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1 Introduction
We consider the boundary value problem (BVP):
u'(t) + f(t,u(t)) =0 ae. te€(0,+00), u(0) = lim u(t) =0, (1.1)

t—+oco ¢

where f : (0,+00) x R — [—00, +00] is a Carathéodory function (i.e. f(-,u) is measurable
for every u € R and f(t,-) is continuous for a.e. ¢t € (0, +00)). ‘
We first give some notations, which will be used below:

ACla,b] = {u|wuis an absolutely continuous function on [a, b] };‘
ACioe(a, B) {u | wjap) € AC[a, b} for every compact interval [a,b] C (o, 8) };
Li(a,8) = {u]uyep € L'[a,b] for every compact interval [a,b] C (o, B) };
Clo,f| = {u€O(a,f)| mult) € R, *limu(t) € R};

ACla, 8] = {u€ ACic(e,B) | ' € L' (0, 8)} (C Cle, B]);
U v
U = {ueCl0,4+0) | T+ 0 € C[0,+00] };
= {ueU|ué€ ACix(0,+00), u' € ACin(0,+00) };

1 R
= (Y€ L0, +00) [ Wz = [ 1= W(®)ldt < +oo};

= e Lh0+o0) Il = [ thbe)ldt < +oo);

(W eV |v(E) >0 ae. t € (0,+00), /0+°°t¢(t)dt >0}
= {veC,NC0,1) |v' € ACinc(0,1) };

= {#€ L0, [ Igllx = [ 51— 5)I6(s)lds < +oo);

{p€ X |p(s) >0ae se(0,1), /Ols(l—s)qb(s)ds>0};,

MO S <N =
I

Ko
Il

where —00 < a < b < +00, —00 < a < f < +o0.



52

Throughout this note we will make the following assumption on the Carathéodory
function f(t,u) : (A.F) there exist r; € V and r; € Z such that

|f @t w)| < rit)|u| +72(t) ae te(0,+00) “ueR.

Further, we will assume that f satisfies a Dolph-type nonresonance condition with respect
to the eigenvalue problem (EVP):

v (t) + Ag(t)u(t) =0 ae. te€(0,+00), u(0) = Jim @ =0, (1.2)

where g € V. A real number A is called an eigenvalue of the EVP (1.2) (resp. EVP (1.5))
if there exists a nontrivial solution u € W (resp. v € Y)) of the EVP (1.2) (resp. EVP
(1.5)), and the nontrivial solution u (resp. v) is said to be an eigenfunction corresponding
to the eigenvalue A. We shall show that the EVP (1.2) has an infinite but countable
number of eigenvalues and they can be listed as

O0< A <A<A3< <A < A1 < -+ — +00.

In the case where g € C|[0, +00) and ¢(t) > 0 for ¢t € (0, +00), similar results were known
in Elbert, Kusano and Naito 1] and Kusano and Naito [2] (see also Kabeya [3]).

A solution of the BVP (1.1) (resp. BVP (1.4) ) is a function u € W (resp. v € Y)
with »(0) = tginoou—itl =0 (resp. v(0) = v(1) = 0) such that u (resp. v) satisfies the
equation in (1.1) for a.e. t € (0,+00) (resp. (1.4) for ae. s € (0,1)).

Our main result is stated as follows:

Theorem 1.1 Let q € V,. Assume that

(K'oo - Aﬂq) € Vp and (An+lq - K‘oo) € ‘/p, (13)
where . ' .
Koo(t) = lim inf ftu) ,u), k™(t) = lim sup PAGYD)

ul=+o00  u [u|l—+o00 u

fort € (0,4+00), and i is the k-th eigenvalue of the EVP (1.2). Then the BVP (1.1) has
at least one solution u e W.

The condition (1.3) is usually referred to as a Dolph-type nonresonance condition
with respect to the EVP (1.2). Our method due to the transformation: s = o and

1+t
v(s) = ;LL-:)t The transformation reduces the BVP (1.1) to the BVP:
v"(s) + F(s,v(s)) =0 ae. s€(0,1), v(0) = v(1) = 0, (1.4)
1 8 v
where F(s,v) = TEE f(l—s’ 1—8) for s € (0,1) and v € R. It also reduces the
EVP (1.2) to the EVP: '
v'(s)+Aa(s)v(s) =0 ae s€(0,1), v(0) = v(1) =0, (1.5)

where a(s) = (1—13)4 q(lis) for s € (0,1). Then q € V is equivalent to a € X.

Moreover, ¢ € V, if and only if a € X,. The following was known in [12] (see also [4,
Propasition 4.7]).
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Lemma 1.2 ([12, Lemma 4.5]) Let a € X,. Then the EVP (1.5) has an infinite but
countable number of eigenvalues and they can be listed as

0</\1<)\2<)\3<"'<)\n<>\n+1<"'—>+OO.

Moreover, for each n € N the eigenfunction v € Y corresponding to A, is unique up to
constant multiples.

To solve the reduced problem (1.4), we will use the following existence theorem in [4]:

Theorem 1.3 (4, Theorem 5.1] ) Let a € X,. Suppose that F(s,v) is a Carathéodory
function satisfying;

|F(s,v)| < bi(s)v] + ba(s) ae s€(0,1) "weR
for some by, by € X. Moreover, assume that (Yoo — Ana) € X, and (Appia — ) € X,

where F -
Yoo($) = lim inf M, 7*°(s) = lim sup _(s,_v)
lol—too ljotoo U

for s €[0,1], and X\ is the k-th eigenvalue of the EVP (1.5). Then the BVP (1.4) has at
least one solution v € Y.

The solvability of BVPs on semi-infinite intervals like (1.1) has been studied by Kurtz
5], Kiguradze and Shekhter [6], Chen and Zhang [7], O’Regan [8, 9] and others (see the
references given in [5-9]). Although nonresonant type existence results for singular BVPs
on compact intervals like (1.4) can be found in O’Regan [8, 9, 10], Kiguradze [11], Asakawa
[4, 12], and others (see the references given in [8-11]), it seems that the nonresonant type
of sufficient conditions for the solvability of BVPs like (1.1) is not studied so well.

2 Preliminaries

In this section we assume that —0o < a < b < +00 and —00 < @ < f# < +0o. We will
consistently use the following well-known lemma (see for instance Rudin [13]):

Lemma 2.1 Suppose that G is a function in AC[a,b] with G'(t) = g(t) >0 for a.e. t €
(a,b), G(a) = a and G(b) = B, and that F € AC|a, 8]. Then F(G(-)) € ACa,b],

d 8 b

Z[FG@)] = 1G@) 9 for ac. te@b) and [ f@)ds= [ 1G0) o(0)
where f = F' € L*(a, B) and define (+o00) -0 =0 (+o0) = 0. '

We will need the following lemmas in the later sections (see [12] for more details).

Lemma 2.2 Let G be a function in ACa,b] with G'(t) > 0 for a.e. t € (a,b), G(a) =
a and G(b) = 8. Suppose that M is a measurable subset of [a,b], and that f and f
are measurable functions on [a,b]. (a) Then G(M) is a measurable subset of [, 5] and
IG(M)| = [,,G'(t)dt. In particular, if |M| =0, then |G(M)| = 0. (b) Then f(G7'())
is a measurable function on [a,B]. Moreover, if f(t) = f(t) for ae. t € (a,b), then
F(GTHs)) = F(GTY(9)) for ae. s € (, B).
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Lemma 2.3 Let G be a function in AC|a,b] with G'(t) > 0 for a.e. t € (a,b), G(a) = o
and G(b) = B. Then the inverse function G~ of G is absolutely continuous on [a, (], and

1

Ed;[G_l(s)] = GG >0 ae s€(apf).

3 Green Operator
Let us define the functions R[v](-) and T'[](-) by

Rl = gomv(iss) frvev

T = goer(p;) Brvez

for a.e. s € (0,1). An easy computation using Lemma, 2.1, 2.2 and 2.3, shows that
Lemma 3.1 The operator R is a bijective linear operator form V onto X and

=l orty) 0<e<

Jor every ¢ € X. Moreover, /01 s(1 — s) R[Y)(s)ds = /0+°°t1,b(t) dt for everyp € V.
In particular, |R[Y]||x = ||%|lv for every ¢ € V, and ¢ € V,, if and only if R[Y] € X,.

Lemma 3.2 The operator T is a bijective linear operator form Z onto X and

T = 5 -:t)3 ¢(1-t|-t) (0 <t<+oo)

for every p € X. Mofeover, /01 s(1 —s)T[¢)(s)ds = /0+°° 1L+t Y(t) dt for every ¢ € Z.

For ¢ € X, define the function L[¢](-) by

Ligl(s) = (1 —s)/osxqﬁ(x)dz-i-s/sl l-2)¢@)dz (0<s<1).
The following lemma is the case p =1 in Lemma 3.3 of [12].

Lemma 3.3 Let ¢ € X. Then the following two conditions are equivalent: (a) v = L[¢];
(b) veY and v is a solution of the BVP:

V'(s)+¢(s) =0 ae s€(0,1), v(0) =v(1) = 0. (3.1)
Moreover, when either is the case, v € AC|0,1].
For a function u € U, define the function S[u](-) by

S[u](s)=i'i(% (f0<s<1), =tlhfw1%t)t (if s = 1),

where ¢t = _s_s It is easy to see that S is a bijective linear operator from U onto C[0, 1]



i

1v_8)s (0 < t < +00) for every v € C[0, 1], where s = lit'

and that S~'[v](t) =

Lemma 3.4 Let u € U and ¥ € Z. Suppose that v = S[u] and ¢ = T[y].
(a) Then w € W if and only if v €Y. (b) Then u is a solution in W of the BVP:

() + () =0 ae t€(0,+00), u0)=lim_ “—(ttl =0 (3.2)

if and only if v is a solution in Y of the BVP (8.1).

Proof. For simplicity of notations, we denote by ’ the differentiation with respect to ¢.

_ u(t) 1" (@) (1+¢t) —ul)
Let w € W and set v = S[u]. Then [1+t] = T+t
Using Lemma 2.1 we obtain v € C[0,1] N AC1,(0,1) and

d eV dt _ w@O ) —u) 1
EE[”(S)]—[Ht] s 1+t (-
S
1-s

for ae. t € (0,+00).

for a.e. s € (0,1), where t = Again by Lemma 2.1, d_z; € AC1,(0,1),v €Y and

%[v(s)] = (@1 +1) - ut)) % =+t vt (T—l_s)5 - “”(1 - s) 1 -1s)3

for a.e. s € (0,1). We further assume that u is a solution of the BVP (3.2). Then we
have

d? * s 1

—_— _ — = - f . .

7 [U(S)] w(l — s) P #(s) for ae. s€(0,1)
It is clear that v(0) = u(0) = 0 and v(l) = tl’}gloou—ttz = 0. Thus, v is a solution of the
BVP (3.1). Similar proof works for the converse implications.

For ¢ € Z, define the function K[¢](-) by

O

K[p|(t) = /()tyw(y) dy+t/t+°°¢(y)dy (0 <t < +00).

Lemma 3.5 Let ¥ € Z. Then u = K[y] if and only i S[u] = L[T[w]].
Proof. Let ¢ € Z and set ¢ = T[¢]. Suppose that u = K[¢] and v = L[#]. Using

Lemma 2.1 with G(y) = T+ Ve obtain
s 1 z 1 1 x
v(s) = (1—5)/()x(1_m)3¢(1_w>dm+s/s (l—x)(1_$)3¢(1_$>da¢
1 00
- L s ey [T d =15 0<t< o)

where s = 1—% Thus v = S[u}, and u = K[¢] if and only if v = L[¢#]. This completes
the proof. 0

Lemma 3.5 together with Lemma 3.3 and Lemma 3.4 allow us to conclude that
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Lemma 3.6 Lety € Z. Then the following two conditions are equivalent: (a) u = K[y,
() w € W and u is a solution of the BVP (3.2). Moreover, when either is the case,

I+_(-) € AC[O, +OO].

4 Proof of Main Theorem

In this section we shall give a proof of Theorem 1.1. We first show that the BVP (1.1) is
equivalent to the BVP (1.4) with F(s,v) given by

1 s v
F(s,'u)—(l__s)3 f(l—s’l—s) ae. s€(0,1) ueR. (4.1)
. : t u(t)
To do so, we will use the transformation: s = —— and v(s) = —=~.
1+1¢ 1+1¢

Lemma 4.1 Suppose that F : (0,1) x R — [—o00,+00] is the function defined by (4.1),
where f is a Carathéodory function satisfying the condition (A.F). Then F(s,v) is a
Carathéodory function such that

|F(s,v)] < bi(s)|v| +ba(s) ae s€(0,1) YweR, (4.2)
where by = R[r] € X and by = Try) € X.

Proof . Since f is a Carathéodory function, f(-, (1 + (-))v) is measurable on (0, +00) for
every v € R. It follows from (b) of Lemma 2.2 that F(-,v) is measurable. Using (a) of
Lemma 2.2 we deduce that f(f%;’ ) is continuous for a.e. s € (0,1). Hence F(s, )

is continuous for a.e. s € (0,1). Thus, F(s,v) is a Carathéodory function. Using (a) of
Lemma 2.2 it follows from (A.F) that
s v s
<
‘rl(l—s) 1—s+r2(1—s)

s v
!f(l -8 1-— s)
for a.e. s € (0,1) and for every v € R. This implies (4.2).

O

Lemma 4.2 Let u € U and let v = S[u]. Suppose that F is the Carathéodory function
given by (4.1), where f is a Carathéodory function satisfying the condition (A.F). Then
the following two assertions are equivalent: (a) u is a solution in W of the BVP (1.1);
(b) v is a solution in Y of the BVP (1.4).

Proof. Let u € U and set v = S[u]. It follows from (A.F) and Lemma 4.1 that
Y(t) = f(t,u(t)) € Z and that ¢(s) = F(s, v(s)) € X. Moreover,

1 s 1 s s \!
Tl¥l(s) = (1- s)3f(1 -8’ (1-9) [u(l — s) (1 t1o s) D = ¢(s)
From (b) of Lemma 3.4 we see that (a) is equivalent to (b). This completes the proof. o

If A € Rand g € V, then f(t,u) = Aqu is a Carathéodory function satisfying the con-
dition (A.F) and F(s,v) = )\(1 33)4 q(l i s) v = AR[g|(s)v. As a direct consequence
of Lemma 4.2 we have
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Lemma 4.3 Letu € U, A € R and q € V. Suppose that v = S[u| and a = R|q]. Then
the following two assertions are equivalent: (a) u is a solution in W of the EVP (1.2);
(b) v is a solution in'Y of the EVP (1.5).

It follows from Lemma 4.3 that

Lemma 4.4 Letue€ U, A€ R and g € V. Suppose that v = S[u] and a = R][g].

(a) Then X is an eigenvalue of the EVP (1.2) if and only if A is an eigenvalue of the EVP
(1.5). (b) Then u is an eigenfunction of the EVP (1.2) corresponding to X if and only if
v s an eigenfunction of the EVP (1.5) corresponding to A.

As we stated in Lemma 3.1, ¢ € V}, is equivalent to a = R[g] € X,,. Combining Lemma
1.2 and Lemma 4.4 we obtain

Lemma 4.5 Suppose that ¢ € V,. Then the EVP (1.2) has an infinite but countable
number of eigenvalues and they can be listed as

D<A <A< A< <Ay < App1 < -+ — 400.

Moreover, for each n € N the eigenfunction u € W corresponding to A, is unique up to
constant multiples, and the n-th eigenvalue A, of the EVP (1.2) is also the n-th eigenvalue
of the EVP (1.5) with a = Rq].

We have all the ingredients needed to prove Theorem 1.1.

PROOF OF Theorem 1.1 : We first solve the BVP (1.4) with the Carathéodory function
F(s,v) given by (4.1). Without loss of generality we can assume r1(t) > 0 and ra(t) > 0
for a.e. t € (0,400). By Lemma 4.1,

|F(s,v)| < by(s)|v| +ba(s) ae. s€(0,1) "weR,

where b, = R[r;] € X and b, = T[ry] € X. Set a = R[g]. From Lemma 3.1 we

have a € X,. It follows from (A.F) that r(t) + TT(T) f(u u) —ry(t) — T(T)

ae. t € (0,+00) and for u # 0. From this we deduce that ko, € V and k* € V, where

Koo(t) = lim inf ———+ ( v) and k*(t) = limsup f(t o)

|u|—>+o00 |ul—+o00

for t € (0,+00). Then we have

o F(sv) 1 .. s v \1-s5
Yeol8) = mr—l»i—rg v (l—s)t }ﬁirg f(l -5 1-— s) v Rlreo](s),
, F(s,v) v \1-s
¥*(s) = limsu = lim su ( ) = R[k™|(s
(s) |v|—>+olo) v (1—s)* |v|—»+oIo)f 1-s"1- v [ ]( )

for a.e. s € (0,1). Hence, we obtain

o =A@ = Rlkeo —Ang] and A0 — 7 = RAap1g — £%°,
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where )y is the k-th eigenvalue of the EVP (1.2). By Lemma 4.5, the \; is also k-th
eigenvalue of the EVP (1.5). By assumption, ke — Ang € V, and App1qg — k® € V. It
follows from Lemma 3.1 that v, —Ana € X, and Apt1a—7* € X,. By Theorem 1.3, there
exists a solution v € Y of the BVP (1.4). Now, set u(t) = S~ [v](t) = (1 +t) 'v(l _t*_ t)' It

follows from (b) of Lemma 4.2 that u is a solution in W of the BVP (1.1). This completes
the proof.

a
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