e. P, =P; 3.

This criterion is stronger than the time average optimality and it would
be the strongest as a myopic optimality criterion in the sense that the same
proposition with a stronger criterion would not hold.

A basic idea of constructing R, is very similar to that of the time average
optimal rule Ry. A difference is that a player switches classwise: if a class
B in P; obtains enough samples, then the class is changed to finer classes in
Pi+1, while any other class in P; with few samples keeps to be employed, i.e.
it is not switched to finer classes.

6 Concluding Remarks

We conclude by giving several remarks. First, we need to emphasize that the
time average optimality and the conditioning class optimality (proposition
4 and 5) may be obtained by using the conditional universal consistency.
This means that those optimalities may be attained without the cost of the
universal consistency. Thus, single smooth fictitious play is not only optimal
for many opposing strategies but also safe against all other ones. Second, we
have focused on myopic optimality. However, nonmyopic cases are impor-
tant in some economic situations. Noguchi (2001) extends the conditioning
class optimality to a nonmyopic case and show that a nonmyopic version of
conditional smooth fictitious play passes the nonmyopic optimality criterion
for many strategies.
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