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Multiple interior layers of solutions to elliptic
Sine-Gordon type ODE

IREBRE - BERFEE LHEBKER  (Tetsutaro Shibata)

1 Introduction
We consider the perturbed elliptic Sine-Gordon equation on an interval

—u"(t) + Asinu(t) = pf(u(?)), uw(t)>0 tel:=(-T,7T), (1.1)
wxT) = 0,

where A, u > 0 are parameters and T > 0 is a constant. Throughout this paper, we
assume:

(A.1) f is locally Lipschitz continuous, odd in . Furthermore, f(u) > 0 for u > 0.

(A.2) There exist constants C > 0 and p > 1 such that |f(u)| < C(1 + |u|?) for u € R.
(A.3) f(u) £ Cufor 0 < u < 1, where C > 0 is a constant.

(A.4) There exists a constant m > 1 such that for u € R

fw)u > mF(u) := m/ou f(s)ds.
The typical examples of f(u) are:
f)=[ulf Ty, (p>1), flu)=[uf ut+]ul" "y, (pg>1)

The aim here is to investigate the layer structure of the solutions to (1.1) for A > 1 by
using variational approach. To be more precise, we show the existence of the solutions u,
which have 2n multiple interior layers in I for A > 1. The location of multiple interior
layers of u) as A — oo are also determined. Further, we show the existence of solutions
uy with boundary layers.

We explain the variational framework. We consider the variational problem (M)
subject to the constraint depending on A:
(M) Minimize

La(u) = % [+ [0 - cosu(e)as (12)

under the constraint

ue M, = {u € HY(D): K(w) = [ F(u(t))dt = 2TF(a)} , (1.3)
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where a > 0 is a fized constant, Hj(I) is the usual real Sobolev space. Then by the
Lagrange multiplier theorem, we obtain solution triple (A, (), uy) € R2 x M, of (1.1)
(and consequently uy € C?(I) by a standard regularity theorem) corresponding to the
problem (M).

Theorem 0 [5]. Assume (A.1)-(A.4). Let 0 < a < 2w satisfy F(a) < F(2n)/2. Then:
(i) ux — 27 locally uniformly on (—Tap,Tap) as A — 0o, where Top := F(a)T/F(27).
(ii) uy — 0 locally uniformly on I\ [—Ta0,Tuo] as A — oo.

(i1i) w(A) = 0 as A — oo.

We next remove the restriction F(a) < F(2r)/2 in Theorem 0. To do this, we intro-
duce the condition (A.5.n) for a given n € N:

(A5.n) H(n):= F(2(n+ 1)r) — 2nF(2nw) + 2 X5y F(2km) > 0.

Note that ”Assume (A.5.n)” implies that the assumption (A.5.n) holds only for a given
n. The example of f which satisfies (A.1)—(A.5.n) for a fixed n € N is f(u) = |u[P~ u for
P > pn, Where p, > 1 is a constant depending on a given n.

Theorem 1 [6]. Assume (A.1)-(A.4) and (A.5.1). Let 0 < a < 2w satisfy F(a) >
F(2m)/2. Then the assertions (i)-(ii) in Theorem 0 hold.

We next show the existence of the solutions u, which have 2(n + 1) multiple interior
transition layers at t = +Tppn, (T — Ton), 2(T — 3Tan), -+, £(T — 2n — 1)1, ,) as
A — 00, where

Ton = (F(a) — F(2nm))T/H(n).

For D C R, let —D :={—t:t € D} C R and |D| be the Lebesgue measure of D.

Theorem 2 [6]. Let n € N be given. Assume (A.1)-(A.4) and (A.5.n). If a satzsﬁes
2nt < a < 2(n+ )7 and

n

SV g) F(2kn), (1.4)

F(2nm) < F(a) < FQ2(n+ 1))+

1
2(n+1)

then as A — oo:

(i) lurlloo < 2(n + 1)

(i) un — 2(n + 1)7 locally uniformly on (—Ton, Tan)-

(i) ux — 2nm locally uniformly on £(Ton, T — (2n — 1)T4p).

(iv) ux — 2k locally uniformly on £(T—(2k+1)Ty 0, T—(2k—1)T, ) fork =1,--- ,n—1.
(v) ux — 0 locally uniformly on £(T — Ty, T).

(vi) There ezist constants C1,Cy > 0 such that

p(A) < Cire= V>, (1.5)

Note that if (A.5.n) is satisfied, then there exists & > 0 which satisfies 2n7 < a < 2(n+1)w
and (1.4) for n.
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We now consider the case where the condition (1.4) does not hold. Namely, we consider
a > 0 which satisfies 2n7 < a < 2(n + 1)7 and

1
2(n+1)

F(n + 1)1) + — 1)§F(2’”) < F(a). (1.6)

(n+

In this case, u, has multiple interior layers at t = £(T — (2k — 1)San)(k=1,---,n + 1)
as A — 0o, where

¢ (F2(n+ 1)) — F())T
T @n+ 1)FQ(n+ 1)m) - 23550 F(2k7)

Theorem 3 [6]. Let n € N be given. Assume (A.1)-(A.4), (A.5.n) and (A.5.n+1). Let
2nm < a < 2(n + )7 satisfy (1.6). Then as A — oo:

(i) lluallo = 2(n + 1)m.

(i) uy — 2(n + 1)m locally uniformly on (—(T — (2n 4+ 1)San), T — (2n + 1)San).

(i4i) un — 2km locally uniformly on £(T — (2k+1)San, T — (2k—1)Sap) fork=1,---,n.
(iv) uy — 0 locally uniformly on £(T — San, T).

(v) The formula (1.5) holds.

Finally, we show the existence of solutions which have boundary layers.

Theorem 4 [6]. Let n € N be given. Assume (A.1)-(A.4) and (A.5;n). If o = 2nm,
then ||ualloo < 2(n+1)7 for A>> 1 and up — 2n7 locally uniformly on (=T,0)U(0,T) as
A — oo.

The idea of the proof of Theorems 2 is as follows. By using the variational character-
ization of uy, we find that the shape of uy for A > 1 is like step function, each height of
the steps are 27. We first establish an estimate ||uy|lc < 2(n + 1)7 for A > 1 by using
(A.5.n). Then uy must cross the line u = 27, 4m, ..., 2n7. By using this fact, we secondly
establish that |Iyx] ~ 2|Iro| for A >> 1, where I,x C (0,T) (k = 1,---n — 1) are the
intervals on which uy — 2k7 locally uniformly as A — oo. Finally, by using an estimate
lluslloo < 2(n + 1), we prove that |1y sn+1)l ~ |Ino| for A > 1. To prove Theorem 3, we
show that |I) x| ~ 2|I50| for k=1,2,---,nand A> 1.

The rest of this paper is organized as follows. We introduce some fundamental lemmas
in Section 2. Based on these lemmas, we prove Theorem 2 (i) for n =1 in Section 3.

2 Preliminaries

In this section, we introduce some fundamental lemmas. For the full proofs, we refer to
[5]. We know by [2] that a solution u of (1.1) satisfies

u(t) = u(-t) for t €[0,T). (2.1)

W' (t) <0 for te(0,T), (2.2)
w/(0) = 0,%(0) = ||ul|o, (2.3)



165

For 0 < 7 < |lua|lo, let ¢,.,x € [0,T) satisfy us(t.») = r, which exists uniquely by (2.2).
The following notation will be used repeatedly. For a fixed 0 < € < 1, let

l’)\,c = t21r,A - t21r+e,/\; Mye == t21r—e,A - t27r,/\, ‘SA,e = T - tc,)w

In what follows, we always fix 0 < € < 1 first. Then let A — oco. Therefore, the standard
notation o(1) will be used for A > 1. Furthermore, the notation I, = 0y + O(€) + o(1)
(for instance) means that |l ¢ — x| < Ce+0(1) for 0 < € < 1 fixed and X > 1.

Lemma 2.1 Assume that (A, pu,u) € Ry x R x C*(I) satisfies (1.1). Then p > 0.
Further, fort €1,

u'(t)? + uF(u(t)) + Acosu(t) = %u’(T)2 + A= pF(||u]loo) + A cos ||u|oo- (2.4)

2
Proof. Multiply the equation in (1.1) by «/(¢). Then we have
d -
dt{ u(t)2+uF(u(t))+)\cosu(t)}-—0 tel
Hence, for t € I,
-;—u’(t)2 + pF(u(t)) + Acosu(t) = constant. (2.5)
By putting ¢t = 0,7 in (2.5), we obtain (2.4) by (2.3). Then by (2.4), we obtain
1
pF(||ulleo) = Eu'(T)2 + A(1 = cos ||ufle) > 0. (2.6)

Since F(||ulleo) > 0 by (A.1), u > 0 follows from (2.6). §

Lemma 2.2 Let @ > 0 and A > 0 be fized. Then there exists (u(A),ur) € Ry x
(Mo N C?*(I)) which satisfies (1.1) and Ly(uy) = B()) := infuepr, L(u).

Lemma 2.2 can be proved easily by choosing a minimizing sequence.

Lemma 2.3 Let o > 0 be fized. Then Ly(uy) < CAZTm#D for A > 1.
Lemma 2.3 can be proved by finding an appropriate test function ¢ € M,
Lemma 2.4 Let a > 0 be fized. Then u(A) = o()) for A > 1.

Lemma 2.4 is a consequence of Lemma 2.3. By Lemma 2.3, we obtain the following (2.7).
Put Jy,s :={tel: 2(k—1)7r+5<u)\() < 2km—6}for 0 <d < 1and k € N. By
Lemma 2.3, as A — oo,

1
J < —_ — )
| Iaks] < T —cosd JAM(I cosuy(t))dt (2.7
-1

— < —m/(2(m+1))
1_ COSJL,\(U,\) < CA — 0.
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Lemma 2.5 Let a > 0 be fized. Then |u)(T)|?/A = 0 as A = oo.
Lemma 2.5 follows from (2.4) and Lemma 2.4.
Lemma 2.6 Let a >0 and 0 < € < 1 be fized. Then for A>> 1
Uh(T)? < Che~2reV/ (1200 (2.8)

Lemma 2.6 can be proved by (2.4) and Lemma 2.5 and the following Lemma 2.7 follows
from Lemma 2.6.

Lemma 2.7 Let a > 0 and 0 < € < 1 be fized. Assume that there ezists a subsequence
{A;} of {A} (Aj = 00 as j — o0) such that ||Juy, || > 27. Then

My e = V1 =260y, — o(1). (2.9)

3 Proof of Theorem 2 (i) for n =1

Lemma 3.1 Assume (A.1)-(A.4). Let a > 0 and 0 < € < 1 be fized. Then for A > 1
Uy (T)? > Che 200V, (3.1)
Proof. By (1.1),
uy(t) + p(A) f(ua(t)) = Asinup(t) < Aua(t) for t € [tae, T
By this and (2.2), we obtain

) ;{2 () + W) F(u (t))—M}_O for t € [t T,

This implies that S 2(t) is increasing on [ty ¢, T]. Then
)\U,\(t)

S0+ BVFa®) - 2 < Ly tor te o T

Then for t € [ty, T,

~(6) < VTP + 20 - N Fan(®) < TP+ n@F.  (32)
Therefore, by (3.2), we obtain

—ay!
bre = T—tor= [ 1dt> / ()
tea te,a \/u (T)2 + dua(t)?

= Llog (|€+ V62+X§»2)

/o \/uf\(T 2+ A2 VA Xx2

1 2¢
> —1
=W (X,\z)
where X, 2 := |u}(T)|/VA. This yields (3.1). 4
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Lemma 3.2 Assume (A.1)-(A.4). Let @ > 0 and 0 < € < be fized. Suppose that there
ezists a subsequence {A;}32, such that \; — 0o as j — 00 and |luy,llc > 47. Then

ul)‘j (t21r,)\j )2 S C)\je_m)‘j'ev (1—6))\1, (3.3)
t41r—e,Aj - t4-,.-’,\j _>_ \/ (1 - G)l)‘j,e - 0(1). (34)

Lemma 3.2 can be proved by the similar arguments as those used to prove Lemma 2.6.

Lemma 3.3 Assume (A.1)-(A.4). Let a > 0 and 0 < € < 1 be fized. Suppose that there
ezists a subsequence {A;} such that A; — 0o as j — 00, and |juy,||e > 2m. Then

U’,Aj (tz,r,,\)z S C)\je—zm)‘j’s v (1—6))‘. (35)
Proof. We write A = \;, for short. For ¢ € [taxx, tar—e ), by (1.1),

uy (t) + p(A) f(un(t)) = Asinuy(t) = —Asin(2r — uy(t)) (3.6)
< =M1 =-¢€)2m — ur(®)) = M1 — €)(ua(t) — 27).

Then for ¢ € [taxx, tan—en], by (2.2) and (3.6),
{uX (@) + u(M) f(ur(®)) — A1 — €)(ur(t) — 2m)}uy(t) > 0.
This implies that for ¢t € [t2-,r’)\, tzﬂ_e,)‘],

dSxat) d

) £ {50 + MOV Fn) - -

() - 27r)2} > 0.

So Sy 4(t) is non-decreasing in [taq x, tan—e,x]. Then for ¢ € [tar », tan—e,], We obtain

1—c¢

SUA(E) + AV F(r(8)) — 15 S(un(t) — 217 > 2a(t2e)? + pN)F(2m),

which implies
1—e€

2
By (3.7) and the same calculation as those used to prove Lemma 2.6, we obtain (3.5). y

%uf\(t)2 > %u,\(tzw,,\)z + (ua(t) — 2m)?. , (3.7)

Lemma 3.4 Assume (A.1)-(A.4). Let a > 0 and 0 < € < 1 be fized. Suppose that there
ezists a subsequence {\;} such that A\; = 00 as j — 0o, and ||uy; || > 47. Then

t41r—e,Aj - t41r,)\j Z 1-— ém)‘j,e - 0(1) fOT‘ )\j > 1. (38)

Lemma 3.5 Assume (A.1)-(A.4). Let a > 0 and 0 < € < 1 be fized. Assume that there
erists a subsequence {A;} such that A\; — 0o as j — oo, and ||uy,|lc > 2w + €. Then

l,\j,é = t27r,Aj - t21|-+€,,\j >V1- 266,\1.,5 - 0(1) - for /\j > 1. (39)
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Proof. We abrebiate A; as A. For ¢ € [tanien, torn], by (2.4), we obtain

1
5“1\@)2

IA

%u;(:r)2 +A(1 = cosux(t)) = %u;(:r)2 + A(1 = cos(ua(t) — 2m))
< %@(T)? + %)\(u,\(t) — o).

This implies

—uj(t) < v/ A(ua(t) — 2m)2 + Uy (T)?
for t € [tanten, tar,]- Therefore,
tam, - ¢
2 () dt = / 1 dt.
t2mte, uy(t) — 2m)° + u), s“+u
A( 2m)2 + . (T)? 0 /A2 + ul(T)?

Dye = tarp — tamper =

By this, we easily obtain (3.9). 3

Lemma 3.6 Assume (A.1)-(A.4). Let @ >0 and 0 < € < 1 be fized. Assume that there
exists a subsequence {);} such that A\; = 0o as j = 00, and |luy, || > 47. Then

t4,|-_€,,\j - t41,,,\j >V1- 266A,-,e - 0(1) fOT Aj > 1. (310)

Proof of Theorem 2.1 (i) for n = 1. We assume (A.1)-(A.4) and (A.5.1). Let
21 < a < 47 which satisfies (1.4) for n = 1 be fixed. We assume that there exists a
subsequence of {\}, denoted by {\} again, such that A — oo and ||u, || > 47, and derive
a contradiction. Let 0 < € < 1 be fixed. By (2.7), we see that as A — oo

lte,,\ - t27|'—€,/\|’ |t21\’+€,)« - t41r—e,A| — 0. (311)
Then by (3.11),

T = T —tex+ (Ber —tam—ep) + (t2n—ep — t2np) + (L2mr — tonten) (3.12)
+  (L2ntenr — tan—en) + tan—e
= Oxne+ e +Mae+ tan—er + (ter — tan—er) + (Lanter — tam—en)
= (5,\,6 + l)‘,e +Mre + Lan—er + 0(1).

Therefore, by (3.4), (3.12), Lemmas 3.4 and 3.6,
T< 3(t47,__€,)‘ - t41|-,,\) + t41r—e,A + O(C) + 0(1) < 4t4-,|-_€',\ + 0(6) + 0(1).
This implies that for A > 1

< tyn—er + O(€) + 0(1). (3.13)

|

On the other hand, by Lemmas 2.7, 3.5, (3.12) and (3.13),

< %T + O(€) + o(1).
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This implies that for A > 1
1
Ire < =T + O(e) + o(1). (3.14)

It is clear that

4 T/4—Ce tor—e,A
TF(a)zkz_:Bk,,\,e - /0 Flux(t))dt + /T @) (319)

b [ Fan@)s+ [ Fus@)

€

By (3.11), we obtain that B3y — 0 as A = oo. It is clear that B, < Ce. By (3.13),
we see that T/4 — Ce < tgn_ex for A > 1. Then by this,

TF(4r)
—

Bije > F(4m —€) (% — Ce) > Ce.

By (3.11) and (3.14),

BQ,A,e - F(2’/T - 6)(t2.,r_e,)‘ - T/4 + CG)
= F2m — €)((ton—er —tep) + T —0rc — T/4+ Ce)
> TF?”) — Ce—o(1).

By these inequalities and (3.15),

F(4r) F(27)
4 + 2

Choose ¢ sufficiently small. Then this contradicts (1.4) for n = 1. Thus the proof is
complete. g ’

F(a) > — Ce—o(1). ‘ (3.16)
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